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The frontal cortex is crucial to sound decision-making, and the activity of frontal neu-
rons correlates with many aspects of a choice, including the reward value of options
and outcomes. However, rewards are of high motivational significance and have wide-
spread effects on neural activity. As such, many neural signals not directly involved in the
decision process can correlate with reward value. With correlative techniques such as elec-
trophysiological recording or functional neuroimaging, it can be challenging to distinguish
neural signals underlying value-based decision-making from other perceptual, cognitive,
and motor processes. In the first part of the paper, we examine how different value-related
computations can potentially be confused. In particular, error-related signals in the ante-
rior cingulate cortex, generated when one discovers the consequences of an action, might
actually represent violations of outcome expectation, rather than errors per se. Also, signals
generated at the time of choice are typically interpreted as reflecting predictions regarding
the outcomes associated with the different choice alternatives. However, these signals
could instead reflect comparisons between the presented choice options and previously
presented choice alternatives. In the second part of the paper, we examine how value
signals have been successfully dissociated from saliency-related signals, such as atten-
tion, arousal, and motor preparation in studies employing outcomes with both positive and
negative valence. We hope that highlighting these issues will prove useful for future stud-
ies aimed at disambiguating the contribution of different neuronal populations to choice
behavior.
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INTRODUCTION
Some of the first recordings of single neuron activity in frontal
cortex noted the presence of neurons with various reward-related
responses. Recordings in orbitofrontal cortex (OFC) and anterior
cingulate cortex (ACC) found neurons that were active to cues
that predicted reward, neurons that fired immediately preceding
and during an expected reward and neurons that responded to
the omission of an expected reward (Niki and Watanabe, 1976;
Rosenkilde et al., 1981; Thorpe et al., 1983). Similar neurons were
subsequently found throughout the frontal cortex (Ono et al.,
1984; Watanabe, 1996; Leon and Shadlen, 1999; Amador et al.,
2000; Roesch and Olson, 2003) and indeed in parietal (Platt and
Glimcher, 1999), temporal (Liu and Richmond, 2000), and occip-
ital cortex (Shuler and Bear, 2006). Due to the central role that
reward plays in behavioral control, many cognitive processes can
correlate with reward, so it is critical to define precisely the aspect
of reward processing in which specific neuronal populations are
engaged. Our review will focus on OFC and ACC. Even though
reward-related responses are found throughout the frontal lobe, it
is only damage to these two areas that produces a specific deficit
in value-based decision-making (Bechara et al., 1998; Kennerley
et al., 2006; Fellows and Farah, 2007).

Current theoretical models of value-based decision-making
posit a series of distinct stages (Padoa-Schioppa, 2007; Rangel

and Hare, 2010). First, the subject calculates the value of possible
behavioral outcomes to derive a “goods space.” This involves inte-
grating the multiple parameters that go into making one outcome
more preferable than another such as subjective preferences, mag-
nitude of reward, or delay until reward delivery. Second, the subject
calculates action values by subtracting the action costs involved in
acquiring the goods from the value of the goods themselves. The
separation of goods and actions makes sense from a computational
perspective. The parameter space of potential goods and the space
of possible actions are both vast and the complexity can be reduced
by calculating the value of goods and actions independently. In
addition to an argument from parsimony, neuroimaging findings
support the notion that subjects can make choices in a goods space
that is independent of action (Wunderlich et al., 2010), and these
goods-based calculations appear to occur in OFC.

