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ABSTRACT

The Open Targets Platform integrates evidence
from genetics, genomics, transcriptomics, drugs,
animal models and scientific literature to score
and rank target-disease associations for drug
target identification. The associations are dis-
played in an intuitive user interface (https://www.
targetvalidation.org), and are available through
a REST-API (https://api.opentargets.io/v3/platform/
docs/swagger-ui) and a bulk download (https://www.
targetvalidation.org/downloads/data). In addition to
target-disease associations, we also aggregate and
display data at the target and disease levels to aid
target prioritisation. Since our first publication two
years ago, we have made eight releases, added new
data sources for target-disease associations, started
including causal genetic variants from non genome-
wide targeted arrays, added new target and disease
annotations, launched new visualisations and im-
proved existing ones and released a new web tool
for batch search of up to 200 targets. We have a
new URL for the Open Targets Platform REST-API,
new REST endpoints and also removed the need for
authorisation for API fair use. Here, we present the
latest developments of the Open Targets Platform,
expanding the evidence and target-disease associ-
ations with new and improved data sources, refin-
ing data quality, enhancing website usability, and in-
creasing our user base with our training workshops,

user support, social media and bioinformatics forum
engagement.

INTRODUCTION

Drug discovery is a long and costly endeavour characterized
by high failure rates. Failure often occurs at the later stages
of the drug discovery pipeline and the reasons for the low
success are largely twofold: lack of safety and/or lack of ef-
ficacy. This reflects insufficient understanding of the role of
the chosen target in disease, and the consequences of mod-
ulating it with a drug. Over the last several years, there has
been an increase in the number of biological and chemical
databases available for better understanding of drug targets
(1). These databases can be used to assist with target identi-
fication, one of the most important stages in drug discovery
(2).

The Open Targets Platform (https://www.
targetvalidation.org) is a freely available resource for
the integration of genetics, omics and chemical data to
aid systematic drug target identification and prioritisa-
tion. The Open Targets Platform capitalises on publicly
available databases to create a virtuous cycle where we
add value to the original data by computing, scoring and
ranking integrated target-disease associations (3), linking
these associations back to the underlying evidence and its
provenance.

We have expanded the Platform to include data from
more projects and initiatives in translational research and
medicinal chemistry, such as Genomics England (4), the
Structural Genomics Consortium (https://www.thesgc.org)
and the Institute of Cancer Research (https://www.icr.ac.
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uk), and continue to adhere and contribute to international
naming standards and ontologies through our ongoing col-
laboration with the Experimental Factor Ontology (EFO)
(5) and the Evidence & Conclusion Ontology (ECO) (6).

Although the main port of access for all our data is a
graphical user interface (GUI) designed for bench scien-
tists working in early drug discovery (7), we have observed
an uptake in the use of our REST-API and data down-
loads. Moreover, due to the availability of the Open Tar-
gets Platform snapshots, our database can now be re-created
by other parties. Here, we describe the developments since
our first publication, focusing on the new data sources for
target-disease associations, new target and disease annota-
tions for target prioritisation, and new intuitive visualisa-
tions designed with ongoing focus on usability.

NEW DEVELOPMENTS AND PROGRESS

More data with continuing emphasis on user experience

A key factor for drug target identification and prioritisa-
tion is the causal association of the target with a disease. We
compute an association score based on genetics, genomics,
transcriptomics, drug information, animal models and sci-
entific literature evidence. Our scoring framework has been
described in our previous publication (3). Briefly, the com-
putation is carried out at four different levels to give rise
to evidence scores, data source scores, data type scores, and
an overall association score. To compute the evidence score,
we take into account specific factors that affect the strength
of the evidence used for the target-disease associations (See
table 2 in (3). In order to obtain a score for data sources
and data types, we use the harmonic sum to aggregate in-
dividual evidence and data source scores, respectively. Our
overall association score is the result of the aggregation of
all data sources using the harmonic sum (Supplementary
Figure S1).

