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Abstract: Biomechanical analysis of human movement is based on dynamic measurements of refer-
ence points on the subject’s body and orientation measurements of body segments. Collected data
include positions’ measurement, in a three-dimensional space. Signal enhancement by proper filter-
ing is often recommended. Velocity and acceleration signal must be obtained from position/angular
measurement records, needing numerical processing effort. In this paper, we propose a comparative
filtering method study procedure, based on measurement uncertainty related parameters’ set, based
upon simulated and experimental signals. The final aim is to propose guidelines to optimize dynamic
biomechanical measurement, considering the measurement uncertainty contribution due to the
processing method. Performance of the considered methods are examined and compared with an
analytical signal, considering both stationary and transient conditions. Finally, four experimental test
cases are evaluated at best filtering conditions for measurement uncertainty contributions.

Keywords: dynamic biomechanical measurements; biomechanical dynamic signal filtering; measure-
ment of human movement; biomechanics; kinematic analysis

1. Introduction

The biomechanical study of human movement requires a strict integration between ex-
perimental data and models to describe motion patterns [1,2]. Moreover, when dealing with
physical parameters that cannot be directly measured, a model-based inverse-dynamics
problem has to be solved, which requires the measurement of kinematic quantities, includ-
ing position, velocity and acceleration of reference points, as well as angular displacement
and relative derivatives of body limbs.

State-of-the-art measurement systems for kinematic analysis in biomechanics include
video or inertial sensors. In the first scenario, a preliminary calibrated video system is used
to measure the position in the two or three-dimensional space, according to gesture’s space
development (2D measures can fit sufficiently some gestures, while others are intrinsically
3D). The video shows a set of reference markers on the subject corresponding to very
evident dots with respect to the background. Experimental signals resulting from the
measurements are positions. The second scenario is composed of an inertial measurement
unit (IMU), consisting of accelerometers, gyroscopes and magnetometers, placed on the
body segment, measuring its orientation in the space. Experimental signals resulting from
the measurements are angles. In both scenarios, some noise affects the measurements,
mainly due to electronics and processing of the IMU signals, or to illumination, fast
movements, camera resolution and focus in the video scenario [3].

To obtain velocities and accelerations from position and angle measurements, a differ-
entiation process and low pass filtering is necessary. Filter selection and setup are critical
because noise might affect numerical derivatives [4,5].

For this reason, differentiation procedures and their characterization has been ana-
lyzed from several points of view in literature. Regarding specific biomechanics’ applica-
tion, three frequently used approaches to differentiation can be identified: (1) numerical
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differentiation followed by low pass filtering, (2) polynomial local approximation and
direct differentiation, and (3) optimal Fourier filtering.

As regards the first Approach, several papers available in literature investigating low
pass filtering performances [6] by comparing filtering results to standard gait patterns,
with and without added noise, or introducing simulated gait patterns as reference [7–9].
The effectiveness of such studies is limited by the need to adapt filters’ setup to the specific
signal and to the considered derivative order.

The consistency of the polynomial approach with the model and its degrees of freedom
is considered by [10–12] addressing the effect of differentiation methods on modelling,
and on its use in inverse dynamics analysis results. Numerical differentiation methods are
compared to an experimental reference signal from a worn accelerometer in [13] introducing
an experimental reference signal.

The Fourier approach bases on biomechanical signal spectral content to identify a
convenient filter bandwidth. Such approach presents a good performance with the burden
of heavier computation. An interesting compromise is discussed in [14–17] optimizing the
spectral reconstruction of the biomechanical signal for successive analytical differentiation.

Polynomial interpolation was increasingly adopted in biomechanics following Sav-
itzky and Golay’s computational efficient procedure [1,18,19]. Such an approach presents
the advantage to obtaining the analytical differentiation, point by point, considering the
interpolating polynomial. On the other hand, the polynomial filter set up is not straight
forward due to nonlinear behavior [20].