Within this framework it is evident that spurious correlations
with goods values or action values might occur either upstream
or downstream of the decision-making process. Calculating the
value of a good requires the integration of its costs and benefits.
For example, humans often calculate a good’s value by integrat-
ing its desirability and price. The Porsche looks great; the price
tag not so much. Similarly, animals often have to weigh the
desirability of a good with relative availability in the environ-
ment (Stephens and Krebs, 1986). Performing these calculations
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requires the integration of multiple sensory parameters that must
be represented upstream of the calculation. Problematically for the
interpretation of value signals, these sensory representations can
easily correlate with the good’s value. For example, a large piece of
fruit is more rewarding to a hungry animal than a small piece of
fruit. Thus, the firing rate of visual sensory neurons would corre-
late with the fruit’s value, even though they are simply responding
to the visual representation of the fruit’s size rather than its value
per se. Although our focus is on the frontal cortex, there is a good
deal of sensory information encoded in this part of the brain that
is relevant to the representation of rewards. For example, the ven-
tral surface of the frontal lobe includes primary gustatory cortex
and primary olfactory cortex (Cavada et al., 2000).

In order to dissociate value responses from the sensory
responses that go into the value computation, it is important
to show that the neuron responds to multiple dimensions of the
value space. For example, if the same neuron increases its firing
rate as the desirability of a good increases and decreases its firing
rate as the price of that good increases, then we can reasonably
conclude that the neuron encodes net value as a combination of
costs and benefits. Neurons encoding multidimensional aspects of
value have been identified throughout frontal cortex. For instance,
we trained animals to perform a multidimensional choice task
(Figures 1A–C) in which they had to make choices based on the
magnitude of a juice, its probability of delivery and amount of
work necessary to earn the juice (Kennerley et al., 2009). We found
neurons encoding every decision variable and every combination
of decision variables in ACC, OFC, and lateral prefrontal cortex
(Figure 1D). Other groups have found prefrontal neurons that
integrate the magnitude of a juice with its probability of delivery
(Amiez et al., 2006), subjective preference for the juice (Padoa-
Schioppa and Assad, 2006) and delay until its delivery (Hwang
et al., 2009). Thus, there is ample evidence that frontal neurons do
not solely respond to sensory dimensions of a good, but instead
integrate multiple attributes that, in sum, determine the value of
the good.

Downstream of the decision-making process, things are more
complicated. Value signals can serve many different functions,
including the reinforcement of behavior, the evaluation of alter-
native courses of action, and the prioritization of limited capacity
behavioral and cognitive resources (Wallis and Kennerley, 2010).
This means that neurons encoding other processes such as arousal
or attention could correlate with expected value even though they
are not encoding the value per se (Maunsell, 2004; Luk and Wallis,
2009). In the rest of this paper, we examine several places where
these processes confuse the interpretation of value signals, and
discuss attempts to disentangle them from the decision-making
process.

PREDICTIONS, ERRORS, AND PREDICTION ERRORS
Value signals continue to be important even once a decision has
been made and an action completed. Notably, the outcome of
one’s choices can be used to guide future decisions, thereby ensur-
ing adaptive and efficient behavior. If the outcome of a choice was
more valuable than expected then you should be more inclined to
choose in a similar manner in future. In contrast, if the outcome
was less valuable than expected, you should be less inclined to make

that choice again. The difference between the value of the expected
outcome and the actual outcome is termed the prediction error,
and was famously identified to be encoded by dopamine neurons
in the ventral midbrain (Schultz et al., 1997). In this section, we
examine to what extent value coding in frontal cortex relates to
value predictions and prediction errors.

NEUROPHYSIOLOGICAL PROPERTIES OF ACC
Early single-unit recordings in ACC observed strong firing when a
monkey made an error (Niki and Watanabe, 1979). Human neu-
rophysiology studies later reported a negative potential over ACC
when subjects made errors (Gehring et al., 1990; Falkenstein et al.,
1991; Ito et al., 2003), which became known as the error-related
negativity (ERN). Error signals were also observed using fMRI
(Carter et al., 1998; Ullsperger and Von Cramon, 2003; Holroyd
et al., 2004), and theories emerged suggesting that ACC was impor-
tant for processing negative events, costs, or errors (Aston-Jones
and Cohen, 2005) or monitoring for conflicts between competing
types of information (Botvinick et al., 2004; Ridderinkhof et al.,
2004). However, the picture emerging from single-unit studies
soon became more complex.