Since our first publication, we have continued to explore
new datasets to be included as evidence for new target-
disease associations or refinement of existing ones. Our cri-
teria to consider new data sources are: (i) relevance (can the
data be used to associate targets with diseases? Does it sug-
gest a causal link between a target and a disease? Does it
enable prioritisation decision by target properties?); (ii) ease
of integration (does the data use an ontology? Are the tar-
gets provided as either UniProt ID or Ensembl gene IDs?
How much term mapping will be required? Is there a score
or threshold that can be used to rank the data points?); (iii)
accessibility (is the data publicly available, free and easy to
access through an API or downloads?) and (iv) sustainabil-
ity (is the data source likely to be maintained over the long
term? Is the data frequently updated?). Once we select new
data sources, they are combined into broader data types:
Genetic associations, Somatic mutations, Drugs, Affected
pathways, RNA expression, Animal models and Text min-
ing.

In addition to including new data sources since our first
publication (3), we have carried out further quality assess-
ment of our transcriptomics evidence and expanded the
scope and coverage of many of our original data sources.

New data sources for target-disease associations

We have incorporated four new data sources to enhance our
evidence: Genomics England PanelApp and the PheWAS
catalogue (within the data type Genetic associations) and
SLAPenrich and PROGENy (for the data type Affected
pathways).

Genetic associations

Since our previous publication, we have added two new data
sources as evidence for Genetic associations between tar-
gets and Mendelian and more common diseases: Genomics
England PanelAPP and the PheWAS catalog, respectively.
With these new data sources, we have been able to identify
new associations (e.g. between SERPING1 and Immunod-
eficiency due to an early component of complement defi-
ciency based on evidence from the Genomics England Pan-
elAPP, or between MC1R in hyperlipidemia based on evi-
dence from the PheWAS catalog) or added further support
to previously identified associations (e.g. between KCNE3
in Brugada syndrome based on evidence from the Genomics
England PanelAPP, or NOD2 in Crohn’s disease based on
evidence from the PheWAS catalog).

We have included the Genomics England PanelApp
Green genes (version 1+ panels) (4) along with their
(mainly) rare, Mendelian diseases or phenotypes, providing
these can be mapped to an ontology, such as EFO (5), Or-
phanet (http://www.orpha.net) or Human Phenotype On-
tology (HP) (8). We use the PanelApp WebServices (https:
//panelapp.genomicsengland.co.uk/#!Webservices) to ob-
tain the associations and Ontoma (https://pypi.org/project/
ontoma/) for the automatic mapping of diseases and phe-
notypes.

The Genomics England Green genes are curated and
crowdsourced by experts; hence the target-disease associa-
tions that are supported by this evidence in our Platform
have the highest score of 1.

For common and complex diseases, we have added ge-
netic evidence from PheWAS (9), scored following our
methodology for GWAS evidence (3) but scaled according
to the maximum number of cases (8800) and the P-value
range (0.05 and 1e-25) of the PheWAS data.

Details on the scoring of these new data sources for Ge-
netic associations are described in our help documentation
(https://docs.targetvalidation.org/getting-started/scoring).

Affected pathways

Besides the new data sources for Genetic associations, we
have also included two new data sources for Affected path-
ways, more specifically in cancer. The new data sources,
SLAPenrich (10) and PROGENy (11), have mostly high-
lighted new associations, such as EGFR in squamous cell
lung carcinoma based on PROGENy and PTEN in prostate
adenocarcinoma based on SLAPenrich.

SLAPenrich identifies pathways that harbour genomic
alterations, more frequently than expected by chance, across
a population of cancer samples from their somatic mutation
profiles. The alteration status of a pathway is determined
by the collective status of its genes: a pathway is altered in
a sample if at least one of its genes is somatically mutated

https://www.icr.ac.uk
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in that sample. Then, SLAPenrich quantifies the divergence
from expectation of the total number of samples with ge-
nomic alterations in a pathway, using a Poisson binomial
distribution. The SLAPenrich evidence used for the asso-
ciations between targets and cancer is based on Reactome-
pathway gene-sets only, diverging from the original analysis
(10).

