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Abstract Lysophospholipids are known to serve as intra-
and extracellular messengers affecting many physiological
processes. Lysophosphatidylinositol (LPI), which is pro-
duced in endothelial cells, acts as an endogenous agonist of
the orphan receptor, G protein-coupled receptor 55
(GPR55). Stimulation of GPR55 by LPI evokes an
intracellular Ca2+ rise in several cell types including
endothelial cells. In this study, we investigated additional
direct, receptor-independent effects of LPI on endothelial
large-conductance Ca2+ and voltage-gated potassium
(BKCa) channels. Electrophysiological experiments in the
inside-out configuration revealed that LPI directly affects
the BKCa channel gating properties. This effect of LPI
strictly depended on the presence of Ca2+ and was
concentration-dependent, reversible, and dual in nature.
The modulating effects of LPI on endothelial BKCa

channels correlated with their initial open probability (Po):
stimulation at low Po (<0.3) and inhibition at high Po levels
(>0.3). In the whole-cell configuration, LPI in the pipette
facilitated membrane hyperpolarization in response to low
(0.1–2 μM) histamine concentrations. In contrast, LPI
counteracted membrane hyperpolarization in response to
supramaximal cell stimulation with histamine. These results
highlight a novel receptor-independent and direct bidirec-
tional modulation of BKCa channels by LPI on endothelial
cells. We conclude that LPI via this mechanism serves as an

important modulator of endothelial electrical responses to
cell stimulation.
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Introduction

Lysophosphatidylinositol (LPI) belongs to the class of
lysophospholipids and is generated by phosphatidylinositol
hydrolysis via the action of the Ca2+-dependent phospho-
lipase A2 [2, 27] and Ca2+-independent phospholipase A1
[27, 45]. LPI has been found to contribute to many
physiological and pathophysiological processes including
reproduction, angiogenesis, cell proliferation, apoptosis,
inflammation, cardiovascular, and autoimmune diseases
[6, 10, 25]. Because of the discovery that LPI serves as a
putative endogenous agonist of the orphan receptor G
protein-coupled receptor 55 (GPR55) [24, 32, 33, 42],
which leads to mobilization of intracellular Ca2+, LPI
recently received particular attention. Moreover, LPI was
shown to stimulate non-selective cation channels and
inhibit the Na+/K+ ATPase [4] GPR55-independently
pointing to LPI as a putative vascular mediator.

An increase in intracellular free Ca2+ concentration
represents a hallmark in endothelial cell physiology.
Subsequently to the rise in cytosolic Ca2+, Ca2+-dependent
K+ channels (KCa) become activated [8, 9, 20] that they
play a pivotal role in the regulation of vascular tone. In
vascular smooth muscle cells, stimulation of large-
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conductance Ca2+ and voltage-gated potassium (BKCa)
channels counteracts depolarization during myogenic tone
development, thus, limiting voltage-dependent Ca2+ entry
and counteracting vasoconstriction. In endothelial cells, the
stimulation of KCa contributes to vasodilatation by mem-
brane hyperpolarization that increases the driving force for
Ca2+ entry through non-voltage-gated Ca2+ channels that
subsequently yields Ca2+-dependent formation of vaso-
dilators, such like nitric oxide [18, 19, 30] or endothelial-
derived hyperpolarizing factors [5, 16].

So far, stimulatory effects of LPI on BKCa and
intermediate conductance KCa channels were reported to
depend on the ability of LPI to mobilize internal Ca2+ [12,
38, 43]. However, recently several endogenous phospholi-
pids, such like phosphatidylinositol 4, 5-bisphosphate or
sphingosine-1-phosphate, have been shown to activate
BKCa [26, 40] as well as TRPC channels [14] directly.
Thus, the actual effects of LPI on vascular BKCa channels
ought to be investigated in order to gain the understanding
of the physiological potential of this putative inter- and
intravascular mediator.

Accordingly, in order to explore potential direct effects
of LPI on endothelial BKCa channels that lack the
regulatory β-subunit [34], the effects of LPI were explored
in excised membrane patches from human endothelial cells.
We report herein that LPI directly modifies BKCa channel
activity in a dual manner by either potentiating or inhibiting
native BKCa channels at lower and higher basal activity of
the channel, respectively. Altogether, our data indicate that
LPI, besides its activity on GPR55, also exhibits receptor-
independent effects, thus, pointing to LPI as a versatile
messenger in the vasculature.