It is worth noting that the majority of the papers consider the differentiation problem
applied to gait one of the most studied human gesture in biomechanics. Interesting
different developments in biomechanical studies include a variety of upper limbs sports
gestures including ergonomic studies in human–machine interaction [21] or repeated
movements in working activities [22]. A general approach addressing measurement
uncertainty contribution due to the differentiation process seems to be appropriate.

Most literature considers rms errors between reference and numerically differentiated
signals as differentiation/filtering performance indicators. In order to fulfill constraints of
different biomechanical applications, specific performance indicators are required. Rms
error, the most common in literature, is a good general indicator applied to the analysis
or modelling of an overall, rather slow, gesture such as gait. In sports acceleration, peaks
might be essential to characterize or optimize gesture performance, and their values
heavily influence the measurement of articular forces and moments through an inverse
dynamic model.

The energetic analysis is another aspect to consider, since it can be influenced by
differentiation errors. When only short acquisitions are available, border effects might be
dominant. Such effects, which are of great importance when using numerical filtering, are
rarely analyzed [23–25]. Except for Fourier methods, differentiation by filtering is based
on a processing window in which borders can show an abnormal behavior, due to the
filter action. This may be eliminated when long sequences of a repetitive (periodic) gesture
are available, but it highly impacts those cases in which a record of a single gesture is
available. In such cases, specific performance indicators are needed to characterize the
differentiation/filtering procedure, and a rough indication of the possible differentiation
error is indispensable when comparing results from different experiments, or a result from
a trial with a normality range.

The purpose of this work is to propose a possible evaluation scheme, to better under-
stand filter performance according to the above limits discussed regarding the existing
proposed methods. We consider both signal and its derivatives, by using an analytic refer-
ence signal and a set of experimental test cases [26]. The use of an analytical reference signal
makes possible the evaluation of measurement uncertainty, giving useful indications on the
reliability of the obtained values. Tests cases will cover specific aspects illustrated above.

The set of selected filtering methods will be discussed, critically analyzing their main
features. A reference signal, with added random noise, is adopted, where derivatives
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are analytically computed to become the reference. Performance evaluation will consider
both uncertainty on the filtered signal, in terms of signal to noise ratio, and transient
performance on signal and its derivatives.

Some practical indications for selecting and defining the most convenient parameters
of the filter are supplied when discussing performance criticalities of analyzed cases. As a
last step, a few experimental test cases are described as samples of possible application.

2. Materials and Methods

Low pass filtering in biomechanics can be used in both kinematic and kinetic exper-
imental data. In the former case, as already depicted, we can identify two main goals
signal to noise ratio improvement and differentiation. In the latter, the main advantage is
to reduce noise contribution in force measurements, in order to use such information in
inverse kinetics procedures.

In both cases, common cut off frequencies are in the range between 3 and 10 Hz [1]
with values around 6 Hz, such as in the biomechanical simulator OpenSim [27,28] default
parameters.

In this paper, the cut off frequency is 10 Hz which represents all the considered
experimental test cases’ bandwidth and most biomechanics’ applications range.

2.1. Differentiation and Filtering Methods

Numerical differentiation in biomechanics is usually carried out according to the
method proposed by Winter and available in [1]. Winter method considers, for each
sample, a mean of the finite differences with both previous and following samples. A low
pass filtering is added to reduce noise effects. In some cases, before differentiation, a low
pass filtering is preliminary applied to improve signal to noise ratio (SNR). Several low
pass filtering methods are available in literature, in the following we will focus on:

• Moving average (MA) filter: it is a window-based filter which is a good introduction
for polynomial filters;

• Butterworth zero phase (BZP) low pass filter: one of the most used in biomechanics,
proposed by Winter in [1] and analyzed in [29];

• Savitsky–Golay polynomial filters [18]: very commonly used in biomechanics.

Let us the briefly introduce and discuss these three methods.