PROGENy (11) is a method to infer pathway activ-
ity from gene expression. The data includes 11 pathways,
namely EGFR (epidermal growth factor receptor), MAPK
(mitogen-activated protein kinase), PI3K (phosphoinosi-
tide 3-kinase), VEGF (vascular endothelial growth factor),
JAK-STAT (janus kinase-signal transducer and activator
of transcription), TGFb (transforming growth factor beta),
TNFa (tumor necrosis factor alpha), NFkB (nuclear factor
kappa-light-chain-enhancer of activated B cells), Hypoxia,
p53-signaling and DNA damage response, and cell death
via apoptosis (Trail). In contrast to other pathway meth-
ods, PROGENy is based on the gene expression signature
downstream of the pathway, rather than on the expression
of the pathway components, generating signatures that rep-
resent a consensus over many different conditions. Contrary
to SLAPenrich, which implicates pathways but not their ac-
tivation or inhibition, PROGENy scores indicate whether a
pathway is activated or inhibited if they are higher or lower
between conditions. Both tools can hence be used in combi-
nation to infer driver pathways hit by mutations, and then
link those to their downstream effects.

Details on the scoring of these new data sources for Af-
fected pathways are described in our help documentation
(https://docs.targetvalidation.org/getting-started/scoring).

Updated data sources for disease and target associations

In addition to new data sources, since our first publica-
tion we have also had updates on the original data sources
through our frequent cycles of data release. Our data in-
gest and processing pipeline is now run every two months
for the integration of the most up-to-date information from
our data providers. Each release has a YY.MM timestamp
and may contain increased (and updated) coverage of the
evidence described in our original paper (3) as well as new
data sources (see above section). Furthermore, some of the
original data sources have had their scope expanded or
amended through ongoing projects within Open Targets.
These correspond to the (i) inclusion of targeted genotyp-
ing arrays from the GWAS Catalogue (12); (ii) addition
of the new tier 2 cancer genes (13) from the Cancer Gene
Census (14); (iii) coverage of trinucleotide repeat data from
ClinVar (15) available in the European Variation Archive
(https://www.ebi.ac.uk/eva/?Home) and (iv) withdrawal of
differential expression studies reported on human cell lines
with no disease as study factor from Expression Atlas (16).
In the following sections, we describe the updates in the
original data sources used for our target-disease associa-
tions in more detail.

Targeted, non genome-wide genotyping arrays

We have started a collaboration with the NHGRI-EBI
GWAS Catalogue (12) for the inclusion of non genome-

wide arrays including the Immunochip (17) for immuno-
genetics, and Metabochip (18) for metabolic diseases. So far,
this has enabled us to include 823 SNP-trait associations
for 120 independent associations curated from 55 publica-
tions. The inclusion of both Immunochip and Metabochip
arrays increases the availability of germline variants (or
SNPs) that are associated with autoimmune, inflammatory
and metabolic diseases. These causal genetic variants in the
Open Targets Platform will help uncover strong candidate
genes for those diseases, prioritise target-disease associa-
tions and explore pleiotropy, if the candidate genes are as-
sociated with more than one of the diseases for which the
array was designed.

Tiered cancer gene census

In our initial paper (3), we described somatic mutation ev-
idence from the Cancer Gene Census (14) used to support
target-cancer associations. This census has recently intro-
duced new criteria to assess the level of evidence that sup-
ports a gene as a driver gene in cancer, which leads to the
concept of a tier system (13). Genes in tier 1 must have: (i)
evidence of activity that may drive or suppress cancer; (ii)
evidence of mutations, detected in cancer that change the
activity of the protein and promote oncogenic transforma-
tion and (iii) evidence that the somatic mutation patterns in
cancer samples are typical of tumour suppressor genes (e.g.
inactivating mutations) or of oncogenes (e.g. missense mu-
tations). Although tier 2 genes are strongly associated with a
role in cancer, they have less evidence than their tier 1 coun-
terparts. For both tier 1 and 2 genes, Poisson tests are car-
ried out to assess whether somatic mutations in a gene occur
more frequently than in other genes in the same disease, and
whether a gene is mutated significantly more frequently in a
given disease when compared to all other diseases. All muta-
tions detected in the Cancer Gene Census genes have a base
association score of 0.5, which is modified by applying the
following rules: (i) for tier 1 genes, a significant result (FDR
< 0.025) for either of each of the two Poisson tests adds
0.25 to the score; (ii) for tier 2 genes, the score will be 0.5;
(iii) if only one sample is mutated, 0.25 is subtracted from
the score and (iv) if tier 1 genes are known to drive cancer
only through fusions, all mutation types except fusions get
a score of 0.5. Fusions will then be scored according to the
rules above.