In a task requiring a monkey to learn action–outcome asso-
ciations using secondary reinforcers, ACC neurons were just as
likely to respond to positive feedback as negative feedback and,
furthermore, the response to positive feedback was strongest early
in learning (Matsumoto et al., 2007). Thus, the neurons’ response
was strongest when the feedback was least expected, and weak-
est when it was fully predicted, exactly what one would expect
from a prediction-error signal. ACC neuronal activity has also
been recorded during the performance of a competitive game
(Seo and Lee, 2007). On each trial, monkeys and a computer
opponent chose one of two identical targets. Reward was deliv-
ered if both subject and computer chose the same target. Choice
strategies were exploited by the computer opponent, so optimal
behavior entailed choosing randomly. However, the monkeys did
not behave completely randomly and their behavior indicated that
they were estimating the long-term value of the response options.
Many ACC neurons responded during the feedback period in a
way that reflected both the value of the feedback (whether or not
the animal received a reward) and the animal’s estimation of the
choice’s long-term value, consistent with a reward prediction error.

However, subsequent studies revealed a more complex pic-
ture. For example, ACC neurons were recorded while an animal
searched among four targets using trial and error to find the one
associated with reward (Quilodran et al., 2008). Sometimes the
animal would get lucky and discover the reward with the first tar-
get it selected. Sometimes it would not discover the rewarded target
until the other three had been ruled out. Once the animal discov-
ered the rewarded target, it was allowed to select it several more
times and earn several more rewards. Similar to previous stud-
ies, many neurons responded to reinforcement. Responses were
strongest when the correct target was first discovered and weaker
when the target was reselected in order to receive more reward.
However, the authors noted that the response did not resemble a
prediction error. The response to the correct target was the same
irrespective of whether it was selected on the first try (i.e., when
there was a one in four chance of being correct) or whether it was
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only selected after the other three targets had been ruled out (in
which case the reward was certain). In other words, in this task the
animal’s prior expectancy of receiving a reward did not affect the
neuronal response.

In order to clarify the role of ACC neurons in encoding reward
prediction errors, we analyzed data from a task that minimized
the effects of learning by using overlearned stimuli (Figure 1).
The monkey had learned the probability with which these stim-
uli predicted reward delivery over many thousands of trials such

that their presentation would produce a specific expectancy of
reward. A similar approach helped to delimit prediction errors
in dopamine neurons (Fiorillo et al., 2003). We found a broad
variety of responses in ACC neurons (Figure 2), including neu-
rons that encoded whether something was better than expected
(Figure 2A, positive prediction error) or worse than expected
(Figure 2B, negative prediction error; Kennerley and Wallis, in
press). Other groups, adopting a similar approach, have found that
ACC neurons encode a saliency signal (i.e., whether an outcome

FIGURE 1 |Task parameters associated with the multidimensional choice

task. (A) The task began with the subject fixating a central spot. Two pictures
appeared, one on the left and one on the right. When the fixation spot
changed color the subject selected one of the pictures and received the
associated outcome. (B) Each picture was associated with a specific
outcome. The “probability” pictures were associated with a set amount of
juice, delivered on only a certain fraction of the trials. The “payoff” pictures
were associated with different amounts of juice reward. The “cost” pictures
were associated with a specific amount of juice, but the subject had to earn
the juice by pressing a lever a different number of times. We only presented
pairs of pictures that were from the same set and that were adjacent to one
another in terms of value. Thus, for each set of pictures there were four

potential choices. (C) The approximate locations that we recorded in OFC
(blue), ACC (green) and lateral prefrontal cortex (red). (D) The upper row of
plots illustrates spike density histograms from a single ACC neuron sorted
according to the value of the expected outcome of the choice. The lower row
of plots illustrates a statistical measure of the extent to which the variance in
the neuron’s firing rate can be explained by the value of the choice. Portions of
the curve shown in red indicate significant encoding of value at those time
points. The neuron encodes value solely on probability trials with an increase
in firing rate as the value of the choice decreases. (E) An ACC neuron that
encodes value on probability and payoff trials, increasing its firing rate as value
decreases. (F) An ACC neuron that encodes value for all decision variables,
increasing its firing rate as value increases.
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FIGURE 2 | Spike density histograms illustrating single neurons that