2.1.1. Moving Average (MA) Filters

Although its frequency response is not as performing as for other filter types, this
filtering method is amply used thanks to its intuitive behavior. It is based on an average
window, whose time duration determines its bandwidth, and the consequent number of
points to be averaged is determined by the sampling frequency. When short windows are
involved, together with slow sampling rates, the limitation associated with the minimum
number of three points, becomes critical.

The window is usually based on an odd number of samples: 2M + 1, with M positive
integer, causing a transient behavior when the filter is applied to signal record’s extremities,
affecting M samples after start and before the end. Such effects are particularly evident
when dealing with derivatives. Special smoothing windows, such as Hanning, might be
used to obtain a weighted moving average filter, smoothing transient effects but altering
filter bandwidth. In the following we will consider a window length, for the MA filter,
with cutoff frequency at 10 Hz.

2.1.2. Linear Filter

Among linear filters, the Butterworth filter is very common in filtering biomechanical
signals [1,2,30,31]. After a proper design to obtain the desired cut off frequency, the filtering
is generally applied two times, in forward and reverse directions on the signal time history,
to obtain a zero-phase filter.
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In the following, we will consider a second order 10 Hz cut off Butterworth filter,
applied two times to the time series, obtaining a frequency response of fourth order. The
Fourth order is typical for biomechanical application as depicted in [1].

As in the previous case, linear filtering presents a transient behavior dependent on
filter set up.

2.1.3. Polynomial Filter

Savitzky–Golay, SG, is a polynomial filter, whose parameters are determined by least
square procedure, on a window of points centered on the point of interest [30–35]. The
filter set up requires specification of the polynomial order and of the number of points in
the window. This filter is similar to the MA filter, since it uses a zero-th order polynomial,
or average, fitted on a moving set of samples as defined by window length. However, SG
has a nonlinear behavior, since it operates at higher orders, so bandwidth analysis and filter
set up is not trivial. Cut off frequency depends on both order and window length and the
same bandwidth can be achieved with different combinations, highly affecting transition
band behavior. A SG filter introduction, giving useful frequency cut off and bandwidth
indications is available in [20].

The main advantage of this method, from the point of view of biomechanical motion
analysis, is that once polynomial coefficients have been determined in a point, the signal
derivatives are obtained by analytical derivation, therefore, avoiding numerical derivative
procedures. This advantage often overcomes the difficulties in setting up a proper filter for
noise reduction. We have selected a fourth order SG filter, as widely used in biomechanics,
and to determine the proper window length we used reference [20]. Form this reference
it is possible to identify an empirical relationship between order, window length and cut
off frequency. We are interested in obtaining the same MA and BZP cut off frequency, by
using a fourth order SG filter, so we are constrained to window length selection. To this
purpose we have considered data in [20], using both graphical presentations and tables, to
reconstruct the cut off frequency to window length empirical relation depicted in Figure 1.
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Figure 1. The 3 dB bandwidth for SG applied to a signal sampled at 100 Hz, as a function of window
length. Data from [20].

The curve near 10 Hz is rather flat including different possible lengths, some prelimi-
nary tests were necessary to verify filter bandwidth considering amplitude reduction. We
have tested windows of 15–17-and 19 samples (7–8 and 9 samples on Figure 1) to identify
the 17 points window, as the nearest to the 10 Hz cut off.
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2.2. Reference Analytical Signals

In order to compare filters performance on signal and its derivatives, we need a refer-
ence analytical signal. We propose here to consider a pure harmonic signal, Xa(t), defined
considering frequencies involved in some typical biomechanical investigations, such as
gait and hopping analysis.

In the latter case, a typical protocol considers the most preferred hopping frequency of
2.2 Hz, which is set by a metronome, to ensure a stable gesture repetition [36,37]. In walking
studies, generally the step pace is about 2 Hz. Some harmonics has to be considered in the
measurement set up, leading to a frequency band of about 5 ÷ 10 Hz [1].

We have generated time histories of the reference signal and its derivatives from the
analytical definition with a sampling frequency of 100 Hz, Xa(ti), which is compatible
with most biomechanical data acquisition systems. Of course, it is possible to investigate
different parameters configuration both for sampling and fundamental frequency.