Trinucleotide repeat expansions and new clinical significance
terms

We import trinucleotide repeats from ClinVar (15) that
are stored in the European Variation Archive (https://
www.ebi.ac.uk/eva/?Home) for the genetic associations be-
tween triplet repeat expansion disorders, e.g. Hunting-
ton’s Disease and Fragile X syndrome, and their possi-
ble drug targets, such as Huntingtin and Synaptic func-
tional regulator FMR1 proteins. In order to incorporate
trinucleotide repeats, a new consequence term, trinucleotide
expansion (SO 0002165) (https://www.targetvalidation.org/
variants) was defined by ECO (6). Moreover, besides muta-
tions described as ‘pathogenic’, which have been included
since the first release of the Open Targets Platform, we have
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Table 1. Sources and evidence counts used for target-disease associations in the Open Targets Platform

Data source* Data type Evidence Count**

Genomics England PanelAPP (v2.2.0) Genetic associations 15 289
PheWAS catalogue (Sep-2017) Genetic associations 47 302
GWAS catalogue (July 2018) Genetic associations 101 511 (32 363)
UniProt (July 2018) Genetic associations 26 640 (21 870)
UniProt literature (July 2018) Genetic associations 4494
European Variation Archive∧ (July 2018) Genetic associations 73 805 (28 050)
Gene2Phenotype (May 2017) Genetic associations 1604 (975)
UniProt (July 2018) Somatic mutations 282
Cancer Gene Census (COSMIC v85) Somatic mutations 55 963 (23 440)
IntOGen (December 2014) Somatic mutations 2371 (2377)
European Variation Archive∧ (July 2018) Somatic mutations 7624 (456)
ChEMBL (v24) Drugs 410 436 (120 520)
Reactome (v65) Affected pathways 9735 (6143)
PROGENy (April 2018) Affected pathways 308
SLAPenrich (August 2017) Affected pathways 89 661
Expression Atlas (February 2018) Expression 288 273 (529 084)
Europe PMC (July 2018) Text mining 4 906 527 (3 678 967)
PhenoDigm (November 2017) Animal model 465 887 (395 331)

*Database version (or date) in parentheses.
**As per 18.08 release of the Open Targets Platform. Parentheses show the number (in italics) of evidence count reported previously (3). Note, the reduction
in the number of evidence from Expression Atlas (see main text for explanation).
∧Containing ClinVar data from May 2017.
Detailed target-disease association counts can be found in the Supplementary Table.
Data sources in bold are new data, whereas the remaining sources have been described in our first publication and shown here are updates from the previous
report.

begun incorporating mutation data with other terms of clin-
ical significance from ClinVar, namely ‘protective’, ‘associ-
ation’, ‘risk factor’, ‘affects’ and ‘drug response’. The full
description of these terms are available elsewhere (https:
//www.ncbi.nlm.nih.gov/clinvar/docs/clinsig/).

Human cell lines

We have removed studies from Expression Atlas where ex-
periments were carried out in human cell lines where the
disease was not a factor in the study (e.g. cell lines derived
from cancers used in other studies). This has lead to a 34%
reduction in the number of evidence strings for the assess-
ment of differential expression of drug targets, and therefore
removal of false-positive associations in the RNA expres-
sion data type.

