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Joseph A. Rothwell1,2., Yoann Fillâtre1,2., Jean-François Martin1,3, Bernard Lyan1,3, Estelle Pujos-

Guillot1,3, Leopold Fezeu4, Serge Hercberg4, Blandine Comte1,2, Pilar Galan4, Mathilde Touvier4,

Claudine Manach1,2*

1 INRA, UMR 1019, Human Nutrition Unit, CRNH Auvergne, Clermont-Ferrand, France, 2 Clermont University, Human Nutrition Unit, Clermont-Ferrand, France, 3 INRA,
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Abstract

Coffee contains various bioactives implicated with human health and disease risk. To accurately assess the effects of overall
consumption upon health and disease, individual intake must be measured in large epidemiological studies. Metabolomics
has emerged as a powerful approach to discover biomarkers of intake for a large range of foods. Here we report the
profiling of the urinary metabolome of cohort study subjects to search for new biomarkers of coffee intake. Using repeated
24-hour dietary records and a food frequency questionnaire, 20 high coffee consumers (183–540 mL/d) and 19 low
consumers were selected from the French SU.VI.MAX2 cohort. Morning spot urine samples from each subject were profiled
by high-resolution mass spectrometry. Partial least-square discriminant analysis of multidimensional liquid chromatography-
mass spectrometry data clearly distinguished high consumers from low via 132 significant (p-value,0.05) discriminating
features. Ion clusters whose intensities were most elevated in the high consumers were annotated using online and in-
house databases and their identities checked using commercial standards and MS-MS fragmentation. The best
discriminants, and thus potential markers of coffee consumption, were the glucuronide of the diterpenoid atractyligenin,
the diketopiperazine cyclo(isoleucyl-prolyl), and the alkaloid trigonelline. Some caffeine metabolites, such as 1-
methylxanthine, were also among the discriminants, however caffeine may be consumed from other sources and its
metabolism is subject to inter-individual variation. Receiver operating characteristics curve analysis showed that the
biomarkers identified could be used effectively in combination for increased sensitivity and specificity. Once validated in
other cohorts or intervention studies, these specific single or combined biomarkers will become a valuable alternative to
assessment of coffee intake by dietary survey and finally lead to a better understanding of the health implications of coffee
consumption.
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Introduction

Coffee is one of the most widely consumed beverages in the

world. It is consumed on a daily basis in most of the United States,

Canada, Japan, New Zealand, and in Europe, where consumption

is greatest in Scandanavian countries [1]. Due to its rich

phytochemistry and frequent consumption, the beverage has a

complex relationship with human health, and may be responsible

for both negative and positive health effects [2,3]. Coffee intake is

known to increase blood pressure [4,5] and when consumed in

excess may also elevate the risk of cardiovascular disease [6].

Consumption has also recently been associated with increased all-

cause mortality [7]. In contrast, recent epidemiological studies

have suggested that regular coffee consumption could decrease the

risk of type II diabetes, Parkinsonism, Alzheimer’s disease, liver

cancer, and even the risk of stroke [2,8–10].

Coffee contains several bioactives of potential importance to

human health. Firstly, it is the major dietary source of the alkaloid

stimulant caffeine, long believed to influence vascular health.

Secondly, the beverage is rich in phenolic acids, particularly

isomers of caffeoylquinic acid, the greatest contributor to

polyphenol intake in European populations [11,12]. Thirdly,

coffee contains a range of other potential bioactives whose

metabolites may influence human health at lower concentrations.

For example, coffee diterpenoids cafestol and kahweol may be

chemopreventive but also raise cholesterol levels in healthy

humans [13]. Risks and benefits may vary between individuals,
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depending on individual risk factors for the diseases, genetic

variation affecting caffeine metabolism and pharmacodynamics,

background diet, and method of coffee preparation. The accurate

assessment of coffee consumption in observational studies, as with

other foods of dietary importance, is problematic. In the large-

scale epidemiological studies needed to characterize the links

between diet and health, intake data are collected by dietary

questionnaires, which rely on accurate self-reporting by partici-

pants. Despite advances in data collection techniques, bias remain

a problem, and burdensome and expensive protocols using

multiple 24 h dietary recalls and/or validated thorough food

frequency questionnaires (FFQs) are necessary to obtain accurate

assessment of food intake.