Some noise is added to the analytical reference to better simulate the experimental
situation. This noisy signal X(ti), sampled at 100 Hz, will be the test signal input for the
filters we are considering.

2.3. Experimental Test Cases

Once filters are characterized by considering the analytical reference signal and the
performance parameters presented in the following Section 2.4, it will be possible to apply
the same methods to some experimental test cases which are typical for the biomechanical
application we are considering. We will consider kinematic measurements of different
gestures:

• Standard gait analysis—one gait cycle only;
• In place hopping according to [36,37];
• Voluntary self-oscillations around an upright stable positions;
• Maximum height jump [38].

2.4. Test Procedure

Once the analytical signal has been generated together with its first and second
derivatives, at the required sampling frequency, some noise is added to the original signal,
before entering the processing phase, as reported in Table 1.

Table 1. Reference analytical signal parameters.

Analytical Signal Parameters

Sampling frequency fs 100 Hz
Analytical frequency f0 2–5 Hz

Analytical amplitude Xa0
√

2 (a.u.)
Analytical rms value Xarms 1 (a.u.)

Random noise rms 0.1 (a.u.)
X SNR 20 dB

Analytical signal offers a reference for both time signal and its derivatives. After noise
addition, it is possible to numerically differentiate the signal, by using, for example, the
method recommended by Winter in [1]. This method proceeds point by point along the
signal history, considering an average of the numeric differences obtained with previous
and successive points.

Raw results are then filtered according to the procedures depicted in Figure 2:
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MA and BZP filters are applied to the signal. Then the filtered signal is differentiated
and filter is applied again. First derivative is differentiated again and MA/BZP filters are
applied. Hence each differentiation order n is filtered n + 1 times.

Such numerical differentiation and filtering procedures are not required in the SG case,
since one of its peculiar advantages is the possibility to obtain derivatives directly from
the polynomial coefficients. Table 2 presents filters parameters that we have considered in
this study.

Table 2. Low pass filters characteristics.

Filter Parameters

Moving average, MA Window length 5 samples– fcut ∼= 10 Hz
Butterworth zero phase filter, BZP Second order two passages→ 4th order– fcut = 10 Hz

Savitsky–Golay polynomial filter, SG Fourth order window length 17 samples– fcut ∼= 10 Hz

Once we have obtained filtered signals and their derivatives, we can evaluate perfor-
mance indicators by considering their difference with the reference analytical signal.

2.5. Performance Indicators

Since we rely on an analytical reference, a performance indicator may be developed
starting from the point-by-point difference between signal and its derivatives, obtained
after differentiation and filtering procedures, with the corresponding references. This can
be considered as an estimation of the measurement error, since the reference simulates the
measurand and the signal is the output of the measurement procedure. In order to have an
overall synthetic parameter, it is possible to consider the rms error value, calculated on all
recorded time history, or all available N samples.

Erms =

√√√√ 1
N

N

∑
i=1

(X(ti)− Xa(ti))
2 (1)

This gives us an absolute picture of the situation that can be normalized to the analyti-
cal rms reference, Xarms, giving a figure of the overall relative error.

Erel = 100
Erms

Xarms
(%) or Erel = 20 log10

(
Erms

Xarms

)
(dB) (2)

The same relative approach can be expressed as a signal to noise ratio, SNR, which
is perhaps more informative as regards signal processing. Such overall evaluation fails
in identifying specific aspects such as transient behavior at time history extremes and the
eventual error on signal peaks.

Transient behavior is important when dealing with limited in time signal histories,
for example a single gait recording. In such cases, border effects could be higher than in
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the central part, so a quantification of the border error according to (3) could be useful to
optimize the filter and evaluate the uncertainty in these specific parts.

Ewin =

√√√√ 1
2Win

(
Win

∑
i=1

(X(ti)− Xa(ti))
2 +

N

∑
i=N − Win

(X(ti)− Xa(ti))
2

)
(3)

Ewin considers rms error only in the first and last filtering windows, Win, in the time
history recording. The border error is then normalized following the same principle as in
(2) to obtain Ebor.