In summary, new data sources, quality assessment and
further refinements to the original set of data sources have
increased the scope of our target-disease associations. A
summary of the latest set of data sources and count of evi-
dence from each source are provided in Table 1. The statis-
tics for our releases (current and previous ones) can be
found in our Release Notes (https://www.targetvalidation.
org/release-notes).

New annotations and visualisations for targets and diseases

Besides providing target-disease associations, the Open Tar-
gets Platform integrates comprehensive annotation of indi-
vidual human targets and diseases on dedicated pages to
support target prioritisation. The target profile page con-
tains information at the gene and protein levels, whereas
the disease profile page displays disease annotations, such as
phenotypes and ontology classification. Note that our tar-
gets can be both protein coding genes and non-coding RNA
genes, such as HOTAIR and MIR23A non-coding genes.

Since our first publication, target and disease annota-
tions have been enhanced with new visualisations and data.
A new plugin architecture for the pages enables widgets
and/or data to be added more easily, allowing increased
content flexibility and faster loading time for a better user
experience. We have also changed the order of the anno-
tations displayed in the target profile page based on usage
statistics from anonymised web traffic logs, now displaying
the more relevant information first, at the top of the page. In
the following sections, we provide details on these new tar-
get annotations, in addition to updates on the visualisation
of expression data and scientific literature.

Target enabling packages and chemical probes

A Target Enabling Package (TEPs) is a collection of
reagents, protocols and data for rapid exploration and char-
acterization of proteins (potential drug target candidates)
with genetic linkage to key disease areas (19). All 16 TEPs,
currently available from the Structural Genomics Consor-
tium portal, can be accessed from the relevant target profile
pages in the Open Targets Platform.

We also link to a set of the 215 high-quality chemical
probes (20,21) available for 188 different targets, giving ac-
cess to reagents and assays to aid in vitro and/or in vivo
investigation of phenotype and mechanism of a target. An
additional set of potential chemical probes for 2300 human
targets from Probe Miner (https://probeminer.icr.ac.uk/#/)
is also available in the Open Targets Platform.

Protein–protein interactions

We provide a summary of direct protein interactions with
the selected target to explore interactome information and
facilitate drug target prioritisation. Currently, we display a

https://www.ncbi.nlm.nih.gov/clinvar/docs/clinsig/
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Figure 1. Interactive visualisation of protein–protein interactions in dedicated target profile pages.

summary of protein interaction data from OmniPath (22).
This data can be filtered by enzyme–substrate interactions,
protein–protein interactions or pathways (Figure 1).

Mouse phenotypes

We list the annotated strain-specific phenotypes and the al-
lelic composition of every laboratory mouse with a knock-
out gene curated by and available in the Mouse Genome
Informatics database (23).

Cancer hallmarks

We summarise information on cancer hallmarks (24,25),
which are curated by COSMIC (26) and integrated in the
Cancer Gene Census (14). These essential alterations in cell
physiology that can dictate malignant growth can be found
in the profile pages of a target implicated in cancer. We list
the hallmarks (e.g. invasion and metastasis, change of cel-
lular energetics) for a given target as either being promoted
or suppressed. We currently have cancer hallmarks for 251
targets from the Cancer Gene Census.

Cancer biomarkers

We incorporate a collection of genomic biomarkers of drug
responses (sensitivity, resistance and toxicity) and their
level of clinical significance from the Cancer Biomarkers
database (27).

Similar targets and their diseases

We have developed a new feature to show suggested targets
that are similar to any target of choice. This is based on a
network analysis of shared diseases obtained from our set of
target-disease associations as a bipartite graph, with targets
and diseases as vertices. In order to reduce noise in the data,
we consider only disease-association pairs with at least three
evidence supporting the edge, and whose overall association
score is greater than 0.1. We calculate a target relationship
score based on the ratio of shared diseases between the tar-
gets to the total number of diseases for both targets.