Materials and methods

Cell culture

The human umbilical vein-derived endothelial cell line, EA.
hy926 [11], at passage >45, was grown in DMEM
containing 10% FCS and 1% HAT (5 mM hypoxanthine,
20 μM aminopterin, 0.8 mM thymidine) and were main-
tained in an incubator at 37°C in 5% CO2 atmosphere. For
experiments, cells were plated on glass coverslips.

Patch clamp recordings

Single-channel recordings were obtained from excised inside-
out membrane patches in symmetrical solutions using the
patch clamp technique. The pipettes were filled with (in
millimolar) 140 KCl, 10 HEPES, 1 MgCl2, 5 EGTA, 4,931
CaCl2 with pH 7.2 by adding KOH (i.e., 10 μM free Ca2+,
calculated by CaBuf from G. Droogmans, Leuven, Belgium;

ftp://ftp.cc.kuleuven.ac.be/pub/droogmans/cabuf.zip). Cells
were perfused with a bath solution containing (in millimolar)
140 NaCl, 5 KCl, 1.2 MgCl2, 10 HEPES, 10 glucose, 2.4
CaCl2. Following gigaseal formation, bath solution was
switched to the following (in millimolar) 140 KCl, 10
HEPES, 1 MgCl2, 5 EGTA, and a desired free Ca2+

concentration which was adjusted by adding different
amounts of CaCl2 calculated by the program CaBuf; pH
was adjusted to 7.1 by adding KOH.

For whole-cell recordings, the pipette solution contained
(in millimolar) 100 K-aspartate, 40 KCl, 1 MgCl2, 10
HEPES, 5 EGTA, and a free [Ca2+] was adjusted to 100 nM
by adding 1,924 CaCl2 calculated by the program CaBuf.
Recordings were performed in high Na+ solution stated
above. Patch pipettes were pulled from glass capillaries
using a Narishige puller (Narishige Co. Ltd, Tokyo, Japan),
fire-polished, and had a resistance of 3–5 MΩ for whole-
cell recordings and 5–7 MΩ for single-channel recordings.
Currents were recorded using a patch clamp amplifier
(EPC7, List Electronics, Darmstadt, Germany) at a band-
width of 3 kHz. The signals obtained were low pass filtered
at 1 kHz using an eight-pole Bessel filter (Frequency
Devices) and digitized with a sample rate of 10 kHz using a
Digidata 1200A A/D converter (Axon Instruments, Foster
City, CA, USA). Data collection and analysis were
performed using Clampex and Clampfit software of
pClamp (V9.0, Axon Instruments). Single-channel activity
was obtained from >20 s of continuous recording under
each experimental condition. The mean open time (to) in
multichannel patches was calculated from the relationship
to ¼ NPo�T

#o , where #o is the number of openings during a
given time period of observation (T) [40].

Statistics

Analysis of variance (ANOVA) was performed, and
statistical significance was evaluated using Scheffé's post
hoc F test of the Prism 5 software for Windows (GraphPad
Software, Avenida de la Playa, CA USA). Level of
significance was defined as P<0.05.

Results

LPI directly affects the BKCa channel activity by shortening
the channel closed time

To investigate whether LPI has a direct effect on BKCa

channels, the action of LPI on BKCa channel activity was
investigated in the inside-out configuration in the presence
of physiological levels of Ca2+ and Mg2+, the two metal
ligands that affect gating of BKCa channels. Figure 1a
illustrates BKCa single-channel activities recorded in ex-
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cised patches in the presence of 0.1 (top panel) and 0.3 μM
free Ca2+ (middle panel), as well as in the nominal absence
of bath Ca2+ (lower panel), prior (left panels) and after
addition of 3 μM LPI (right panels) to the bath at a holding
potential of +40 mV. In the presence of bath Ca2+, LPI
increased the NPo values of given BKCa channel of the
patch by ~2.8-fold, while LPI was ineffective to stimulate
BKCa channels in the absence of free Ca2+ in the bath
(Fig. 1b). Because the stimulatory effects of LPI were
observed after patch excision in Ca2+-containing solution, it
is tempting to suggest that the action of LPI on BKCa

channels occurs due to a direct interaction of LPI with the
channels or some closely associated entities but not via the
generation of a cytosolic second messenger.

The increase in NPo upon LPI addition was sustained
(Fig. 2a) and reversible, following a 15-min washout
(Fig. 2b). In addition, the stimulatory effect of LPI on
BKCa channels was concentration-dependent (Fig. 2c, d).
Due to a loss of the gigaseal, we were not able to explore
the effect of LPI on BKCa channel activities at concen-
trations higher than 10 μM LPI. Notably, the LPI concen-
trations tested are within the range that are described to be
found in humans under physiological/pathological condi-

tions [10, 44] and are well below the critical micellar
concentration (~75 μM; [13]).

