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Abstract
Introduction: HIV affects more women than any other life-threatening infectious agent, and most infections are sexually
transmitted. HIV must breach the female genital tract mucosal barrier to establish systemic infection, and clinical studies
indicate virus more easily evades this barrier in women using depot-medroxyprogesterone acetate (DMPA) and other
injectable progestins for contraception. Identifying a potential mechanism for this association, we learned DMPA promotes
susceptibility of wild-type mice to genital herpes simplex virus type 2 (HSV-2) infection by reducing genital tissue expres-
sion of the cell-cell adhesion molecule desmoglein-1 (DSG-1) and increasing genital mucosal permeability. Conversely,
DMPA-mediated increases in genital mucosal permeability and HSV-2 susceptibility were eliminated in mice concomitantly
administered exogenous oestrogen (E). To confirm and extend these findings, herein we used humanized mice to define
effects of systemic DMPA and intravaginal (ivag) E administration on susceptibility to genital infection with cell-associated
HIV-1.
Methods: Effects of DMPA or an intravaginal (ivag) E cream on engraftment of NOD-scid-IL-2Rgcnull (NSG) mice with human
peripheral blood mononuclear cells (hPBMCs) were defined with flow cytometry. Confocal microscopy was used to evaluate
effects of DMPA, DMPA and E cream, or DMPA and the pharmacologically active component of the cream on vaginal tissue
DSG-1 expression and genital mucosal permeability to low molecular weight (LMW) molecules and hPBMCs. In other studies,
hPBMC-engrafted NSG mice (hPBMC-NSG) received DMPA or DMPA and ivag E cream before genital inoculation with 106

HIV-1-infected hPBMCs. Mice were euthanized 10 days after infection, and plasma HIV-1 load quantified by qRT-PCR and
splenocytes used to detect HIV-1 p24 antigen via immunohistochemistry and infectious virus via TZM-bl luciferase assay.
Results: Whereas hPBMC engraftment was unaffected by DMPA or E treatment, mice administered DMPA and E (cream or
the pharmacologically active cream component) displayed greater vaginal tissue expression of DSG-1 protein and decreased
vaginal mucosal permeability to LMW molecules and hPBMCs versus DMPA-treated mice. DMPA-treated hPBMC-NSG mice
were also uniformly susceptible to genital transmission of cell-associated HIV-1, while no animal concomitantly administered
DMPA and E cream acquired systemic HIV-1 infection.
Conclusion: Exogenous E administration reduces susceptibility of DMPA-treated humanized mice to genital HIV-1 infection.
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1 | INTRODUCTION

Women aged 15 to 24 years in sub-Saharan Africa are espe-
cially vulnerable to HIV, and currently represent 25% of the
new infections in the region [1]. Reasons for this are unclear
but certainly multi-factorial, with gender-based social, eco-
nomic, political and cultural disparities possibly contributing
[2]. High prevalence of intergenerational sexual partnerships
may play an additional role [3], and certain hormonal contra-
ceptives appear to at least modestly increase the risk of HIV
acquisition [4–6]. The injectable progestins depot-medroxypro-
gesterone acetate (DMPA) and norethisterone enanthate are
commonly used in sub-Saharan Africa, and women using these

agents were found twice as likely to acquire HIV as women
using no form of hormonal contraception [7].
Most likely, cell-free and cell-associated HIV-1 are sexually

transmitted, but the exact transmission frequency of each is
unknown [8]. Transmission of cell-free HIV has been the more
thoroughly explored, and most non-human primate transmis-
sion studies with simian immunodeficiency virus (SIV) utilized
cell-free virus. However, in humans, HIV-1 is more often iso-
lated from seminal cells than seminal fluid, and cell-associated
HIV-1 is detected in the seminal fluid of men receiving highly
active antiretroviral therapy [9–13]. Seminal fluid from healthy
men contains about 105 leukocytes/ml, and these numbers
are markedly increased by genital infection [13,14]. These
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observations suggest that transmission of cell-associated HIV-
1 can cause systemic infection [15,16]; a possibility supported
in animal models. Female cats were genitally infected with
cell-associated feline immunodeficiency virus (another len-
tivirus with T-cell tropism) [17], and female macaques were
genitally infected with cell-associated SIV [18]. Cell-associated
HIV-1 was also transmitted to severe combined immunodefi-
cient (SCID) mice reconstituted with human peripheral blood
leukocytes, whereas productive infection did not result from
inoculating these mice with cell-free HIV-1 [19].
It is interesting to note that multiple non-human primate