encoded value information during the choice as well as the subsequent

outcome of the choice. (A) The top row of plots consists of spike density
histograms recorded from a single ACC neuron and sorted according to
probability of reward delivery as indicated by the pictures. The three plots
show activity during the choice phase, the outcome phase when a reward
was delivered, and the outcome phase when a reward was not delivered. For
the choice phase, the vertical lines relate to the onset of the pictures and the
time at which the subject was allowed to make his choice. For the outcome
phase, the vertical line indicates the onset of the juice reward. The lower row
of plots indicates neuronal selectivity determined using regression to
calculate the amount of variance in the neuron’s firing rate at each time point
that can be explained by the probability of reward delivery. Red data points

indicate time points where the probability of reward delivery significantly
predicted the neuron’s firing rate. The neuron responded during the choice
phase when pictures appeared that predicted reward delivery with high
probability. It also responded during reward delivery, but only when the
subject was least expecting to receive the reward. It shows little response
when the subject did not receive a reward. In other words, the neuron
encoded a positive prediction error, i.e., it responded when either choice
offerings or outcomes were better than expected. (B) An ACC neuron that
encoded a negative prediction error, i.e., it responded when events occurred
that were worse than expected. The neuron responded when pictures
appeared that predicted reward delivery with low probability, showed little
response to the delivery of reward, and responded when reward was not
delivered, particularly when the subject was expecting to receive a reward.

was unexpected irrespective of whether it was better or worse than
expected; Hayden et al., 2011) as well as “fictive” error signals,
neuronal responses to outcomes for actions that one did not take
(Hayden et al., 2009).

Thus, the picture that is emerging from ACC is of an area that
encodes a variety of signals that would be useful for learning, with
a common thread being that they integrate information about the
outcome of actions and their relationship to prior expectancies.
This contrasts with activity recorded from dopamine neurons,
where the vast majority of signals correlate with reward predic-
tion errors (Fiorillo et al., 2003; Bayer and Glimcher, 2005; Bayer
et al., 2007), encoding positive prediction errors with increased
firing rates and negative prediction errors with decreased firing
rates. ACC neurons also encode prediction errors, but with a
good deal more heterogeneity. This heterogeneity should not be
surprising. Cortex is responsible for performing multiple com-
putations in parallel and integrating a diversity of information.
Even neurons in primary sensory areas encode multiple parame-
ters of a stimulus space (Carandini et al., 2005). In contrast, signals
from neurotransmitter systems appear more uniform, performing

a single computation and broadcasting it to a large portion of
the brain (Schultz, 1998; Yu and Dayan, 2005), although we note
that recent studies have challenged whether signals from neuro-
transmitter systems are quite as homogenous as originally thought
(Bromberg-Martin et al., 2010).

In our study, we found that the activity of ACC neurons during
the feedback period tended to match that in the choice period. If a
neuron responded to rewards that were better than expected, it also
tended to respond when the choice was between better than aver-
age alternatives. For example the neuron shown in Figure 2A had
the largest responses during the outcome period when the picture
associated with a low probability of receiving reward unexpect-
edly resulted in reward, that is, it responded when the outcome
was better than expected. During the choice period, the very same
neuron had highest firing rates when the monkey was presented
with the option to choose a picture with high reward probabilities,
and lower firing rates when his best option was a lower probability
picture. Because we always presented pictures that were adjacent in
value (Figure 1B) and the subjects virtually always chose the best
option, we cannot determine whether this activity is related to the
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average value of the two stimuli or the higher-valued chosen stim-
ulus. In either circumstance, however, the neuron could be viewed
as responding to a situation that is better than expected, which,
during the choice phase, was the presentation of stimuli indicat-
ing the highest probability of receiving a reward. This raises the
question of whether we should reinterpret our original conclu-
sions regarding ACC activity during the choice phase as encoding
differences between the value of the present options and the aver-
age choice value (i.e., a choice prediction error) rather than the
value of the choice per se.