In order to characterize the effect of LPI in more detail,
experiments with patches with only one active channel
were performed. The existence of just one active BKCa

channel in the respective patches was determined by
applying 10 μM Ca2+ solution at the end of the experiments
at a holding potential of +80 mV. From these experiments,
we found that LPI increased the channel Po, while the
single-channel amplitude remained unchanged (Fig. 3a).
Moreover, the mean open time was moderately increased
by LPI (Fig. 3b), while LPI strongly attenuated the mean
closed time by ~77% reflecting an increase in opening
frequency (Fig. 3c), thus indicating that the increase in Po
by LPI is mainly due to a shortening of the closed time
rather than a prolongation of the channel open time.

LPI dually modulates BKCa channels depending
on the basal channel activity

Because Ca2+ is required for the stimulatory action of LPI,
LPI may act via an increase in the apparent Ca2+ sensitivity
of the BKCa channel. Thus, the effect of LPI on BKCa

Fig. 1 Ca2+ is required for
the direct modulation of BK
channel activity by LPI. a
Representative single-channel
recordings in inside-out patch
(patch potential=+40 mV)
exposed to 0.1 (top panels)
and 0.3 μM (middle panels)
Ca2+ prior (control) and after
addition of 3 μM LPI to the
cytosolic side of the patch.
Channel openings are shown as
upward deflections (c, closed, o,
open). In the absence of Ca2+,
LPI has no effect on BKCa

channel activity (lower panels).
b Summary data for the effect of
3 μM LPI on BKCa channel
activity in the absence (0 mM
Ca2+; n=6) and presence of 0.1
(n=10) and 0.3 μM (n=21) free
Ca2+ in the bath. *p<0.05 vs.
basal NPo in the absence of LPI.
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channel activity was studied in the presence of various Ca2+

concentrations in the bath. Interestingly, depending on the
bath Ca2+ concentration, LPI exhibited opposite effects on
the activity of the BKCa channels. In particular, under
conditions of low Ca2+ in the bath solution (i.e., 0.1 and
0.3 μM free Ca2+), which were associated with basal Po
lower than 0.3, the addition of 3 μM LPI augmented BKCa

channel activity (Fig. 4a). In contrast, at high Ca2+

concentrations in the bath (i.e., 1 and 10 μM) that yielded
elevated basal BKCa activity, LPI decreased the activity of
the BKCa channel (Fig. 4a). This inhibitory effect of LPI
was observed both in multichannel patches (Fig. 4b) and
patches containing one active channel (Fig. 4c), and
occurred in a concentration-dependent manner. This

concentration-dependent inhibitory effect of LPI was in a
similar range than that for the activation properties of LPI
(Fig. 4d). Dwell time analysis of experiments performed in
single-channel patches revealed that upon LPI exposure, the
mean open time slightly decreased by 16±10% (Fig. 4e),
while the mean closed time strongly increased by 168±82%
(Fig. 4f). The decrease in (N)Po upon LPI under conditions
of high bath Ca2+ is due to a pronounced increase in the
mean closed time (a decrease in the frequency of openings)
and a small decrease in the mean open time.

We hypothesized that these striking differences of the
response of BKCa channel activity to LPI is due to the
variability of the basal Po values. If this is the case, the
basal Po levels should correlate with the degree of changes

Fig. 2 The LPI effect develops
slowly, is sustained, reversible,
and occurs in a concentration-
dependent manner. a Represen-
tative single-channel recording
in inside-out patch exposed to
10 μM LPI in the presence of
0.3 μM bath Ca2+ holding
potential (Vm)=−40 mV.
Channel openings are shown as
downward deflections. b The
reversibility of the effect of LPI
effect is demonstrated by this
representative single-channel
recording in inside-out patch
exposed to 0.3 μM Ca2+ prior
(top, control), during (middle),
and 15 min after exposure to
10 mM LPI (Vm=−40 mV). c
Representative single-channel
recording in inside-out patch
exposed to 0.3 μM Ca2+ show-
ing concentration-dependent ac-
tivation of BKCa channel
activity in response to bath
application of 1, 3, and 10 μM
LPI. Channel openings are
shown as downward deflections
(c, closed, o, open state). d
Statistical representation of the
effect of 1 (n=6), 3 (n=7), and
10 μM (n=4) LPI on BKCa

channels in the presence of
0.3 μM Ca2+ at Vm=−40 mV.
*p<0.05 vs. basal NPo in the
absence of LPI

180 Pflugers Arch - Eur J Physiol (2011) 461:177–189



in BKCa channel activities caused by LPI. Plotting NPo
responses against the basal Po values of BKCa channels in
patches exposed to various bath Ca2+ concentration at a
holding potential of +40 mV (Fig. 4g) revealed a clear
inverse correlation between these two parameters (r2=
0.77). This finding indicates that the overall effect of LPI
indeed depends on the basal Po level and thus on the basal
activities of BKCa channels. Particularly, these data specify
that for BKCa channels with a basal Po higher than 0.3 LPI
exhibits an inhibitory action, while at a lower basal activity
of the channels, LPI yields a stimulation of BKCa channel
activity.