and murine models of genital HIV infection administer DMPA
prior to infection to achieve uniform infectivity [20,21].
Although mechanisms responsible for this effect were not fully
defined, DMPA is known to similarly enhance mouse suscepti-
bly to genital infection with human papilloma virus and
Chlamydia [22,23]. Offering mechanistic insight into this obser-
vation, we saw DMPA and levonorgestrel (LNG), another
exogenous progestin used for long-acting reversible contra-
ception, increase genital mucosal permeability and susceptibil-
ity of wild-type mice to intravaginal (ivag) infection with
herpes simplex virus type 2 (HSV-2) [24]. We also found these
progestin-mediated increases in genital mucosal permeability
and HSV-2 susceptibility were abolished in mice administered
DMPA and exogenous oestrogen (E) prior to infection [24].
Herein, we sought to further explore these findings by com-
paring genital mucosal permeability and transmission of cell-
associated HIV-1 in humanized mice administered DMPA or
DMPA and E.

2 | METHODS

2.1 | Human peripheral blood mononuclear cells

Human peripheral blood mononuclear cells (hPBMCs) were
isolated by density gradient centrifugation [25,26] from
healthy donor buffy coats obtained from the Central-South-
east Ohio Region American Red Cross. hPBMCs used to
reconstitute mice in this study were determined by TZM-bl
cell assay [27–32] to not contain infectious HIV-1 particles.

2.2 | Humanized mice

Prior to animal experimentation, ethical approval was obtained
from The Ohio State University IACUC, and in vivo proce-
dures were performed from December 2015 to September
2016 in compliance with the principles of the Guide for the
Care and Use of Laboratory Animals of the Institute for Labo-
ratory Animal Research. Six- to eight-week-old NOD-scid-IL-
2Rgcnull (NSG) female mice (n = 65) were acquired from Jack-
son Laboratory (Bar Harbor, ME, USA), and kept under a
12 hour to 12 hour light–dark cycle with ad libitum access to
food and water. For NSG mouse engraftment, hPBMCs were
thawed, washed and re-suspended in PBS, and intravenously
(i.v.) administered (107 cells per mouse). Fourteen and 24 days
after hPBMC injection, hPBMC engraftment was assessed
using peripheral blood. Blood was incubated with RBC lysis
buffer (eBioscience, San Diego, CA, USA), and cells stained
with Live/Dead Fixable near-IR (Invitrogen, Eugene, OR, USA)
and anti-human CD45 BV510 (H130), anti-mouse CD45
PerCP (30-F11) (BioLegend, San Diego, CA, USA) and anti-

human CD3 FITC (UCHT1) (BD Biosciences, San Jose, CA,
USA) antibodies. Cells were fixed in CytofixTM buffer (BD Bio-
sciences), and collected by FACSCanto II flow cytometer (BD
Biosciences). Data were acquired by FACSDiva (BD Bio-
sciences), and analysed with FlowJo software (Tree Star Inc.,
Ashland OR, USA). Unlike engrafted bone marrow, liver and
thymus (BLT) humanized mice, no human cells are seen in
lower genital tract mucosal tissues of hPBMC-engrafted NSG
(hPBMC-NSG) mice [33]. These mice (rather than BLT mice)
therefore were used in the current study to explore the
impact of exogenous sex steroids on vaginal mucosal integrity
and genital HIV transmission, as the absence of HIV-1 target
cells in the vaginal mucosal epithelium of NSG mice minimizes
the potential for confounding created by exogenous steroid-
mediated effects on human immune cell infiltration or function
in the lower genital tract.