Studying decision-making requires presenting subjects with
choices. This is typically done in such a way as to minimize
other cognitive processes, such as learning, that might confound
the interpretation of neural activity related to decision-making.
Choices are randomized, independent of one another and, in
humans, frequently trial-unique. However, even with these pre-
cautions in place, subjects are still able to learn. They are learning
the range and average value of the choices that the experimenter
might present. Consequently, although activity during the choice
may reflect predictions about the outcome of the choice alter-
natives, it could equally reflect a prediction error, encoding the
current options relative to the other potential choices the subject
might have expected. For instance, if a subject has extensive expe-
rience with three equally probable choices valued at 0, 1, and 2,
the average value of a choice in this experiment is 1. An offered
choice of 2 is better than expected and could produce a prediction
error at the time of the offer. Furthermore, in the typical decision-
making experiment, outcome values and prediction errors are
often strongly correlated. That is, a highly valued outcome is likely
to be better than average and generate a large prediction-error rel-
ative to a second option where both value and prediction error
might be smaller.

Figure 3 illustrates this point graphically. In this example task,
the subject is presented with two stimuli on each trial (SR and
SL), indicates his choice with a response (right or left arrows) and
receives an outcome (O; Figure 3A). The value of SR and SL, the
value of the outcome, and the prediction errors are represented by
the height of colored bars (Figure 3B). Note that we have drawn
prediction-error activity as it would appear in neuronal activ-
ity: computationally, events that are worse than expected should
generate a negative prediction error, but neurons cannot have a
negative firing rate. Thus, prediction errors are encoded relative to
the neuron’s mean or baseline firing rate (although it is not trivial
to determine such a baseline in a high-level cognitive area such as
prefrontal cortex). On trial N, the subject is presented with two
low value stimuli and its choice (SL) unexpectedly yields a large
reward (green). The outcome generates a large positive predic-
tion error (orange) because it was better than expected. However,
neurons encoding prediction-errors could respond to the presen-
tation of the reward-predicting stimuli as well as the receipt of
the rewarding outcome. This is illustrated as a prediction error
during the choice phase. In trial N, the choice prediction error
is low because the values of the stimuli are low relative to other
stimuli in the set. On trial N + 1, the subject is presented with two
higher value stimuli, chooses SR and unexpectedly receives a small
reward. In this case, the choice prediction error is high, because
SR was expected to yield a large reward, however the outcome was

worse than expected, leading to a negative prediction error during
the outcome phase. Finally, on trial N + 2, the subject is presented
with a high and a low value stimulus, chooses SR and receives a
large reward as expected. Here the choice prediction error is high,
because the subject is given the option of a high valued stimu-
lus, and there is no outcome prediction error (or the height of
the bar is about at “baseline”) because the outcome was fully pre-
dicted. From this illustration, it is evident that if you were to focus
solely on neuronal activity during the choice phase you would not
be able to differentiate neurons encoding prediction errors from
those encoding the value of the chosen stimulus. Yet these signals
have very different implications for the larger question of how the
brain computes value-based decisions.