Peak level evaluations are required in some gestures, commonly in sports investi-
gations, for example acceleration peaks during a jump. In such cases, an overall error
evaluation is not sufficient, and we need a specific performance indicator. A certain num-
ber Npeaks of peaks are identified in the analytical reference absolute value obtaining their
positions, tk, and levels, |Xa(tk)|. Then peak levels are averaged obtaining a reference for
the peak value.

Peakre f =
1

Npeaks

Npeaks

∑
k=1
|Xa(tk)| (4)

Rms difference between peak levels in the same positions tk, for reference and filtered
signals is evaluated:

RMSpeak =

√√√√ 1
Npeaks

Npeaks

∑
k=1

(|X(tk)| − |Xa(tk)|)2 (5)

Finally, the ratio between error and reference level gives the dynamic performance
indicator in %:

Epeak =
RMSpeak

Peakre f
(6)

Figure 13 presents graphically the zones of the time signal interested by performance
indicators.

Now we are going to apply the performance indicators summarized in Table 3, to:

• The signal itself evaluating only the low pass filtering effect, and;
• Its first and second derivatives.

Table 3. Performance indicators summary.

Indicator Description Focus

Erel (%) Error rms on reference rms in percentage Overall performance
EdB (dB) Error rms on reference rms in dB Overall performance
Ebor (%) Border error rms on reference rms in percentage Border performance

Epeak (%) Error on peak evaluation on reference peak
value in percentage Impulsive performance

3. Results
3.1. Signal Filtering

Analytic reference and noisy signals are presented in Figure 3a. The filter effect is
presented in a detailed view in Figure 3b.

The MA filter performance is a bit lower than the others, as expected. It is difficult
to identify, from these graphs, a best performance option. Hence, for each signal, we
computed a point-by-point error as the difference towards the analytical reference, to
evaluate some significant parameters as described in Section 2.5. Figure 4 represents the
point-by-point error chart. The border effect is evident on the left for the first about 0.2 s.
In Table 4, we present some performance figures.
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Figure 4. Point by point error as difference between each processed signal and the analytical reference.

Table 4. Performance indicators for low pass filtering of noisy 2 and 5 Hz time signals.

Signal/Indicator Erel (%) EdB (dB) Ebor (%) Epeak (%)

Noisy 10 10 20 1 20 1 14 13 4.7 7
MA filtered 4.7 10 27 20 6.5 14 3.4 10
BZP filtered 4.0 6.6 28 24 6.3 11 2.6 6
SG filtered 4.6 4.6 27 26 7.3 7 2.9 3

1 Imposed by simulation and confirmed by performance evaluation.

3.2. First Derivative

We now take into consideration the derivatives. Figure 5 and Table 5 show that, while
in time filter performance can be intuitively estimated considering bandwidth or filter non-
linear properties, after the differentiation process, filter behavior is much less predictable.
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Figure 5. Signal differentiation. (a) Time histories for analytical signal first derivative (Reference, Ref), numerically
differentiated signal (raw differentiation, RD), differentiated and filtered by polynomial (SG), Butterworth (BZP) or moving
average (MA), and; (b) first derivative errors for all the methods.

Table 5. Performance indicators for the first derivative obtained by raw numerical differentiation (RD) and low pass filtering
or by polynomial filtering (SG) on the original 2 and 5 Hz noisy time signals.

Signal/Indicator Erel (%) EdB (dB) Ebor (%) Epeak (%)

Raw differentiation—RD 55 22 5 13 69 28 48 16
RD + MA filtering 16 13 16 18 19 20 12 12
RD + BZP filtering 8.6 13 21 17 14 25 5.4 12

SG filtering 13 9 18 21 28 11 6.4 8

3.3. Second Derivative

Moving now to the second derivative, errors are much more evident as shown in
Figure 6 and Table 6.
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Figure 6. Signal double differentiation. (a) Time histories for analytical signal second derivative (Reference, Ref), numerically
differentiated signal (raw differentiation, RD), differentiated and filtered by polynomial (SG), Butterworth (BZP) or moving
average (MA), and (b) the second derivative errors for all the methods.
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Table 6. Performance indicators for the second derivative obtained by raw numerical differentia-
tion (RD) and low pass filtering or by polynomial filtering (SG) on the original 2 and 5 Hz noisy
time signals.