2.3 | Exogenous steroid administration

hPBMC-NSG mice were subcutaneously (s.c.) injected with
1 mg of DMPA (Depo-Provera�; Pharmacia and Upjohn Co.,
New York, NY, USA) 5 days before mucosal permeability
assays were performed or HIV-1 transmission studies initiated
(Figure 1a). This dose achieves serum levels in mice that
approximate peak serum concentrations measured in women
that initiate DMPA [34]. As indicated, mice were ivag adminis-
tered a commercially available E cream (Premarin�; Wyeth
Pharmaceuticals Inc., a subsidiary of Pfizer Inc., Philadelphia
PA, USA) or its active component (Pfizer Inc.) daily in the
3 days before permeability assays were performed or trans-
mission studies initiated (Figure 1a). As indicated, untreated
NSG mice in the oestrus stage of the oestrus cycle provided
controls for experiments used to assess genital mucosal per-
meability and integrity.

2.4 | HIV-1 infection

106 hPBMCs/ml were plated in RPMI-1640 with 10% FBS,
2 mM L-glutamine, 1 mM sodium pyruvate, non-essential
amino acids, 50 lM 2-ME, 100 U/ml penicillin, 100 lg/ml
streptomycin and 50 lg/ml gentamycin (Mediatech, Manassas,
VA, USA) (hereafter termed complete media). Cells were stim-
ulated for 48 hour in complete media containing 5 lg/ml of
phytohaemagglutinin (PHA) (Sigma-Aldrich, St. Louis, MO,
USA). Cells were centrifuged, re-suspended (2 x 106 cells/ml)
in complete media supplemented with 10 IU/ml recombinant
human IL-2 (rhIL-2) (PeproTech, Rocky Hill, NJ, USA), and
incubated another 5 days. hPBMCs were inoculated with 600
TCID50 of HIV-1 BaL [35] for 24 hour, and re-suspended in
PBS (108 cells/ml) for in vivo infections (portions of the HIV-
1-infected hPBMC culture were used in a luciferase gene
reporter assay to confirm HIV-1 infectivity). For infection,
hPBMC-NSG mice were anaesthetized with xylazine and keta-
mine hydrochloride [36], and ivag inoculated with 106 (10 ll)
of HIV-1-infected huPBMCs. Mice were euthanized 10 days
later to assess HIV-1 infection status. Of note, mice were
euthanized 24 days after hPBMC administration, while typical
onset of clinical signs and mortality from graft versus host dis-
ease in NSG mice occurs no sooner than 25 days and 40 days
after hPBMC engraftment respectively [37]. At euthanasia,
plasma was separated from blood and stored at �80°C.
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Approximately 2/3 of the spleen was transferred to chilled
complete media, with the rest placed in buffered 4% formalde-
hyde for 24 hour (Thermo Scientific, Rockford, IL, USA). Sple-
nic tissues placed in media were processed into single-cell
suspension, and cultured in complete media (106 cells/ml) sup-
plemented with rhIL-2 (media replenished every 3 days). After
8 days, supernatants were incubated with TZM-bl indicator
cells to detect infectious HIV-1 particles. In these assays,
splenocytes from uninfected mice provided negative controls
and HIV-1 BaL diluted in complete media served as positive
controls. Plasma HIV-1 load was quantified at an OSU clinical
laboratory using Abbott’s real-time PCR assay, a FDA-
approved test for HIV RNA viral load. All assays used to eval-
uate HIV infection status in our study were performed by
investigators unaware of mouse treatment group assignment.

2.5 | Mucosal permeability assays

To assess genital mucosal permeability to low molecular
weight (LMW) molecules, sedated mice were ivag adminis-
tered a 10 ll PBS solution containing 70 kDa Texas-Red dex-
tran and Lucifer yellow CH lithium (Invitrogen, Carlsbad, CA,

USA). Mice were euthanized 45 minutes later, and fluorescent
molecule penetration into vaginal tissue defined using
FV1000 spectral confocal microscope system (Olympus, Cen-
ter Valley, PA, USA) and ImageJ software [24,38]. To evaluate
hPBMC entry into vaginal tissue, uninfected hPBMCs were
activated as described above. Eight days later, cells were
labelled with 5 lM of carboxyfluorescein succinimidyl ester
(CellTrace CFSE; Life Technologies, Carlsbad, CA, USA), re-
suspended in PBS (108 cells/ml), and mice ivag inoculated
with 10 ll of this suspension. After 15 hour, mice were euth-
anized, vaginas excised, and tissues fixed in formaldehyde,
agarose-embedded and DAPI stained. The fluorescent signal
of CSFE-labelled hPBMCs was used to assess depth of leuko-
cyte infiltration into vaginal submucosal tissue using confocal
microscopy and ImageJ software. Confocal images were
acquired by sequential scanning to prevent fluorescence
crossover.