A prominent role for ACC in the encoding of learning sig-
nals is consistent with the dopaminergic input that this region
receives. All areas of frontal cortex receive dopaminergic input,
but it is particularly heavy in ACC (Williams and Goldman-Rakic,
1993). Furthermore, while dopamine signals have a very short
latency (typically <100-ms from the onset of a reward or reward-
predictive stimulus) ACC signals evolve over a longer timeframe.
We found that the median time of ACC neurons to encode the
amount of reward predicted by a stimulus was 230-ms (Kenner-
ley and Wallis, 2009a). This would also be consistent with the
dopaminergic input into ACC being responsible for the predic-
tion errors that are observed there. However, we also note that
the theory that dopamine neurons encode prediction errors is not
without controversy. For example, there is debate as to whether
prediction-error activity in dopamine neurons is a cause or conse-
quence of value learning (Berridge, 2007). Further, some authors
have suggested that responses of dopamine neurons are too rapid
to encode prediction errors and instead respond to sensory prop-
erties of unexpected stimuli, and true prediction-error encoding
should occur with longer latencies, in higher cortical areas (Red-
grave and Gurney, 2006). These ideas raise the possibility that
prediction errors could initially be computed in ACC during
learning and then used to train up the short latency dopamine
responses.

NEUROPHYSIOLOGICAL PROPERTIES OF OFC
With regard to OFC, a broad consensus seems to be emerging
that OFC neurons encode value predictions rather than prediction
errors (Roesch et al., 2010). We found no evidence of prediction-
error signals in OFC in monkeys using the same task in which
we detected prediction errors in ACC (Kennerley and Wallis, in
press). Although OFC neurons encoded whether or not a reward
occurred, there was little evidence that this signal was influenced by
the animal’s prior expectancy of receiving the reward. In humans,
subjects have been required to bid on food items while simultane-
ously winning or losing money, thereby enabling prediction errors
to be uncorrelated from value signals (Hare et al., 2008). fMRI
revealed that OFC activity correlated with value while ventral stri-
atal activity correlated with prediction errors. In rats performing
an odor-guided task, OFC neurons encoded predictions but not
prediction errors (Roesch et al., 2006), while the opposite was true
for dopamine neurons (Roesch et al., 2007).

Anatomically, OFC is in an ideal position to encode the reward
value of sensory stimuli. It receives input from high-level sensory
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FIGURE 3 | Schematic depictions of typical choice tasks for primates and

rodents are shown with the putative neuronal signals that those tasks

should generate. (A) The temporal occurrence of behavioral events common
to both tasks. On each trial (starting at the vertical black bars), the subject is
presented with a choice between left (SL) and right (SR) stimuli, makes a
response (red arrow), and receives an outcome (yellow shading). (B) Choice
task typical in monkeys or humans, in which the subject is presented with the
choice of two visual stimuli, SL and SR, selects one (left or right arrows), and
then receives an outcome. The rows with pink bars show hypothetical learned
values of SL and SR. A typical choice task conducted in humans and primates
uses well learned stimuli from a larger set of reward-predictive stimuli, so the
depicted values are shown as if they are well-known. The height of the bars
indicates the degree of value, so that SL has a slightly higher value than SR on

trial N, and so forth. The following two rows show the value of the actual
outcome (Value O) and prediction-errors generated throughout the trial. A
prediction error can be generated at the time of the choice, since the subject
does not know specifically which choice will be presented. This choice
prediction error is the difference between the value of the presented options,
and the average value of the complete set of possible options. (C) A typical
choice task conducted in rodents, in which the animal chooses between one
of two arms in a T-maze, and receives an outcome. In this case, the same
choice is effectively presented on every trial, so value predictions for SL and
SR can be updated at the time of outcome receipt (green). This is shown as
value predictions (pink) updating prior to the start of the next trial (i.e., shaded
bars are shifted to the left). Furthermore, there is no choice prediction error
because each trial consists of the same two choice options.