Our relationship scoring method (i) outputs a closer dis-
tance between two targets sharing a rare disease than two
targets sharing diseases that are data rich, such as cancer
and (ii) considers shared targets that are specifically linked
to fewer diseases more relevant than targets that are com-
monly linked to many types of diseases. In order for this
process to remain computationally feasible, given the bil-
lions of possible target–target (and disease–disease) com-
binations, we have implemented an efficient, high perfor-
mance computation strategy, which uses (i) an heuristic es-
timation from aggregate statistics allowing us to skip the
computation of the distance for pairs that are below the
cut-off and (ii) LSH (locality-sensitive hashing) (28–30) to
calculate target relatedness, retaining only the most confi-
dent relationships. The resulting set of similar targets are
displayed as an interactive visualisation (Figure 2A), which
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Figure 2. Similar targets are displayed as an interactive visualisation (A) in the target profile page. By selecting a target, the view gets updated to show the
diseases shared between any two targets (B). Clicking on any of the shared diseases reveals the underlying evidence (e.g. Genetic associations, Drugs, Text
mining, Animal models) that supports the association between a disease and its two selected targets.

summarises the top ranking shared diseases for any two tar-
gets up to 20 (Figure 2B), and presents the underlying evi-
dence (e.g. Genetic associations, Affected pathways, Drugs)
supporting the association (Figure 2C).

The relationship scoring procedure is also applied for dis-
eases sharing the same targets and the relations can be vi-
sualised on the disease profile page.

RNA and protein baseline expression

When trying to identify a new target, users working in
drug discovery often want to understand the expression of
the target across human tissues and cells. We have enhanced
both the data and the visualisation for baseline expression
by combining both RNA (16) and protein (31) expression

data under a single section entitled ‘RNA and protein base-
line expression’. Within this section, there are three tabs,
‘Summary’, ‘Expression Atlas’ and ‘GTEx variability’. The
first tab shows RNA and protein expression data side by
side for a quicker comparison (Figure 3A). This can be es-
pecially useful for targets that show different levels of RNA
and protein expression, e.g. low expression at the RNA
level, but high expression at the protein level. The expres-
sion data can be visualised grouped either by ‘Organs’ (by
default) or ‘Anatomical Systems’. For either option, users
can click on the name of a tissue, e.g. ‘Intestine’, and see a
detailed breakdown of expression in different parts of the
tissue/organ, such as ‘Vermiform appendix’ and ‘Duode-
num’ (Figure 3B). Two other displays of expression data
are also available in additional tabs: an interactive heat map
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Figure 3. RNA and protein expression data are displayed side by side for easy comparison of target expression levels in healthy human tissues. (A) Each
horizontal bar representing a tissue, e.g. Intestine, can be expanded to provide a detailed breakdown of expression in different parts of the tissue/organ,
such as ‘Vermiform appendix’ and ‘Duodenum’ (B).

from Expression Atlas (16) and a box plot to visualise gene
expression variability in GTEx data (32) (Figure 4).

Bibliography

We have improved how the ‘Bibliography’ section is dis-
played on both target and disease profile pages. We have
moved to a bespoke navigation and visualisation of scien-
tific papers from Europe PMC (33) using ‘chips’ (Figure
5A). These are created from automated topic identification
and entity recognition using LINK, the Open Targets LIter-
ature coNcept Knowledgebase (https://link.opentargets.io).
LINK extracts key entities from PubMed abstracts (34) us-
ing a precompiled set of dictionaries to recognise genes and
diseases from the Open Targets Platform, phenotypes from
the Human Phenotype Ontology (8), drugs in clinical trials
or on the market from ChEMBL (35), and relevant MESH
headings, such as anatomy, diagnostics and locations. We
analyse each title and abstract with spaCY (36), and extract
key concepts and semantic relations in the form of subject-
predicate-object triples.

A drop-down menu is also available in the ‘Bibliography’
section to filter the publications according to key entities, i.e.
concepts (e.g. loss of heterozygosity), genes, diseases, drugs,
journals and authors. Both drop down menu and ‘chips’ al-
low for interactive filtering of abstracts (Figure 5B) selected
in the target and disease profile pages of the Open Targets
Platform.