2.6 | DSG-1 protein and HIV-1 p24 antigen

To assess desmoglein-1 (DSG-1) protein expression, vaginal
tissue excised from euthanized mice was fixed in buffered
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Figure 1. Exogenous DMPA or E did not affect hPBMC engraftment of NSG mice. (a) Schematic of the study design used to assess effects
of administering DMPA and E on hPBMC engraftment, genital mucosal permeability and HIV-1 susceptibility of NSG mice. To define effects
of DMPA and E on engraftment, peripheral blood was obtained 14 days and 24 days after hPBMC administration (untreated NSG mice pro-
vided controls). (b,c) Flow cytometric studies identified no between-group differences in the percentages of murine CD45+ cells and human
CD45+ CD3+ cells after hPBMC administration; left panels show representative contour plots; quadrant numbers denote population percent-
ages. Data are from 2 independent experiments with 3 animals per group (bars denote mean � SD). Statistical analyses performed using
one-way ANOVA with Dunnett’s multiple comparisons test. DMPA, depot medroxyprogesterone acetate; E, ivag oestrogen cream; hPBMC-
NSG (hPBMC-engrafted NOD-scid-IL-2Rgcnull) mice.
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formaldehyde. DSG-1 expression was quantified as described
earlier [24]. Using methods described previously, HIV-1 p24
protein expression was defined in splenic tissue sections
after de-paraffinization and antigen retrieval, overnight block-
ing with 5% BSA, and incubation with rabbit monoclonal anti-
CD45 (EP322Y) and goat polyclonal anti-HIV p24 (ab53841)
(Abcam, Cambridge, MA, USA) [24]. Samples were processed
for confocal microscopy analysis as detailed above.

2.7 | Statistical considerations

All statistical analyses were performed using Prism 6 software
(GraphPad, La Jolla, CA, USA), with normality assessed using
evaluation of the residuals. For comparisons between 2
groups, unpaired Student’s t-tests were used. For comparisons
between multiple groups, one-way ANOVA with Dunnett’s
post hoc test or Kruskal–Wallis test with Dunn’s post hoc test
were used (depending on data distribution) (p ≤ 0.05 were
deemed statistically significant).

3 | RESULTS

3.1 | DMPA and E administration did not affect
hPBMC engraftment of NSG mice

While the primary objective of this study was to define the
effects of treatment with DMPA and E on susceptibility of
hPBMC-NSG mice to genital HIV-1 infection, we first needed
to determine if these compounds altered hPBMC engraftment.
Using peripheral blood from untreated controls, DMPA-trea-
ted and DMPA- and E cream-treated NSG mice 14 days and
24 days after hPBMC administration (Figure 1a), our flow
cytometric analyses identified more robust engraftment of
human CD45+ CD3+ cells at the latter time point. However,
comparing untreated controls and mice administered systemic
DMPA or DMPA and ivag E, neither time point was associated

with statistically significant differences hPBMC engraftment
(Figure 1b,c).