Signal/Indicator Erel (%) EdB (dB) Ebor (%) Epeak (%)

Raw
differentiation–RD 374 59 −11 5 630 88 202 43

RD + MA filtering 39 23 8 13 65 42 28 21
RD + BZP filtering 23 21 13 13 59 50 14 18

SG filtering 64 12 4 19 170 29 32 7

3.4. Experimental Test Cases

In this section, we apply characterized methods to a set of experimental signals useful
in the biomechanical analysis of the gestures presented in Section 2.3.

3.4.1. In Place Hopping

We start considering the vertical movement of a point approximately near the center of
mass of the subject during repeated hopping at a regular pace. The signal is approximately
periodical, as presented in Figure 7, and acquisition lasts for several repetitions, so we can
manage border effects by cutting the central part of the signal after filtering.
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Figure 7. CoM vertical position during hopping. Complete acquisition (a) and detail (b).

Figure 8 presents signal derivatives or CoM vertical speed and acceleration. Raw
differentiation (in cyan) as expected creates a very large noise. While BZP (in blue) presents
a smoother behavior compared to SG (in red). MA (in magenta) underestimates signal
peaks and it seems to have an insufficient bandwidth, even if the three filters are designed
for the same cut off frequency.

Figure 9 presents first and second derivatives for the same gesture but requiring the
subject to force the hopping while maintain the indicated rhythm. In this case, we limited
comparison to SG and BZP since they demonstrated to be best choices when interested
in differentiation.

The performance here is equivalent in the first derivative while in the second derivative
SG seems more noise sensitive and captures larger acceleration peaks, while the smother BZP
enables the identification of the flight period in which acceleration is near gravity.



Sensors 2021, 21, 4580 11 of 17

Sensors 2021, 21, x FOR PEER REVIEW 10 of 17 
 

 

Table 6. Performance indicators for the second derivative obtained by raw numerical differentiation 
(RD) and low pass filtering or by polynomial filtering (SG) on the original 2 and 5 Hz noisy time 
signals. 

Signal/Indicator 𝑬𝒓𝒆𝒍 (%) 𝑬𝒅𝑩 (dB) 𝑬𝒃𝒐𝒓 (%) 𝑬𝒑𝒆𝒂𝒌 (%) 
Raw differentiation–RD 374 59 −11 5 630 88 202 43 

RD + MA filtering 39 23 8 13 65 42 28 21 
RD + BZP filtering 23 21 13 13 59 50 14 18 

SG filtering 64 12 4 19 170 29 32 7 

3.4. Experimental Test Cases 
In this section, we apply characterized methods to a set of experimental signals useful 

in the biomechanical analysis of the gestures presented in Section 2.3. 

3.4.1. In Place Hopping 
We start considering the vertical movement of a point approximately near the center 

of mass of the subject during repeated hopping at a regular pace. The signal is approxi-
mately periodical, as presented in Figure 7, and acquisition lasts for several repetitions, so 
we can manage border effects by cutting the central part of the signal after filtering. 

  
(a) (b) 

Figure 7. CoM vertical position during hopping. Complete acquisition (a) and detail (b). 

Figure 8 presents signal derivatives or CoM vertical speed and acceleration. Raw dif-
ferentiation (in cyan) as expected creates a very large noise. While BZP (in blue) presents 
a smoother behavior compared to SG (in red). MA (in magenta) underestimates signal 
peaks and it seems to have an insufficient bandwidth, even if the three filters are designed 
for the same cut off frequency. 