A potential alternative to these assessment methods is the use of

biomarkers, which if well-validated could reliably reflect the recent

and/or habitual consumption of a food or dietary pattern of

interest [14]. Until recently, these could only be discovered ad-hoc

based on knowledge of the metabolism of certain food components

[15]. Metabolome profiling now allows the more efficient

discovery of biomarkers of intake. Biofluids from low and high

consumers or intervention and control subjects are profiled and

compared, and the signals responsible for the variation investigat-

ed as potential biomarkers [16]. Several biomarkers have been

proposed for coffee intake from intervention studies but none has

been evaluated yet in a large cohort study. The aim of the present

study was to search for reliable biomarkers of coffee intake by

profiling the biobanked urines of SU.VI.MAX2 cohort subjects

who had reported either high or low habitual consumption. The

use of samples from cohort studies rather than controlled

interventions have allowed us to propose new candidate biomark-

ers that are robust and stable enough to be measured in any type

of study, as recently demonstrated for the intake of citrus fruit [16].

Materials and Methods

Standards and reagents
Standards of caffeine, 1-methyluric acid, trigonelline (1-

methylpyridinium-3-carboxylate) hydrochloride, hippuric acid,

theophylline and paraxanthine were purchased from Sigma-

Aldrich (L’Isle d’Abeau, France). 1,7-dimethyluric acid and 5-

acetylamino-6-formylamino-3-methyluracil (AFMU) were sup-

plied by Toronto Research Chemicals Inc (Canada). Cyclo(leu-

cyl-prolyl) was obtained from Bachem (USA) and 3-hydroxyhip-

puric acid was kindly provided by P.C.H. Hollman (Rikilt,

Wageningen Univ., The Netherlands). For urine hydrolysis, b-

Glucuronidase - sulfatase from Helix pomatia (G0786) was

purchased from Sigma-Aldrich (France). HPLC-grade acetonitrile

and formic acid were supplied by Sigma-Aldrich (France) and

water used for liquid chromatography-mass spectrometry (LC-MS)

was generated from a Milli-Q integral water purification system.

Subjects
Study subjects were participants in the SUpplémentation en

VItamines Mineraux et AntioXydants 2 (SU.VI.MAX 2) cohort.

SU.VI.MAX and SU.VI.MAX 2 followed 13,000 and 6850

participants respectively between 1994 and 2009 to investigate the

effect of nutrition on the quality of aging [17]. The study was

conducted according to the guidelines of the Declaration of

Helsinki and approved by the Ethical Committee for Studies with

Human Subjects of Paris-Cochin Hospital (CCPPRB Nu 706 and

2364, respectively) and the Comité National Informatique et Liberté (Nu
334641 and 907094, respectively). All participants signed an

informed consent form approved by the Ethical Committee. Every

two months, participants were invited to complete a 24 h dietary

record via the Minitel Telematic Network, a French telephone-

based terminal equivalent to an Internet prototype widely used at

the beginning of the study. The records were obtained between

weeks and weekends in a 2:1 ratio and evenly between seasons to

take into account intra-individual variability. Participants assessed

portion sizes using a validated picture booklet. In 2009, the

SU.VI.MAX2 subjects also completed a validated food frequency

questionnaire (FFQ) [18]. For the PhenoMeNEp study (Phenotyp-

ing using Metabolomics for Nutritional Epidemiology), 144 high

and 66 low consumers of fruit and vegetables (F&V), balanced for

age, gender, BMI, and season of sampling, were randomly selected

from the highest and lowest quartiles of F&V consumption as

reported both in six detailed 24 h records and one FFQ obtained

from the cohort between 1998 and 2009. In anticipation of

validating the statistical models externally, 50 additional subjects

were selected from all quartiles of F&V consumption. For the

present study, whose aim was to identify biomarkers of coffee

intake, subgroups of 19 low and 20 high coffee consumers were

further selected from the 210 SU.VI.MAX2 subjects. These were

all subjects who had reported either high (.180 mL/d) or no

coffee consumption consistently in the dietary records and in the

FFQ. The selection was based on the distribution of coffee intake,

taking into account the correlation of consumption of other foods

such as chocolate or red wine, as shown in Supporting Information

S1.