New filtering options in the user interface and URL sharing

We have introduced filters on the GUI to allow for targets
to be selected based solely on their properties and facili-
tate prioritisation of the most promising (best) targets for
downstream analysis. The properties available for filtering
are ‘Target class’, e.g. enzyme, surface antigen, as defined by
ChEMBL (35) and ‘RNA tissue specificity’, e.g. to restrict
targets that are expressed preferentially in the selected cell

or tissue (e.g. brain) compared to other tissues, based on Ex-
pression Atlas data (16). We have also implemented ‘Your
target list’, where users can upload their own list (in .CSV or
.TXT) of targets (either as Ensembl gene IDs, HGNC sym-
bols, UniProt IDs or synonyms) to restrict the associations
table to the user’s targets only.

Other changes to the interface include URL sharing
for specific views and pages, such as the bubbles view
(‘?view=t:bubbles’ in the URL) and the evidence page
based on a specific type of data e.g. Genetic associations
(‘view=sec:genetic association’ in the URL).

Alternative ways to access data

The user interface of the Open Targets Platform allows
searches for an entry to be carried out on a one-by-one case
basis only: one disease or one target, for example. However,
we have use cases that start from a list of targets, rather than
a single target. For bulk searching, we have launched a batch
search at https://www.targetvalidation.org/batch-search, an
easy-to-use and interactive web tool that takes a list of up
to 200 targets, identified by HGNC symbols, UniProt or
Ensembl IDs, or gene/protein synonyms, and uploaded as
.TXT or .CSV. In addition to upload, users can also paste
their targets into the box available in the entry page. The
batch search will return (i) diseases associated with the list
of targets ranked by significance using a hypergeometric dis-
tribution; (ii) pathways enriched in the set of targets ranked
by the probability of finding a pathway that is associated
with and specific to the target list; (iii) gene ontology terms
enriched among the targets, ranked following a hypergeo-
metric distribution; (iv) drugs that are known to modulate
the targets in the list and (v) a visualisation of protein in-
teractions, showing the interactions between the targets in
the batch list. From the batch search results, links to other
pages in the Open Targets Platform are available for further
exploration of pathway and drug summaries, and/or associ-
ations and evidence pages. A detailed tutorial on the batch

https://link.opentargets.io
https://www.targetvalidation.org/batch-search
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Figure 4. An additional visualisation to summarise expression data is also available, depicting gene expression variability in GTEx data.

search tool is available in our documentation page (https:
//docs.targetvalidation.org/getting-started/batch-search).

The Open Targets REST API provides extra flexibility
for data retrieval and filtering options for larger queries,
which are not supported by the batch search. The REST
API has been updated to version 3, changed its base URL to
https://api.opentargets.io/v3/platform and no longer re-
quires an API key for fair usage. More details on the REST
API can be found in our documentation page (https://api.
opentargets.io/v3/platform/docs/swagger-ui), an interactive
page where users can execute the REST API calls and check
the response before using these calls in workflows for auto-
mated analysis.

New name, new homepage and improved search functionality

We have renamed the portal from ‘Target Validation Plat-
form’ to ‘Open Targets Platform’ in line with the rebrand-
ing of the overall partnership (http://www.opentargets.org).
The homepage has been completely redesigned to highlight
the main entry point for our users, the search function. In
addition to target and disease names (or symbols and their
synonyms), we allow searching for phenotypes, orthologous
genes (e.g. from mouse, rat, fruit fly, worm) and drugs. If
searching for a drug, the Platform accepts chemical (e.g.
acetylsalicylic acid), generic (aspirin) and brand (Durlaza)
names, and will return a list of targets and diseases that have
associations where the drug is involved. When searching for
drug names, these get matched to the ‘drugs.evidence data’
field, which contains words, such as Acetylsalicylic acid,
Acetylsalicylic Acid, acetylsalic acid, Salicylic Acid Acetate,
Acetylsalic Acid, Durlaza.