Because dual sensitivities to Ca2+ and transmembrane
voltage are key features of BKCa channels, we next studied
whether LPI affects the voltage-dependency of BKCa

channels. In single-channel recordings, the stepwise eleva-
tion of the holding potential from 20 to 80 mV considerably
increased the BKCa channel activity (Fig. 5a, left panels).
This increase was further potentiated by 3 μM LPI at every
potential tested (Fig. 5a, right panels). In terms of channel-
opening characteristics at different voltages, LPI slightly
affected the mean open time of the BKCa channels (Fig. 5c),
while the channel's mean closed time was strongly reduced
by LPI (Fig. 5d). These experiments suggest that voltage
dependency of the BKCa channels is barely affected by LPI.

Furthermore, weak voltage-dependent effect of LPI was
observed in experiments depicted in Fig. 6 and was
performed in the presence of a given Ca2+ concentration
of 10 μM. At negative voltages (i.e., −60 and −40 mV),
when the channel activity was low (NPo=0.173 at −60 mV
and 0.282 at −40 mV, Fig. 6a), LPI equally increased NPo
values (2.7- and 2.5-fold, respectively) (Fig. 6b, c).
However, at positive voltages (i.e., +40 and Vm=

+60 mV) that were associated with high basal activity of
the channel (NPo levels of 1.23 at +40 mV and 1.27 at
+60 mV), LPI equally decreased the channel activity by
~29% and 28%, respectively (Fig. 6b, c). Altogether, these
data indicate that LPI modifies BKCa channel activity
mainly through modulating Ca2+ sensitivity of the BKCa

channels, and the effect of LPI strictly depends on the
actual state of the activity of these channels.

Intracellular LPI dually modifies endothelial electrical
responses to histamine

Because LPI dually modifies BKCa channel activities in
excised patches in a Ca2+-dependent manner, we next
explored the physiological relevance of these findings by
testing the impact of physiologically reported LPI concen-
trations (i.e., from 0.1 to 10 μM; [44]) on endothelial
electrical responses to histamine in conventional whole-cell
recordings. Because in the endothelial cell type used for
this study, histamine-induced hyperpolarization is partially
underpinned by an activation of BKCa channels [15], the
effect of 0.1 or 1.0 μM LPI in the patch pipette on
membrane hyperpolarization in response to various moder-
ate histamine concentrations was tested. Histamine evoked
membrane hyperpolarization of endothelial cells in a
concentration-dependent manner (Fig. 7a, d). Under control
conditions (no LPI in pipette) consecutive applications of
0.1, 0.5, and 2.0 μM histamine produced hyperpolarizing
responses of 10.5±2.1 mV (n=19), 19.8±2.3 mV (n=16),
and 24.8±4.4 (n=7) from the mean resting membrane
potential of −33.8±1.7 mV (n=19) (Fig. 7d). In the
presence of 0.1 or 1.0 μM LPI in the pipette, the resting
membrane potential was not affected compared with control

Fig. 3 LPI-evoked increase in
BKCa channel activity is mainly
due to a marked decrease in
mean closed time. a Represen-
tative single-channel recording
in inside-out patch containing
one active channel exposed to
0.3 μM Ca2+ prior (control) and
during exposure to 3 μM LPI at
the cytosolic side of the patch
(Vm=40 mV). Channel
openings are shown as upward
deflections (c, closed, o, open
states). b The mean open time
of the BKCa prior (control) and
after addition of 3 μM LPI
(n=12). c The mean closed time
(frequency of openings) of the
BKCa prior (control) and after
addition of LPI (n=12).
*p<0.05 vs. control
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conditions (−32.0±2.0 mV (n=12) and −32.4±1.6 (n=8),
respectively). However, when 0.1 and 1.0 μM LPI was
present in the pipette, the amplitude of cell hyperpolariza-
tion in response to low histamine concentrations increased
(Fig. 7b–d). To provide a link between increased endothe-
lial hyperpolarization to low histamine concentrations in the
presence of intacellular LPI and stimulatory effect of LPI

on BKCa channels, paired experiments were conducted in
the presence and absence of iberiotoxin, a selective
inhibitor of BKCa channels. In the absence of intrapipette
LPI, iberiotoxin (100 nM) slightly but significantly (p<
0.05) reduced the peak amplitude to 0.5 and 2 μM
histamine from 23.5±3.3 to 20.9±2.7 (n=8) and from
28.5±3.0 to 25.4±3.3 mV (n=8), respectively. In the