Profiling of urine samples
For each of the 260 PhenoMeNEp subjects, one morning spot

urine from the SU.VI.MAX2 biobank (collected between 2007

and 2009) was profiled using UPLC-QTof-MS. Urine samples

were centrifuged at 12,000 g for 4 min and diluted two-fold with

Milli-Q purified water. Samples were profiled in a randomized

sequence using a Waters Acquity UPLC module (Waters,

Manchester, UK) coupled to a Waters QToF-Micro mass

spectrometer equipped with an electrospray source operated both

in positive (ESI+) and negative (ESI2) ionization modes, and a

lock-mass sprayer to ensure accuracy. Details of the analysis

conditions have been previously published [16].

Data pre-processing and statistical analysis
Full-scan UPLC-QTof-MS data for the 260 subjects were

extracted and processed using XCMS software [19]. To correct

for drift between different series, ion intensities were normalized

using data from quality controls consisting of pooled study urine

samples [20]. The datasets obtained for positive and negative

modes were merged and then filtered to remove any ions that did

not appear in more than 25% of the samples of at least one group

(low or high F&V consumers). For the present study, statistical

analysis was then carried out on a reduced dataset comprising the

data matrix of the 19 low- and 20 high coffee consumers. Data

were log transformed and an orthogonal signal correction (OSC)

[21] filter with Pareto scaling was applied to all remaining ions to

reduce variability not associated with the diet effect. Both

univariate and multivariate statistical approaches were used. On

the OSC filtered dataset, a one-way ANOVA (R software) was

performed on each ion to search for differences in intensities

between the selected low and high coffee consumers, applying a

Benjamini-Hochberg (BH) [22] p-value correction to reduce the

risk of false positive discovery. All ions with p-value,0.05 were

considered statistically significant. In parallel, a partial least

squares discriminant analysis (PLS-DA) was performed on all

detected ions (SIMCA-P+ software, version 13.0, Umetrics AB,

Umea, Sweden). The predictive ability of the PLS model was

assessed by cross validation (Q2cum) and permutation test
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(n = 100; plot and CV ANOVA). Variable Importance Projection

(VIP) values were obtained as indicators of importance of each ion

in the discrimination.

Receiver Operating Characteristics (ROC) curves, widely

considered to be the most objective and statistically valid method

for the evaluation of biomarker performance, were constructed

using the ROCCET web-based tool [23]. As with the previous

statistical analysis, data used for ROC analyses were those filtered

with OSC. The 20 high and 19 low-coffee consumers selected for

the study were used as the training set and 10 high and 10 low-

coffee consumers were selected among the validation population as

the hold-out set. Both individual and multiple biomarker ROC

curves were built using the support vector machines algorithm.

The average of predicted class probabilities of each sample and the

average predicted accuracy were then calculated across 100 cross-

validations, giving the respective confusion matrices for the

training and hold-out sets.

The Pearson’s correlation coefficient between the intensity of

some discriminating ions and the declared coffee consumption was

determined in the SU.VI.MAX2 sub-population of 260 subjects

selected for the PhenoMeNEp project.

Identification of discriminant ions
Ions with ANOVA p-value less than 0.05, VIP greater than 1

and a mean intensity ratio high consumers/low consumers greater

than 1 (OSC filtered values) were retained for further investiga-

tion. The list of discriminants was first grouped into clusters

according to LC retention time (RT), and correlation between

fragments was confirmed by a visual check of the corresponding

extracted ion chromatograms (EIC) of the UPLC-QTof analysis

and comparison of their distribution across the whole dataset.