areas (Carmichael and Price, 1995b) as well as limbic structures
responsible for processing rewards, such as the amygdala and
hypothalamus (Carmichael and Price, 1995a). In addition, pos-
terior OFC is responsible for the integration of taste and smell
(Rolls and Baylis, 1994). Finally, OFC neurons encode the amount
of reward predicted by a stimulus quickly, typically within 200-ms
of the presentation of the stimulus. This is significantly quicker
than neurons in ACC (Kennerley and Wallis, 2009a) or lateral pre-
frontal cortex (Wallis and Miller, 2003). This suggests that OFC
neurons could serve as a source of reward information for the rest
of the frontal cortex and perhaps even for subcortical structures.
Indeed, a recent study has examined the relationship between OFC

and dopamine. The authors disconnected OFC from the dopamin-
ergic system using a crossed inactivation procedure, and showed
that the two needed to interact in order for rats to learn from unex-
pected outcomes (Takahashi et al., 2009). They suggested that OFC
provides dopamine neurons with a prediction as to the expected
outcome. The dopamine neurons can then use this information,
along with information about the actual outcome, in order to
calculate a prediction error.

An exception to the consensus that OFC neurons encode pre-
dictions is a study examining the ability of rats to learn a proba-
bilistically rewarded T-maze, which found encoding of prediction
errors in OFC at the time of reward delivery (Sul et al., 2010). It
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is possible that this difference reflects a difference in functional
anatomy between rodents and primates. Most recordings from
OFC in primates focus on areas 11 and 13, dysgranular cortex
that may not have a homolog in rodents (Wise, 2008). It is the
posterior, agranular OFC in primates that is the likely homolog of
rodent OFC, yet this OFC region is frequently neglected by primate
neurophysiologists. Thus, it is possible that if primate neurophysi-
ologists were to record from this posterior OFC region they would
see prediction errors.

However, it is also possible that differences in the way in
which choice behavior is tested between primates and rats may
contribute to observed neurophysiological differences. In primates
and humans, each trial typically involves a two-alternative choice
between reward-predictive stimuli whose outcome contingencies
have been previously learned and that are drawn from a larger set
of possible reward-predictive stimuli (e.g., Figure 3B). Thus, at the
time of reward delivery a prediction error can be calculated, but
the subject cannot make any specific predictions about the next
trial, since it does not know which choice will be presented next. In
contrast, rodents are typically tested in a learning situation involv-
ing the same two-alternative choice on every trial. For example, in
the T-maze task the two alternatives are the right or left goal arms;
in a task requiring nose-pokes, alternatives might be right or left
ports. This means that at the time of reward delivery, not only can
the rat calculate a reward prediction error, but it can also represent
value predictions about the next trial.

The T-maze task is illustrated in Figure 3C. On the first trial,
the subject selects a low value arm (SL) and unexpectedly receives
a large reward. The subject can immediately update the value of
this arm for the next trial. On trial N + 1, the subject repeats this
choice (SL) and unexpectedly receives a small reward. The subject
again updates its estimate of the value of this arm for the next trial,
in this case decreasing its estimate of the value. Note that in this
situation, prediction-errors generated by the outcome can over-
lap with the predictions for the next trial. These signals should be
distinguishable during learning: as performance improves, predic-
tions will begin to accurately reflect the value of the choice while
prediction errors will tend toward zero. However, neuronal repre-
sentations of stimulus values might change for reasons other than
learning, for example due to adaptation (Padoa-Schioppa, 2009)
or satiation (Bouret and Richmond, 2010).

This raises the question as to why other rodent studies did not
see the same type of activity in OFC, since they also used the same
two-alternative choice (Roesch et al., 2006). A key difference is
that in this study rats were only given a free choice on about one-
third of the trials. On the other two-thirds of the trials they were
forced to choose one of the alternatives. This makes the task more
similar to primate choice tasks, in that the rat is unable to predict
the value of the next trial. In this situation, rat OFC neurons did
not encode any signal that looked like a prediction error at the
time of reward delivery, raising the possibility that these signals
are actually related to predictions about the next trial.