Fig. 4 The dual effect of LPI on BKCa channel activity. a Effect of
3 μM LPI on BKCa channel activity at different bath Ca2+

concentrations that correspond to basal (0.1 μM; n=10), moderately
(0.3 μM; n=21), strong (1 μM; n=20), and maximally (10 μM; n=20)
elevated cytosolic Ca2+ levels. *p<0.05 vs. basal NPo in the absence
of LPI. b Representative single-channel recordings from multichannel
patch exposed to 1 μM Ca2+ at Vm=+40 mV with high basal NPo
showing inhibitory effect of 3 μM LPI on BKCa channel activity.
Channel openings are shown as upward deflections (c, closed; o, open
state). Right panel: statistical representation of Po values before
(control) and after addition of 3 μM LPI in patches exposed to 1 μM
Ca2+ at Vm=±40 mV and responded by a decrease in BKCa channel
activity. c Representative single-channel recording in inside-out patch
containing one active channel with the basal Po=0.57 showing

inhibitory effect of 3 μM LPI on BKCa channel activity. The patch
was exposed to 1 μM Ca2+ at Vm=+40 mV. d Summary data of the
concentration-dependency of the inhibitory effect of LPI on BKCa

channel activity in patches exposed to 1 μM Ca2+ at Vm=+40 mV
(n=6–21) *p<0.05 vs. control. The respective mean open time (e; n=
6, *p<0.05) and the mean closed time (f; n=6, *p<0.05) of the BKCa

channel prior (control) and after addition of 3 μM LPI (Vm=+40
to +60 mV). Data collected from patches exposed to 1 and 10 μM
Ca2+ were pooled. g Correlation between the LPI-evoked alterations in
BKCa channel activity (expressed as the ratio of NPo values in the
presence and absence of 3 μM LPI) and basal Po values at
Vm=+40 mV. Data points were obtained in the presence of 0.1, 0.3,
1, and 10 μM Ca2+
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presence of intrapipette LPI (1 μM), iberiotoxin (100 nM)
slightly but significantly (p<0.05) reduced the peak
amplitude to 0.5 and 2 μM histamine (Fig. 7e, f) from
29.4±2.8 to 24.9±2.9 mV (n=7) and from 34.9±2.2 to
29.4±1.5 mV (n=11), respectively. Remarkably, iberio-
toxin failed to completely inhibit the stimulatory effect of
LPI on endothelial hyperpolarization to 0.5 and 2 μM

histamine (Fig. 7f), which might be due to direct LPI effect
on ion channels other then BKCa. Nevertheless, these
experiments clearly indicate that stimulatory effect of
intracellular LPI on endothelial hyperpolarization to 0.5
and 2 μM histamine is partially attributed to stimulation of
BKCa channels. These results confirm our findings in
excised patches and indicate that LPI increases the

Fig. 5 Effect of LPI on
voltage-sensitivity of BKCa

channel. a The activity of BKCa

channels prior (left) and after
(right) bath application of 3 μM
LPI. The patch was exposed to
1 μM Ca2+. Unitary currents
were recorded at different
membrane potentials as
indicated. Upward deflections
are the opening events of the
channel (c, closed, o, open
state). b Correlation of the effect
of 3 μM LPI on the channels Po
expressed as percent of control
with the actual holding poten-
tial. The relationship between
the mean open time (c) and
mean closed time (d) of the
channel with the actual
holding potential in the absence
(control) and presence of
LPI (3 μM). Data presented
are representative data and
experiments were repeated four
times with different patches that
provided similar results
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sensitivity of endothelial cells to submicromolar concen-
trations of histamine by facilitating the Ca2+-induced
activation of BKCa channels.