To obtain accurate masses, molecular formulae, and additional

structural information, a small number of representative samples

were also analyzed using a high resolution LTQ Orbitrap VelosTM

hybrid mass spectrometer (Thermo Fisher Scientific, San José,

CA) operating in various modes (i.e. full scan and collision induced

dissociation fragmentation) using mass resolution from 7500 to

30000. Chromatographic separation was achieved with a RSLC

Ultimate 3000 liquid chromatography module (Dionex), using the

same conditions as for the UPLC-QTof-MS analysis.

The ions of interest were retrieved in the LTQ-Orbitrap full

scan chromatograms to obtain accurate masses for these signals,

which generally allowed the determination of molecular formulae.

Online databases such as the Human Metabolome Database

(HMDB; www.hmdb.ca), KNApSAcK (http://kanaya.naist.jp/

knapsack_jsp/top.html), Dictionary of Natural Products (http://

dnp.chemnetbase.com) and Metlin (http://metlin.scripps.edu)

were queried to hypothesize identities. In addition, a customized

in-house database on coffee phytochemical metabolites was used,

comprising all phytochemicals reported in coffee according to

Phenol-Explorer (http://www.phenol-explorer.eu), Duke’s Phyto-

chemical and Ethnobotanical Database (http://www.ars-grin.

gov/duke), the Dictionary of Natural Products, KNApSAcK and

a literature survey, as well as their known metabolites reported in

the literature. Additional likely human metabolites of coffee

constituents were also included, as predicted in silico by the

software Meteor-Nexus (v.13.0.0, Lhasa Ltd, Leeds, UK). If a

hypothesis was within 1 mDa of a chemically and biologically

plausible coffee-derived metabolite, the commercial standard was

acquired to perform the final confirmation of identity. If this was

not available, fragmentation was performed on the LTQ-Orbitrap

and the resulting spectra examined and compared to those

available in online databases or literature. In silico prediction of the

mass fragmentation of the candidate structures was also performed

using Mass FrontierTM software (Thermo Fisher Scientific, San

José, CA). The characterization of sulfated and glucuronidated

derivatives was carried out by comparing profiles obtained before

and after enzymatic hydrolysis of urine samples. For hydrolysis,

urine samples (100 ml) were incubated overnight in sodium acetate

buffer at pH 4.9 in the presence of b-glucuronidase (1000 U) and

sulfatase (45 U).

Results

The 20 high coffee consumers reported a median intake of

290 mL/d (range: 183–540 mL/d), whereas all low consumers

reported zero habitual consumption in all questionnaires. No

significant differences in sex, age, season of urine sampling or BMI

were observed between the two groups (Chi-squared p-val-

ue = 0.408, 0.886, 0.069 and 0.869, respectively).

After data pre-processing, 932 and 179 ions were detected in

urine analyzed in positive and negative modes, respectively. Data

were compared using both univariate and multivariate statistics.

ANOVA with false positive discovery BH correction showed that

119 and 13 ions in positive and negative modes respectively had

significantly different intensities (p-value,0.05) in the groups of

low and high coffee consumers. All significant ions except one (m/z

258.905) had higher intensities in the group of high consumers

than in the low, suggesting an exogenous origin for the majority of

the significant ions. In parallel, the OSC-PLS-DA of the urine

metabolomic profiles comprising all 1111 detected ions clearly

distinguished the groups of low and high coffee consumers

(Figure 1A). The calculated cumulative ratio Q2(cum) (0.849)

combined with a low CV-ANOVA (1.77610215) and a good

permutation test plot (Figure 1C) indicated an excellent validation

of the PLS model. This multivariate analysis revealed that 360 ions

contributed to the discrimination (VIP.1), of which 47 were

particularly resonant (VIP.2). Use of ANOVA BH p-values and

the OSC-PLS-DA VIP values notably gave similar ion rankings,

and all the 132 ions with ANOVA BH p-value,0.05 also had a

VIP value.1.5. The 132 ions corresponded to around 60

metabolites detected as clusters of correlated ions comprising

fragments and adducts and sharing the same retention time.