  
(a) (b) 

0 1 2 3 4 5

time (s)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
Centre of Mass position

Original
SG
BZP
MA

1 1.1 1.2 1.3 1.4 1.5

time (s)

-0.1

-0.05

0

0.05

0.1

Centre of Mass position

Original
SG
BZP
MA

1 1.1 1.2 1.3 1.4 1.5

time (s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
CoM speed

RD
SG
BZP
MA

1 1.1 1.2 1.3 1.4 1.5

time (s)

-60

-40

-20

0

20

40

60
CoM acceleration

RD
SG
BZP
MA

Figure 8. CoM vertical speed (a) and acceleration (b).
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Figure 9. CoM vertical speed (a) and acceleration (b) in forced hopping.

3.4.2. Gait

In gait analysis, available signals often refer to a single gait cycle. This is particularly
critical due to the border effects. Figure 10 presents CoM height during a cycle and
its vertical speed and acceleration. Border effects are evident when considering speed
and acceleration. Near borders SG-BZP performance parameters show 14%–28% errors
respectively for the first derivative and 170%–59% for the second derivative. This is evident
in the acceleration graph when considering the right border, where SG and BZP signals
abruptly deviate.

3.4.3. Self-Oscillations

In this gesture, the horizontal position of the CoM of a subject who voluntary oscillates
back and forward, having care to maintain feet stable and still on the ground and legs as
rigid as possible. This signal is not exactly periodical, as presented in Figure 11, since the
subject is not required to maintain a fixed rhythm; the periodicity is due to the movement
back and forward. Possible oscillations in these specific conditions are very small, hence
measurement results are generally subject to a large amount of noise as compared with the
movement amplitude.
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Figure 10. CoM vertical position (a), speed (b) and acceleration (c) during a gait cycle.
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Figure 11. CoM horizontal position (a), speed (b) and acceleration (c) during voluntary oscillation around a stable and
constant position.
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The noise effect is more evident, in particular for the acceleration chart. BZP remains
smoother than SG and presents lower border effects.

3.4.4. Maximum Height Jump

The maximum height jump is commonly used to evaluate athletes’ explosive per-
formance. Experiments include kinematics and/or kinetic measurements through force
platforms. This signal is not periodic, since the subject intention is to produce a force pulse
on ground to obtain maximum vertical acceleration and reach maximum vertical height.
We consider CoM vertical position measurements until the subject’s take off. Figure 12a
presents CoM speed showing pre jump movements and a peak value before taking off.
From the speed signal, we computed acceleration as presented in Figure 12b, where we
have excluded the raw computation since, due to noise, it would saturate the graph scale.
The difficulty in peak value measurement is evident: discrepancies between the three
methods are rather large.
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Considering Epeak, defined in Equations (5) and (6), as a standard deviation we can
introduce a peak acceleration uncertainty due to computation only, calculated as a 2 Epeak
error, obtaining the values in Table 7, in which large intervals confirm the graphical
impression, but they overlap for all three methods, supporting the validity of the proposed
approach.

Table 7. Peak acceleration values for the maximum height jump including a ± 2σ uncertainty due to
differentiation/filtering methods, evaluated according to reference signal tests in Table 6.

Method Peak Acceleration (m/s2)

RD + MA filtering 16 ± 8
RD + BZP filtering 23 ± 7

SG filtering 35 ± 14

4. Discussion

The introduction of a reference signal and its analytical derivatives enables a quantita-
tive evaluation of numerical differentiation procedures. For this purpose, we considered a
set of error parameters for specific aspects of the signal and its derivatives: overall error,
error in recording borders, error on the peaks, as presented in Figure 13. A parameter can
be selected according to the objectives of the biomechanical analysis that is carried out
and consequently an estimation of the possible error due to the differentiation/filtering
procedure is possible. For example, a general analysis of a periodic gesture may require a
general error evaluation and some indications of possible border effects. If the acquisition
is rather short and the gesture starts very near recording border the border error can give



Sensors 2021, 21, 4580 14 of 17

useful information. If the interest is on peaks, (for example, acceleration peaks in sports
gestures), the peak error is the most suitable parameter.
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Figure 13. Error parameters to evaluate differentiation/filtering procedures and their evaluation zones on signal
time history.