To test the effect of LPI under maximal activation of
endothelial cells, the cells were stimulated with 100 μM
histamine in the absence or presence of 1 μM LPI in the
pipette. Notably, 1 μM LPI in the pipette slightly reduced
the endothelial cell peak hyperpolarization in response to
supramaximal histamine concentration (i.e., 100 μM) from
34.9±1.5 mV (n=24) to 31.4±1.4 mV (n=40) (p=0.055)
(Fig. 8a, b, d). To estimate the effect of intracellular LPI on
the sustained component of endothelial hyperpolarization,
comparison of the membrane potential recovery after the
peak has been performed as described previously [3]. In the

presence of intracellular LPI (1 μM), the membrane
potential declined faster and hyperpolarization after 300 s
was 71.7±4.7% of the peak level of −63.9±1.2 mV (n=11).
In contrast, in the absence of LPI in the patch pipette, the
hyperpolarization to 100 μM histamine after 300 s was
90.1±5.6% (Fig. 8e) of the peak level of −71±2.6 (n=5). In
the combined presence of external iberiotoxin (100 nM)
and internal LPI (1 μM), the sustained component of
endothelial hyperpolarization was further decreased as
evidenced from further reduction of hyperpolarization after
300 s to 58.2±8.7% (n=5) (Fig. 8c, e) from the peak level
of −60.1±3.6 mV. These data support our findings
presented in isolated patches and indicate that LPI indeed
exhibits inhibitory properties on BKCa channel activity

Fig. 6 The dual effect of
LPI depends on the level of
basal BKCa channel activity. a
Representative single-channel
recording in inside-out patch
exposed to a single Ca2+

concentration of 10 μM at
different voltages. LPI (3 μM)
increases NPo at negative
voltages (Vm=−40 and
Vm=−60 mV) and decreases
NPo at positive voltages
(Vm=+40 and Vm=+60 mV),
where NPo is high (c, closed,
o, open state). b Graphical
representation of the dual effect
of LPI at different voltages in
the same patch. c Graphical
representation showing Po
values in the absence (control)
and presence of 3 μM LPI at
different voltages in the same
patch
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under conditions of excessive endothelial cell stimulation,
thus, approving the concept of the dual modulator function
of LPI in the vascular wall.

Discussion

Like in many other cell types, in endothelial cells, LPI
triggers an increase of the intracellular Ca2+ concentration
by either intracellular Ca2+ mobilization and/or the activa-
tion of Ca2+ influx that subsequently yields activation of
BKCa channels [1, 21, 37, 38]. Very recently, these effects
could be attributed to the binding of LPI to the orphan
receptor GPR55 endogenously expressed in endothelial
cells [42] and in HEK293 cells artificially expressing
GPR55 [22–24]. Moreover, stimulation of endothelial cells

with LPI was shown to be accompanied by an activation of
BKCa channels that was thought to be a consequence of the
LPI-elicited Ca2+ signals [4]. In addition, LPI was shown to
affect directly the activity of ion channels, including
members of the transient receptor potential channel family
[14, 41], endothelial non-selective cation channels [4], and
the two-pore domain mechano-gated TREK-1 and TRAAK
K+ channels [31]. However, so far, no evidence has been
provided for a direct G protein-coupled receptor-
independent modulation of BKCa channels by LPI.

The data presented herein demonstrate that LPI, in
physiological relevant concentrations [10, 44], dually
modifies endothelial BKCa channel activity in isolated
inside-out patches as well as in current clamp experi-
ments. Although the presence of Ca2+ was a prerequisite
for the modulator effect of LPI on BKCa channels, the

Fig. 7 Intracellular LPI
potentiates endothelial cell
hyperpolarization to low
histamine concentrations through
BKCa channels. a, b, c Repre-
sentative endothelial cell hyper-
polarization to bath application of
0.1, 0.5, and 2 μM histamine
under control conditions (no LPI
in patch pipette; a), or in the
presence of 0.1 (b) and 1 μM LPI
(c) in patch pipette. d
Statistical representation of the
hyperpolarizing effect of various
moderate histamine concentra-
tions (0.1, 0.5, and 2 μM) in the
absence or presence of 0.1 or
1 μM LPI into patch pipette [No
LPI, 0.1 (n=19), 0.5 (n=16), and
2 μM histamine (n=7); 0.1 μM
LPI, 0.1 (n=10), 0.5 (n=10), and
2 μM histamine (n=7); 1 μM
LPI, 0.1 (n=6), 0.5 (n=7), and
2 μM histamine (n=5)].
*p<0.05 vs. the absence of LPI
in the pipette. e Representative
membrane potential recording
showing inhibitory effect of iber-
iotoxin (100 nM) on potentiated
by intrapipette LPI (1 μM) endo-
thelial cell hyperpolarization to
2 μM histamine. f Statistical
representation of the effect of
iberiotoxin (100 nM) on
endothelial cell peak hyperpolar-
ization to 0.5 and 2 μM hista-
mine with and without 1 μM LPI
in the pipette; (histamine
0.5 μM−no LPI in
pipette±iberiotoxin, n=8; 1 μM
LPI in pipette±iberiotoxin, n=7;
histamine 2 μM−no LPI in
pipette±iberiotoxin, n=8, 1 μM
LPI in pipette±iberiotoxin, n=11)
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mode of the LPI-induced modulation of BKCa channel
activity did not essentially depend on the actual Ca2+