3.2 | Exogenous E prevented DMPA-mediated loss
of genital mucosal barrier function

Because DMPA and E did not affect hPBMC engraftment of
NSG mice, we explored the effects of these compounds on
genital mucosal barrier function. We first defined effects of
DMPA and E on vaginal expression of DSG-1, a cell-cell adhe-
sion molecule needed to maintain barrier function in cuta-
neous and intestinal epithelium [39,40]. In earlier work with
wild-type mice, we established that systemic DMPA treatment
significantly reduced vaginal tissue expression of DSG-1 with-
out affecting levels of other cell-cell adhesion molecules
expressed in genital mucosa, including tight junction protein 1,
claudin-1 and occludin [24]. In the current study, we measured
vaginal tissue expression of DSG-1 protein in hPBMC-NSG
mice that were: oestrus stage and untreated with exogenous
sex steroids; DMPA-treated; or administered DMPA and ivag
E cream. To exclude the possibility that physical properties of
the E cream produced any observed effect, other hPBMC-
NSG mice received DMPA injection and ivag administration of
the pharmacologically active component of E cream (i.e. pure
E). These studies revealed comparable DSG-1 protein expres-
sion in untreated control mice and hPBMC-NSG mice adminis-
tered DMPA and oestrogen (E cream or pure E), but
significantly reduced DSG-1 expression in vaginal tissue of
mice treated with DMPA alone (Figure 2).
In follow-up studies, we used identically treated groups of

mice to delineate the effects of systemic DMPA and ivag E
administration on vaginal mucosal permeability to LMW mole-
cules and activated human leukocytes. Compared to DMPA-
treated hPBMC-NSG mice, these studies identified reduced
mucosal penetration of fluorescent LMW molecules and leuko-
cytes in untreated mice and hPBMC-NSG mice administered
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Figure 2. DMPA-mediated reduction in vaginal DSG-1 protein expression was abrogated in hPBMC-NSG mice administered DMPA and E.
hPBMC-NSG mice were untreated or treated with DMPA, DMPA and ivag E cream, or DMPA and ivag pure E. As detailed in Methods, vagi-
nal tissue was collected from euthanized mice to quantify DSG-1 protein expression. (a) Representative confocal microscopic images of vagi-
nal DSG-1 protein expression; L (vaginal lumen); DAPI (Blue); DSG-1 (green); white line delimits the vaginal mucosal epithelium; scale bar
denotes 100 lm. (b) Quantification of DSG-1 protein expression showed significantly reduced levels in hPBMC-NSG mice administered
DMPA alone. Data from 2 independent experiments with 3 animals per group (bars denote mean � SD). Statistical analyses performed using
one-way ANOVA with Dunnett’s multiple comparisons test. hPBMC-NSG (hPBMC-engrafted NOD-scid-IL-2Rgcnull) mice; DMPA, depot
medroxyprogesterone acetate; E, vaginal oestrogen cream; pure E, pharmacologically active component of E cream; DSG-1, desmoglein-1.
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DMPA and ivag E or DMPA and pure E (Figure 3). Because
we identified similar vaginal tissue expression of DSG-1 pro-
tein and comparably reduced vaginal tissue penetration of
LMW molecules and activated human leukocytes among
hPBMC-NSG mice treated with DMPA and E cream or pure E
(vs. mice treated with DMPA alone), these studies also
resolved E itself was responsible for strengthening genital
mucosal barrier function.

3.3 | Exogenous E abrogated susceptibility of
DMPA-treated humanized mice to genital
transmission of cell-associated HIV

Because ivag E or pure E restored DMPA-mediated loss of
mucosal barrier function, we hypothesized exogenous E elimi-
nates the susceptibility of hPBMC-NSG mice to genital trans-
mission of cell-associated HIV-1. To explore this hypothesis,
hPBMC-NSG mice were systemically treated with DMPA or
DMPA and ivag E cream (Figure 1a). All mice were genitally
inoculated with 106 HIV-1-infected hPBMCs, and euthanized
10 days later to assess HIV-1 infection status. Immunohisto-
chemical tests for HIV-1 p24 antigen detected this protein
only in the spleens of DMPA-treated hPBMC-NSG mice (Fig-
ure 4a). Using a TZM-bl luciferase assay to qualitatively
detect the presence of infectious HIV-1 particles, we detected

significantly increased signal in the spleens of DMPA-treated
mice versus mice treated with DMPA and the ivag E cream
(Figure 4b). These results indicated that systemic HIV-1 infec-
tion was prevented by combined DMPA and ivag E treatment.
Offering further support for this conclusion, HIV-1 virus
copies were detected by qRT-PCR assay in the plasma of
hPBMC-NSG mice administered DMPA, but not in the plasma
of hPBMC-NSG mice treated with DMPA and E (Figure 4c).