The strongest discriminating clusters are listed in Table 1 by

ascending ANOVA BH p-value of the most significant ion in the

cluster. Many of these were easily identified as caffeine metabolites

(Figure 2), based on the comparison of accurate mass, RT and

fragmentation spectra of unknown features and commercial

standards. Among these were paraxanthine, a glucuronide of

either paraxanthine or theophylline, 1-methylxanthine, 1-methy-

luric acid, 1,7-dimethyluric acid, 1,3 or 3,7 dimethyluric acid,

1,3,7-trimethyluric acid as well as 5-acetylamino-6-formylamino-

3-methyluracil (AFMU). Of these, 1-methylxanthine (p-val-

ue = 8.5161027, VIP = 2.71) contributed most strongly to the

discrimination and was the third strongest discriminant found in

the study overall, with a 5-fold greater mean intensity in the high

consumers than in the low. 1,7-dimethyluric acid was similarly

elevated in the high consumers (p-value = 8.5161027, VIP = 2.72,

3.3-fold difference in mean intensity between the two groups).

Also among the most discriminating ions were non-caffeine

metabolites which represented even more promising candidates

for biomarkers of coffee consumption (Figure 2). The most

significant of these was a large cluster eluting at 11.3 min. The

parent was tentatively identified as atractyligenin glucuronide

based on the accurate masses of the parent and in-source

fragments observed in the mass spectra obtained with high

resolution mass spectrometry analysis of urine samples. The

identification was further supported by the fragmentation pattern

Biomarkers of Coffee Intake by Metabolomics
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Figure 1. Metabolomic profiling of spot urines from SU.VI.MAX2 subjects. Subjects reported either low or high consumption of coffee,
represented by squares and circles respectively. A) One-dimensional OSC-PLS-DA score plot of urinary metabolomes of low and high consumers. B)
Loading plot of the OSC-PLS-DA. Circled outlying ions contribute most strongly to the discrimination. C) Model validation assessed by permutation
test (n = 100).
doi:10.1371/journal.pone.0093474.g001
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of ions of interest in hydrolyzed and non-hydrolyzed urine samples

(Supporting Information S2).

The ion m/z 211.146, representing the second most significant

metabolite, was tentatively identified as an isomer of the

diketopiperazine cyclo(leucyl-prolyl), most likely the cyclo(isoleu-

cyl-prolyl). The fragmentation spectrum was very similar to that of

the cyclo(leucyl-prolyl) standard spiked in blank urine but with a

slightly shorter retention time (Supporting Information S3). Very

similar fragmentation patterns have previously been reported for

the two compounds extracted from roasted coffee [24]. Another

discriminant strongly correlated with coffee intake was the alkaloid

trigonelline (m/z 138.055), which was identified by comparison of

exact mass and RT with the authentic standard. Two other

discriminants eluting at 9.7 (C26H34O11) and 11.4 min

(C26H32O10) were found to be glucuronide conjugates with very

similar fragmentation spectra. The most plausible hypothesis for

the cluster eluting at 11.4 min was a glucuronide of a kahweol

metabolite produced by oxidation of a primary alcohol. Oxidation

was the most likely biotransformation predicted by Meteor

software for kahweol. The cluster eluting at 9.7 min might be a

hydrated analogue that lost a water moiety during ionisation.

Hippuric acid and its 3-hydroxy derivative were also correlated

with coffee consumption.

The ratio of mean intensity in high consumers/mean intensity

in low consumers (Table 1) varied from 1.4 for 3-hydroxyhippuric

acid to 17.5 for atractyligenin glucuronide, with values around 4–5

for cyclo(isoleucyl-prolyl), kahweol oxide glucuronide, dimethyl-

xanthine glucuronide and trigonelline. For some compounds (i.e.

trigonelline, 1,7 dimethyluric acid, paraxanthine) the mean

intensity in non-consumers was relatively high, suggesting other

possible origins than coffee.