concentration or voltage but strictly depended on the basal
activity of the channel yielding either pronounced aug-
mentation at low basal activity or attenuation if the basal
BKCa channel activity was high. A change from LPI-
mediated channel activation (increase in NPo) to channel
inhibition occurs at a Po value of approximately 0.3.
Because endothelial BKCa channels lack the regulatory β-
subunit [34], the experiments using excised membrane
patches suggest that LPI exhibits its effects by a direct
interaction with the pore-forming component of these ion
channels. While our findings in excised patches excludes
the involvement of second messengers in the LPI-
mediated modulation of BKCa channels, an immediate
alteration of the proteolipid environment by LPI that
might account for alterations of BKCa channel activity

cannot be excluded. However, all effects of LPI on BKCa

channels we have observed were sustained, concentration-
dependent, and reversible. Importantly, LPI was used in
low micromolar concentrations, thus, well below the LPI
critical micellar concentration of ~75 μM [13], ensuring
that the LPI actions on BKCa channels are caused by LPI
monomers and are not due to nonspecific effects of LPI as
a detergent. Furthermore, effective LPI concentrations are
within the range found under normal (<0.1 μM) and
pathological condition (~15 μM) in human tissue fluids
[10, 44] and plasma [39].

The observation that both activation and inhibition of
BKCa channel activity by LPI occurred in the same
concentration range indicates that LPI has similar potency
for both phenomena, though it remains unclear whether or
not both effects correspond to distinct or identical interac-
tion sites of LPI on the BKCa channel pore protein.

Fig. 8 Intracellular LPI counteracts endothelial cell hyperpolarization to
supramaximal histamine concentrations. a–c Representative endothelial
cell hyperpolarization to bath application of 100 μM histamine under
control condition (a) and under condition of cell dialysis with 1 μM LPI
via patch pipette in the absence (b) and presence (c) of external
iberiotoxin (IbTx, 100 nM). d Statistical representation of the effect of
cell dialysis with 1 μM LPI in the absence and presence of external
100 nM iberiotoxin (IbTx) on peak endothelial cell hyperpolarization to
supramaximal histamine concentration (i.e., 100 μM). *p<0.1 vs. in the

absence of LPI in the pipette and IbTx in the bath (control, n=24; LPI,
n=40; IbTx+LPI, n=9). e Statistical representation of the effect of cell
dialysis with 1 μM LPI in the absence and presence of external 100 nM
iberiotoxin (IbTx) on sustained endothelial cell hyperpolarization to
supramaximal histamine concentration (i.e., 100 μM). Results are
expressed as the ratio of mean membrane potential values at 300th
second after the peak and at the peak of hyperpolarization. **p<0.05
vs. in the absence of LPI in the pipette and IbTx in the bath (control, n=
24; LPI, n=40; IbTx+LPI, n=9)
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The dual effects of LPI on endothelial BKCa channels
were observed both in multiple channel patches and in
patches containing only one active channel, indicating that
alterations in the channel activity may occur due to changes
in the channel's Po rather then changes in the number of
active channels per patch. Although the latter possibility
cannot be entirely excluded, our observation that the level
of potentiation of BKCa channel activity was quantitatively
similar (p=0.34) in patches containing one and several
active channels favors for the possibility that modulation of
BKCa channel activity occurs without changes in the
number of active channels per patch. Moreover, LPI did
not affect single-channel current amplitude or its conduc-
tance, suggesting that LPI does not alter BKCa channel
function by changing the entire conformation of the channel
protein. Analysis of single-channel kinetics revealed that
LPI acts primarily via alterations of the mean closed time,
while the mean open time was only moderately affected,
thus indicating that LPI modulates the activity of BKCa

channels mainly via a destabilization of the closed states.
The current study describes LPI as an effective stimulator as

well as inhibitor of endothelial BKCa channels. Considering
that the action of endothelium-dependent vasodilators is
mostly underpinned by a rise in the cytosolic Ca2+ concen-
tration and membrane potential fluctuations, the dual modu-
lation of endothelial BKCa channels by LPI might be of
considerable physiological importance and may reflect a new
mechanism of vascular function control by lysophospholipids.