4 | DISCUSSION

Male-to-female HIV transmission rates approximate 0.12% per
sex act [41], implying the virus must overcome host defences
in the female genital tract to establish systemic infection. As
examples, virus particles that avoid entrapment in epithelial
surface mucus must breach the mucosal epithelium to interact
with submucosal tissue target cells [42,43]. While pathogen-
induced ulcers and coital abrasions may help HIV-1 evade
genital mucosal barriers [44,45], current findings suggest
DMPA-mediated increases in genital mucosal permeability also
promote virus transmission. Compared to hPBMC-NSG mice
administered DMPA and E, vaginal tissue of mice treated with
DMPA displayed reduced expression of DSG-1 protein and
impaired mucosal barrier function, and DMPA-treated
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Figure 3. Combined treatment with DMPA and exogenous E obviated DMPA-mediated increases in vaginal mucosal permeability. hPBMC-
NSG mice remained untreated or were treated as described in Figure 2. As detailed in Methods, vaginal tissue was excised from euthanized
mice to assess permeability to LMW molecules or CFSE-labelled hPBMCs. (a, b) Representative images illustrate increased permeability to
LMW molecules and activated human leukocytes in hPBMC-NSG mice administered DMPA vs. untreated controls or animals administered
DMPA and ivag E; scale bars denote 100 lm. (a) L (vaginal lumen); DAPI (blue) Lucifer Yellow (green); 70 kDa Texas-Red dextran (red), and (b)
L (vaginal lumen); DAPI (blue); CFSE-labelled hPBMCs (green); white line delimits vaginal mucosal epithelium. (c) Quantifying depth of hPBMC
infiltration into vaginal submucosal tissue identified significantly deeper infiltration in mice administered DMPA alone. Displayed data from 2
independent experiments with 3 animals per group (bars denote mean � SD). Statistical analyses performed using one-way ANOVA with
Dunnett’s multiple comparisons test. hPBMC-NSG (hPBMC-engrafted NOD-scid-IL-2Rgcnull) mice; DMPA, depot medroxyprogesterone acet-
ate; CFSE, carboxyfluorescein succinimidyl ester; E, oestrogen cream; pure E, pharmacologically active component of the E cream.
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hPBMC-NSG mice were highly susceptible to genital transmis-
sion of cell-associated HIV-1. These findings thus corroborate
results in which DMPA- and LNG-treated wild-type mice dis-
played increased genital mucosal permeability and susceptibil-
ity to cell-free HSV-2 infection [24]. Current findings also
corroborate clinical data in which ectocervical DSG-1 expres-
sion and mucosal permeability were analogously altered in
women initiating use of DMPA or a LNG-releasing intra-uter-
ine system [24,46].
While our results may identify an underlying mechanism by

which exogenous progestins enhance HIV susceptibility, they
cannot exclude contributions from other mechanisms. Several
clinical studies saw greater inflammation in genital tissue after
women initiated DMPA [24,47,48], and it is possible that
DMPA-mediated increases in genital inflammation can enhance
HIV susceptibility. On the other hand, mouse model findings
reveal that DMPA-mediated increases in genital inflammation
occurred downstrearm of DMPA-mediated increases in genital
mucosal permeability that facilitated tissue invasion by
endogenous microbiota [24]. Moreover, while DMPA makes
hPBMC-NSG mice uniformly susceptibly to genital HIV-1
transmission (Figure 4), genital tract submucosal tissue in
these mice does not contain human immune cells [33,49]. This
implies that the enhanced HIV susceptibility of DMPA-treated
hPBMC-NSG mice was not created by DMPA-mediated
inflammatory responses that increased the frequency of HIV
target cells. While current results offer novel indication that
DMPA-mediated impairment of genital mucosal barrier func-
tion promotes HIV transmission, actual contribution of this
effect to similarly enhancing HIV susceptibility of women using
DMPA awaits further investigation.
On the other hand, DMPA-mediated enhanced susceptibility

of hPBMC-NSG mice to cell-associated HIV-1 infection is con-
gruent with previous reports that DMPA increased suscepti-
bility of hPBMC-SCID mice and non-human primates to
atraumatic genital inoculation with cell-associated HIV-1 and