The performance of the candidate biomarkers was assessed

using ROC curves [23]. Table 1 shows the AUC and 95% CI

obtained for the most important discriminants. According to the

accepted classification of biomarker utility, candidate markers of

AUC.0.9 are considered ‘‘excellent’’, which was the case for 12

of the 33 most discriminating markers (Table 1). Sixteen others

were classified as ‘‘good’’ (0.8–0.9), 3 as ‘‘fair’’ (0.7–0.8) and 2 as

‘‘poor’’ (0.6–0.7). It is more accurate to consider the 95% CI,

which gives a spread of possible values. AFMU, for example

(AUC = 0.83), could be classified as a ‘‘good’’ biomarker.

However, the lower 95% CI limit is 0.594. Lower 95% CI limits

greater than 0.8 were observed for six discriminants only:

atractyligenin glucuronide, cyclo(isoleucyl-prolyl), 1-methylxan-

thine, 1,7-dimethyluric acid, kawheol oxide glucuronide and an

unidentified discriminant (unknown1; p200.108). The perfor-

mance of atractyligenin glucuronide and caffeine is illustrated in

Figure 3. The results obtained with the validation population (10

low and 10 high coffee consumers) confirmed that atractyligenin

glucuronide would be a much more effective marker of coffee

consumption than caffeine (AUC 0.95 vs 0.72; Figure 3A).

Furthermore, the results of the permutation test (n = 500) showed

that the model based on atractyligenin glucuronide is significant

(p-value,0.002), whereas the one based on caffeine is not (p-

value = 0.062). The caffeine based model was able to correctly

classify most high coffee consumers (Figure 3B), but misclassified

half of the low-consumers, either in the training set or hold-out set.

Finally, the predictive model of caffeine is sufficiently sensitive but

not specific (p = 0.04), unlike the atractyligenin glucuronide model

(p = 0.0006).

Since atractyligenin glucuronide is not commercially available,

we tested the performance of a combination of cyclo(isoleucyl-

prolyl), 1-methylxanthine and trigonelline, the three best candi-

date biomarkers commercially available. ROC curve analysis

showed that this combination would be a more effective biomarker

(better AUC and 95% CI) than any of the compounds alone

(Figure 4).

For the three new biomarkers revealed in the study, namely

atractyligenin glucuronide, cyclo(isoleucyl-prolyl) and kahweol

oxide glucuronide, Pearson’s correlation between their intensity

in urine and the declared coffee intake of the subjects was analyzed

in a SU.VI.MAX2 group of 260 subjects and showed significant

positive correlations (p,0.0001, R = 0.534, 0.543 and 0.561,

respectively; Supporting Information S4). Pearson’s correlation

coefficient was also high for 1-methylxanthine (0.508) and

trigonelline (0.467) but low for caffeine (0.257), hippuric acid

(0.199), and 3-hydroxyhippuric acid (0.214).

Discussion

Urine metabolomic profiles of well-characterized groups of high

and low coffee consumers from the SU.VI.MAX2 cohort were

easily distinguished (Figure 1). Sensitive and specific biomarkers of

coffee intake could then be searched for among the discriminant

features. Some of these features corresponded to previously

reported markers of intake. Caffeine, first proposed as a marker

of intake some decades ago [25], was indeed a discriminant of

coffee intake in the SU.VI.MAX2 cohort, although a relatively

weak one (p-value = 0.0266; VIP = 1.65), and a moderately intense

signal was found even in the urine of the low consumers. Some of

Figure 2. Chemical structures of some identified discriminants.
doi:10.1371/journal.pone.0093474.g002
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its metabolites were better discriminants, although caffeine is

found in tea, cola, energy drinks and supplements, compromising

specificity for coffee intake. Also, caffeine metabolism is known to

be affected by various factors, including genetic variation in the

CYP1A2 gene, and caffeine clearance can vary to up to 40-fold

between individuals [26]. The resulting inter-individual variation

in urinary caffeine metabolites is not desirable for biomarkers of

intake.