This assumption is directly supported in experiments
using the whole-cell recordings approach. In moderately
stimulated cells that developed weak to modest hyperpo-
larization due to the increased cytosolic Ca2+, the stimula-
tory effect of LPI on BKCa channels remained sustained and
increased the peak hyperpolarization to histamine. Remark-
ably, not all of the stimulatory effect of internal LPI is
inhibited by iberiotoxin, indicating that ion channel other
then BKCa may partially underpin the stimulatory effect of
LPI on endothelial hyperpolarization. Such stimulatory
effect of endothelial KCa channels has been already reported
by cAMP [18] and yielded elevated Ca2+ signaling and
production of nitric oxide [19]. In contrast, under condition
of excessive cell stimulation that leads to a strong Ca2+

loading, LPI was found to exhibit an inhibitory effect on
endothelial hyperpolarization and, thus, counteracted the
excessive cell stimulation. Because endothelial LPI pro-
duction is controlled by cytosolic Ca2+ [2, 27], these data
indicate that cytosolic LPI acts as dual modulator of
endothelial hyperpolarizing response. Notably, in isolated
rat aorta, sustained endothelial hyperpolarization to acetyl-
choline is partially mediated by stimulation of Na+–K+

ATPase [3], and LPI was recently shown to inhibit
effectively Na+–K+ ATPase [4], raising the possibility that
modulatory effect of internal LPI on endothelial electrical

responses may be mediated via multiple mechanisms
including ion channels and transporters.

Lipids are known to modify BKCa channel activity. In
particular, negatively charged lipids and fatty acids were
shown to stimulate the BKCa channel, while positively
charged lipids with a sufficiently hydrophobic acyl chain
suppress the channel activity in inside-out patches [36].
Controversial data regarding the effect of sphingosine on
the BKCa channel have been reported with both stimula-
tory [26] and inhibitory [39] effects. These conflicting
findings might point to a similar dual effect of sphingo-
sine on BKCa channel activity than that of LPI reported
herein. These findings may significantly extend our
understanding of the effects of LPI on plasma ion
channels and reveal a new feature of this compound of
which the physiological contribution still remains elusive
despite the release/existence of LPI in the vasculature/
blood is approved. Whether such a dual modification of
the activity of the BKCa channel is unique for LPI or
exhibits a common feature for other LPLs awaits further
investigations.

Strikingly, several substances including ethanol [29] and
the xenoestrogen tamoxifen [35] were reported to dually
affect BKCa channel activity. However, ethanol exerts its
modulator effect on BKCa channels only at concentrations
found in the circulation after excessive alcohol consump-
tion (50–100 mM), and the effect of tamoxifen is only of
clinical relevancy as this compound is therapeutically used
as a competitive antagonist of the estrogen receptor.
Nevertheless, among these agents that have a complex
action on BKCa channels, LPI is unique as it serves as
signaling molecule in the vasculature and can be found
naturally in the vasculature/blood under physiological and
pathophysiological conditions [10, 44].

Recently, LPI was shown to activate non-selective cation
channels both when applied extracellularly or in excised
inside-out membrane patches [4, 41]. Therefore, it appears
reasonable that LPI may affect ion channels from the outer
as well as the inner side of the plasma membrane. However,
charged lipids are generally thought to act on the external
side of the membrane affecting BKCa channels [7].
Therefore, BKCa channels may probably directly sense
LPI from both intracellular and extracellular sides of the
membrane. It is known that LPI levels increase almost
threefold within seconds upon stimulation of endothelial
cells with bradykinin [28]. Such an increase of the cellular
LPI content is not specific for bradykinin but is a
consequence of elevated cytosolic free Ca2+ [2]. Consider-
ing the dual effects of LPI on BKCa channel activity and
electrical responses reported in this study, we suggested that
intracellularly generated LPI should dually regulate endo-
thelial electrical responses to endothelium-dependent vaso-
dilators. Hence, LPI may serve as potent inter- and
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intracellular signaling molecule modulating BKCa channels
in the vasculature.

In conclusion, we provide new information regarding the
effects of LPI on endothelial K+ channels. We demonstrate
a direct dual action of LPI on endothelial BKCa channel
gating that does not require other cytosolic factors but
depend on a cytosolic Ca2+ elevation. These results
describe a novel mechanism of the action of LPI and point
to LPI as a potential second messenger in endothelial cells.
LPI functions as a direct receptor-independent dual modu-
lator of BKCa channels in endothelial cells that impacts
electrical responses to agonists and, thus, may affect Ca2+

entry via store-operated and agonist-induced Ca2+ entry
pathways [17]. This signaling of LPI might allow a fine
tuning of Ca2+ sensitive processes within vascular cells and
hence essentially contribute to the control of adequate
blood flows in various organs and tissues.
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