Even if in typical biomechanical applications, kinematic signal processing is off-line
and does not require particularly fast computation, each method requires a suitable and
efficient implementation, however, using the standard algorithms available for example
in Matlab®, the computation time is limited to few milliseconds for a 2.5 s signal and its
derivatives, for all of the methods.

When evaluating measurement uncertainty, the instrumental effects are significant [3]
but when dealing with biomechanical models, other contributions should be consid-
ered [39] and, among them, the differentiation and filtering procedure might be important.
The proposed approach gives an estimation of possible errors according to the selected
filtering procedure.

An evaluation of the errors for the simulated signals at 2 and 5 Hz and the three
differentiation orders considered, shows that:

• When a time signal filtering is considered Butterworth and polynomial filters have
almost the same performance in the three areas, moving average is acceptable, even if
slightly less efficient;

• When considering derivatives, the moving average filter is less performing than the
others, but its performance is almost unvaried between 2 and 5 Hz and for differentia-
tion order, hence this approach shows to be simple and robust;

• In first and second differentiation, Butterworth has a more stable behavior with respect
to frequency and in general, it shows a better performance in the borders if compared
with polynomial methods. Performance on peak level measurement is acceptable
and robust.

• The Savitsky–Golay filter seems to improve its performance in first and second deriva-
tives, by increasing the reference frequency from 2 to 5 Hz. The differences in perfor-
mances create some difficulties for uncertainty evaluation when the frequency content
of the signal is not “a priori” known.

It is worth noting that in this study, a similar set up for all the filters was considered.
The different performance of the Savitsky–Golay polynomial filter for 2 and 5 Hz, might
indicate that a specific tuning is required. Such a tuning is not simple to design a priori, it
would require a strict frequency band of interest and might require several attempts. On
the other hand, Butterworth filtering is much simpler to tune, moreover, it is robust enough
to perform in an acceptable way for all the differentiation orders for the considered fre-
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quencies, and in all areas of interest. According to the proposed evaluation frame, it seems
the best choice. Our evaluation limits are due, for example, to the pure harmonic reference
signal. A further step might include simulation of more complex signals maintaining the
possibility to have a reference analytical derivative. As regards the filter setup, we can
suppose that a filter specific tuning, might improve performance, but it would change the
evaluation frame that in this paper considers the same order and cutoff frequency for all
the filters. While, as in regards to filter type, the proposed approach can be used to evaluate
other differentiation and filtering procedures or application of pre-treatments, such as the
Hanning smoothing windows in the moving average filter, to limit border effects.

In general, this work defines a basic evaluation procedure and supplies the biome-
chanical experimenter some useful indication, to evaluate uncertainty contributions due to
differentiation and filtering of biomechanical signals.

5. Conclusions

The three low pass filtering procedures—moving average, Butterworth, and polyno-
mial, applied to differentiation of biomechanical signals have been studied considering
both as a simulated reference and experimental kinematic signals.

Beside the rms error, we have introduced other performance parameters focusing on
error on the peak values, as well as border errors.

In order to compare filter performance, a standard set up for all the methods was
considered, as illustrated in Table 2. With such constrains, it emerges that the Butterworth
zero phase low pass filter presents the most robust performance in all differentiation condi-
tions. Savitsky–Golay polynomial filtering is valid, but it presents different performances
at different frequencies. To improve its performance, it requires fine tuning depending on
both derivative order, signal type and frequency, and the objective of the analysis.

Moreover, the reference signal has enabled a quantification of the differentiation
contribution to the measurement uncertainty for a differentiated signal such as velocity or
acceleration. Uncertainty contribution are defined according to the considered parameters,
for the signal in general, for the signal’s borders, or for peak value evaluation.

Further experimentation will be based on more complex simulated signals considering
different filters setups.
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