Trigonelline, another alkaloid, has previously been reported as a

marker of coffee consumption in intervention participants who

had consumed acute doses of coffee [27]. Trigonelline was the 7th

strongest discriminant between the groups in our study (p-

value = 8.6861026, VIP = 2.57), and the 2nd most intense

discriminant in urine of high coffee consumers. However, it is

also found in alfalfa sprouts, lentils, chickpeas, oats and fenugreek

[28,29] and is a plasma and urinary metabolite of niacin (vitamin

B3). The trigonelline metabolite N-methylpyridinium, also report-

ed as a marker of coffee intake [27], was not among the

discriminants in the present study. Masses corresponding to

cafestol and kahweol, the well-known coffee diterpenoids, were not

observed among the discriminants, although a feature at [M+H]+

329 was tentatively identified as a kahweol oxide glucuronide. The

metabolism of cafestol and kahweol in humans is poorly

documented. An intervention study in ileostomy volunteers

showed that both are well absorbed in the small intestine but

little is excreted as conjugates of glucuronic acid or sulfate in urine,

suggesting other metabolic routes such as oxidation [30].

Oxidation of the primary alcohol of kahweol with subsequent

Figure 3. ROC curve analysis of atractyligenin glucuronide and caffeine. Data for atractyligenin glucuronide are presented in the left-hand
column and data for caffeine in the right-hand column. A) Blue curves represent the training set (n = 39 subjects) and pink curves the hold-out set
(n = 20 subjects). B) Probabilities of predicted belonging to the high consumer class. Training set, black plots; hold-out set, red plots; filled circles, high
consumers; empty circles, low consumers. C) Confusion matrices for the two datasets.
doi:10.1371/journal.pone.0093474.g003
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glucuronidation of this alcohol was the first biotransformation

predicted by Meteor software, supporting our tentative identifica-

tion. If confirmed, kahweol oxide glucuronide may deserve further

qualification as a new biomarker of coffee intake since the

beverage is the only known dietary source of kahweol. It may,

however, reflect only the consumption of unfiltered coffee such as

expresso or Scandinavian-type boiled coffee, as brew preparations

with paper filter have been shown to trap most of cafestol and

kahweol in the filter [31].

Coffee is by far the greatest dietary source of hydroxycinnamic

acids in human diets, and various chlorogenic acid isomers are

absorbed and excreted in humans after coffee consumption

[32,33]. Previous intervention studies on polyphenols have

suggested that urinary chlorogenic acids could be specific

biomarkers of coffee consumption [34,35] and the non-targeted

metabolomic profiling of intervention subjects who had consumed

acute doses of coffee [36] identified specific hydroxycinnamates as

potential markers, of which dihydrocaffeic acid 3-sulfate and

feruloylglycine might be the most promising due to their relatively

long Tmax values (.4 h). Hydroxycinnamates and other phenols

were detected in our study but did not contribute to the

discrimination between high and low consumers. One explanation

might be insufficient specificity for coffee consumption, since they

are also widely consumed from fruits. Hydroxycinnamate metab-

olites could be useful as compliance biomarkers in controlled

intervention studies but of limited use in cohort studies where

subjects freely consume a variety of plant foods, and especially

when only spot urines are available, since compounds with short

half-life are probably not recovered in these samples. Hippuric

acid and 3-hydroxyhippuric acid are end-products of the microbial

catabolism of numerous polyphenols and aromatic amino acids.

They have also been reported as discriminant for many

physiopathological conditions or for exposures to chemical toxins

in metabolomics studies [37]. Despite coffee being the richest

dietary source of chlorogenic acids which are degraded to hippuric

and hydroxyhippuric acids, they cannot be considered reliable

biomarkers of coffee intake.