SIV, respectively [19,50]. Our current findings provide impor-
tant extension of these results, showing that treatment of
mice with ivag E improves genital mucosal barrier function
and protects DMPA-treated mice from cell-associated HIV-1
acquisition. While non-human primate studies identified that
exogenous E reduced susceptibility to genital SIV infection
[51,52], our findings appear to be the first to demonstrate
that exogenous E abrogates HIV-1 susceptibility in DMPA-
treated animals. Current results further establish the
enhanced barrier protection was a direct effect of E, as ivag
administration of an E cream (Premarin�) and pure Premarin�

substance similarly increased vaginal expression of DSG-1 pro-
tein and reduced genital mucosal permeability to LMW mole-
cules and hPBMCs. These findings imply the ability of ivag E
cream to protect DMPA-treated hPBMC-NSG mice from cell-
associated HIV-1 infection was not an artefact of cream
impeding access of HIV-infected hPBMCs to the genital
epithelial surface. Considered in combination with prior results
[24], the capability of exogenous E to protect progestin-trea-
ted mice from cell-free and cell-associated genital virus infec-
tion implies that exogenous E and progestin may be
components of a hormonal contraceptive platform that is less
compromising of genital mucosal barrier function than those
that deliver progestin unopposed. However, as there are
important differences in the genital tract of mice and women,
including the fact that rodent vaginal epithelium is keratinized
and human vaginal epithelium is not [53], it will be critical to
define efficacy of contraceptive platforms releasing exogenous
E and progestin in highly relevant clinical models, including
non-human primates.

5 | CONCLUSION

Our studies show that DMPA weakens genital mucosal barrier
function. As barrier function is such a fundamental anti-virus
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Figure 4. Exogenous E reversed susceptibility of DMPA-treated humanized mice to genital transmission of cell-associated HIV-1. hPBMC-
NSG mice were treated with DMPA or DMPA and ivag E cream and genitally inoculated with cell-associated HIV-1 (as described in Methods
and depicted in Figure 1a). Ten days after genital inoculation, mice were euthanized to assess HIV-1 infection status. (a) Representative images
of immunostaining for HIV-1 p24 antigen in the spleens of euthanized mice show this viral protein detected only in mice treated with DMPA
alone; DAPI (blue); anti-human CD45 (green); anti-HIV-1 p24 antigen (red); scale bar denotes 20 lm. (b) TZM-bl luciferase assay identified
infectious HIV-1 particles only in spleens from DMPA-treated mice (splenocytes from uninfected mice and HIV-1 BaL diluted in media pro-
vided negative and positive controls respectively). (c) A qRT-PCR assay detected HIV-1 virus only in the serum of hPBMC-NSG mice adminis-
tered DMPA alone (ND denotes no virus was detected). Data displayed are from 2 independent experiments with 5 animals per group (bars
denote mean � SD). Statistical analyses were performed using the unpaired Student’s t-test. DMPA, depot medroxyprogesterone acetate; E,
vaginal oestrogen cream; hPBMC-NSG (NOD-scid-IL-2Rgcnull) mice.
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host defence, any factor that weakens this protection may
represent an important HIV risk factor. Our studies also pro-
vide new biological plausibility for the putative link between
DMPA and HIV susceptibility, and suggest that use of unop-
posed progestins for hormonal contraception may impede
efforts to curb the HIV pandemic. On the other hand, we
identified that exogenous E reverses DMPA-mediated
increases in mucosal permeability and HIV susceptibility.
Based on the ability of exogenous E to eliminate susceptibly
of DMPA-treated humanized mice to genital HIV-1 infection,
combined use of exogenous progestin and E may provide basis
for hormonal contraceptive approaches among women at
higher risk for HIV acquisition, particularly in more resource-
limited settings. However, defining the safety and efficacy of
contraceptive platforms that use exogenous E to boost genital
mucosal barrier function requires new clinical study and fur-
ther exploration of clinically relevant animal models.
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