The new homepage displays the main statistics of the lat-
est release of the Open Targets Platform, namely the num-
ber of targets, diseases, associations and data sources that
provide evidence for the target-disease associations. It also
provides links to other modes of data access (see above), di-
rects users to free tutorials and documentation pages, and
includes feeds from Open Targets social media channels,
such as the Blog, Twitter and Facebook.

Outreach, training and user support

The GUI https://www.targetvalidation.org is the main
portal to access data from the Open Targets Platform.
It had 685 visits and 2369 unique page views from 45
countries in the week prior to the submission of our first
publication, i.e. between 12 August 2016 and 19 August
2016. We have observed an increase to 1290 visits and 5411
unique page views from 62 countries for the same eight-day
period in 2018 (12 August to 19 August). We offer free
hands-on workshops on the Open Targets Platform, both
face-to-face and as live webinars (Carvalho-Silva et al.
DOI: 10.1371/journal.pcbi.1006419). Our recorded webi-
nars, online tutorials and short demos are available on the
Open Targets YouTube channel (https://www.youtube.com/
channel/UCLMrondxbT0DIGx5nGOSYOQ/featured),
which features 12 videos. Our user community
can follow our news and upcoming developments
on Twitter (twitter.com/targetvalidate), Facebook
(https://www.facebook.com/OpenTargets/), LinkedIn
(https://www.linkedin.com/company/open-targets/),
and by subscribing to our monthly newsletters
(http://bit.ly/Open-Targets-News). We also have a blog
(http://blog.opentargets.org) that featured 17 posts
over the last 12 months and is mirrored on Medium
(https://medium.com/opentargets). Direct support via
email is available through support@targetvalidation.org.

CONCLUSIONS

The Open Targets Platform is part of an increasing effort on
the integration of public resources to assist target identifica-
tion and prioritisation for drug discovery. Although many
of these resources focus on interactions between drug com-
pounds and their targets, fewer databases explore the evi-
dence available that links a target with a disease. Related re-
sources to the Open Targets Platform, such as DisGeNET
(37,38) and Pharos (39,40), have been compared and their
complementarities and differences highlighted in our previ-
ous publication (3). Recently, Zhang et al (1) have provided
a more comprehensive comparative analysis.

https://docs.targetvalidation.org/getting-started/batch-search
https://api.opentargets.io/v3/platform/docs/swagger-ui
http://www.opentargets.org
https://www.targetvalidation.org
https://doi.org/10.1371/journal.pcbi.1006419
https://www.youtube.com/channel/UCLMrondxbT0DIGx5nGOSYOQ/featured
https://www.facebook.com/OpenTargets/
https://www.linkedin.com/company/centre-for-therapeutic-target-validation/
http://bit.ly/Open-Targets-News
http://blog.opentargets.org
https://medium.com/opentargets
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Figure 5. The new visualisation in the ‘Bibliography’ section of target and disease profile pages. Both titles (A) and abstracts (B) are available and can be
filtered by selecting one of the ‘chips’ at the top of the table. A drop-down menu is also available to allow selection of publications according to the available
(biological) concepts, genes, diseases, drugs, journals and authors.

Following its launch in December 2015, the Open Tar-
gets Platform has been expanding its scope, increasing its
data coverage, reaching out to user communities worldwide,
and growing its user base, all carried out with a constant fo-
cus on usability and user design to maintain its easy-to-use
and interactive features. We currently integrate over six bil-
lion evidence from 18 publicly available data sources and
compute almost three billion associations between 21 149
human genes and 10 101 disease and phenotypes. The up-
coming months will see the integration of new data from the
Open Targets experimental programme including synthetic
lethality data from CRISPR/Cas9 knockout screens in can-
cer cell lines, as well as the release of Open Targets Genet-
ics (https://genetics.opentargets.org/), a new resource that
combines GWAS and functional genomics data to priori-
tise likely causal variants at disease-associated loci. In sum-
mary, we will sustain and build on our efforts to date, and
continue to provide the Open Targets Platform to facilitate
drug target identification and prioritisation, and ultimately
increase the odds of success in drug discovery.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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