Beyond the known coffee phytochemical metabolites described

above, our data-driven approach revealed some novel candidate

biomarkers with high specificity and sensitivity. Atractyligenin

glucuronide was the strongest discriminant in the study (p-

value = 7.4761029, VIP = 2.98), and also demonstrated the

greatest mean difference in intensity between high and low-

consumers (17-fold). Atractyligenin is a diterpenoid whose

glycoside, atractyloside, and other derivatives are present in green

and roasted Coffea arabica beans in concentrations as high as

624 mg/kg [38,39]. Atractyloside derivatives are also present in

many plants used in ethnomedicines, but have not been reported

in any other human foodstuff. Atractyloside is well known as an

exceptionally specific and effective inhibitor of the ADP/ATP

transport in mitochondria, able to block oxidative phosphorylation

(34). Atractyligenin glucuronide has been identified in the urine of

habitual coffee consumers at 3 mg/mL [40], but is proposed for

the first time here as a biomarker of coffee intake. Its potential

contribution to coffee health effects may also deserve further

attention. The diketopiperazine cyclo(isoleucyl-prolyl) was the

second most discriminating ion in the study (p-value = 1.6161027,

VIP = 2.81) and thus another potential biomarker of consumption.

It is known to be a bitter constituent of coffee [24]. Diketopiper-

azines have not previously been proposed as biomarkers of

consumption, although urinary cyclo(pro-pro) and cyclo(ser-tyr)

have been found to correlate with high cocoa consumption [41].

Metabolomics is essentially an exploratory approach, with some

limitations. No method of profiling can cover the full chemical

space of the food metabolome, and identification of unknowns is

challenging [42]. Variation in study design and data processing

may also lead to the discovery of different biomarkers. However,

when the objective is the discovery of a biomarker of food intake,

and not the comprehensive characterization of nutritional

exposure following intake, it is not necessary to identify all

discriminants associated with the consumption of the food, but one

or a few promising candidate biomarkers only. In the present

study, ROC curve analyses demonstrated that when an effective

single biomarker is not found or not available as standard, a

combination of several discriminants can provide a sensitive and

specific biomarker.

The present work also showed that metabolomic profiling of

urine samples can be applied to cohort study subjects to efficiently

discover biomarkers of food consumption. A clear discrimination

was achieved with relatively few subjects, but more may be

required for other foods depending on their composition and

patterns of consumption. The use of cohort samples can reveal

more robust biomarkers than intervention studies, since they do

not rely on a prescribed timeframe of sampling or exaggerated

doses of the food of interest. Here, the absence of coffee

hydroxycinnamate metabolites as discriminants support previous

findings that many candidate biomarkers discovered in interven-

tion studies may not be specific or robust enough for use in cross-

sectional studies [16]. However, care must be taken when using

cross-sectional studies for biomarker discovery since intake of other

foods may correlate with that of the foods of interest. All possible

dietary and metabolic origins must be carefully checked for any

proposed biomarker.

Biomarker validation is a laborious process requiring dose-

response and pharmacokinetics studies, attention to specificity and

association with intake in various populations with different ethnic

and dietary backgrounds, and consideration of the main factors

affecting the relationship between the biomarker concentration

and the quantity of food consumed. Our three new biomarkers

were closely correlated with reported coffee intake for 260 subjects

from the same SU.VI.MAX2 cohort, despite the semi-quantitative

measurement of biomarker intensity. The correlations could be

even more accurate if intake data were collected at the same time

as urine samples in which the biomarker is quantified.

Figure 4. ROC curve AUCs for single and combination
biomarkers. Error bars represent 95% confidence intervals. cIP,
cyclo(isoleucyl-prolyl); MX, 1-methylxanthine; Tr, trigonelline; Atr,
atractyligenin glucuronides; Caf, caffeine.
doi:10.1371/journal.pone.0093474.g004
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Coffee is an ideal foodstuff for which to search for biomarkers of

consumption. It is rich in highly specific bioactives and its

consumption is frequent in high consumers, meaning that urine

concentrations of bioactives are often high. The challenge that lies

ahead will be using metabolomics profiling of cohort study samples

to identify biomarkers for the intake of many foods less rich in

specific micro-constituents and consumed as part of complex

dietary patterns.
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