SUMMARY
Across a broad range of studies OFC activity appears most consis-
tent with encoding value predictions, and ACC activity appears
most consistent with value prediction errors. In theory, there

should be little problem in separating these two types of signal in
the choice situation. The subject is faced with a choice, makes its
selection and receives an outcome. At the time of choice, neurons
should encode a prediction regarding the value of the potential
outcomes. At the time of the outcome, neurons should encode
a prediction-error reflecting the discrepancy between the actual
outcome and the prediction. In practice, however, things are more
problematic. Prediction errors can be generated at the time of the
choice, because the subject is comparing the choice with other
potential choices that may have occurred, and predictions can be
generated at the time of the outcome if the subject is going to
experience the same choice on the next trial. It is important to rec-
ognize that trials in behavioral tasks do not take place in isolation
and computational processes occurring within the temporal limits
of one trial could reflect the influence of past or upcoming trials.

SALIENCY AND ITS EFFECTS ON ATTENTION, AROUSAL, AND
MOTOR PREPARATION
Valuable items are salient. Even under experimental conditions,
a high value item can trigger a variety of processes linked
to its saliency, including an increase in attention, arousal, and
motor preparation (Maunsell, 2004; Luk and Wallis, 2009). These
processes, in turn, can have clear behavioral consequences. For
example, offers of larger or more immediate rewards increase
motivation and attentiveness to tasks, resulting in fewer incor-
rect responses and fewer errors in task execution, such as breaks
in visual fixation (Kennerley and Wallis, 2009b). Larger rewards
enhance preparation for response execution, so that motor
responses are faster when more desirable outcomes are at stake
(Kawagoe et al., 1998; Leon and Shadlen, 1999; Hassani et al., 2001;
Kobayashi et al., 2002; Roesch and Olson, 2003). Rewards generate
psychophysiological measures of arousal such as changes in gal-
vanic skin conductance (Bechara et al., 1996) and heart rate and
blood pressure (Braesicke et al., 2005). Finally, value can even cor-
relate with muscle tone in the neck and jaw as recorded by EMG,
likely a result of arousal or preparation for ingestive behaviors
(Roesch and Olson, 2003, 2005). These are potent demonstrations
that behavioral and physiological responses can be tightly coupled
to value, and neural encoding of these effects could be indistin-
guishable from value encoding. Indeed, at the neural level salient
items have widespread effects. There are stronger representations
of more valuable cues in nearly all cortical areas considered, even
primary sensory areas (Pantoja et al., 2007; Pleger et al., 2008;
Serences, 2008), likely because of the heightened attentional and
motivational salience of valuable items. However, interpretations
become difficult when multiple signals correlating with value are
found in frontal regions. For instance, neural representations of
cognitive processes like working memory in ventrolateral PFC are
influenced by reward magnitude (Kennerley and Wallis, 2009b)
even though a lesion of lateral PFC has no effect on value-based
decisions (Baxter et al., 2009). Analysis of latencies to respond to
valuable stimuli found that OFC encodes value earlier than lat-
eral PFC, suggesting that value information is passed from OFC
to other PFC regions (Wallis and Miller, 2003). While these lateral
PFC signals likely serve important functions, such as allocating
cognitive resources appropriately, it is important to distinguish
these downstream effects from value calculations themselves.
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The only way to dissociate putative value signals from signals
relating to saliency is to use stimuli or events that are aversive.
Aversive stimuli (e.g., electric shock) have a negative value in
that they negatively reinforce actions and can motivate avoidance
behavior. True value signals should distinguish appetitive stimuli
(rewards) and aversive stimuli (punishments). In contrast, saliency
is associated with expectation of either punishment or reward, so
that neural responses correlating with salience should be simi-
lar under rewarding and punishing conditions (Lin and Nicolelis,
2008).

Before we consider how these ideas have been applied to the
interpretation of neuronal data, there are two additional issues we
should consider. First, it is not necessarily the case that rewards
and punishments will be encoded on the same scale. One neu-
ronal population could encode the value of appetitive stimuli while
a separate population could encode the value of aversive stim-
uli. Indeed, two prominent theories regarding the organization of
value information have posited separate representations of appet-
itive and aversive information. One theory suggests that positive
and negative outcomes are encoded by medial and lateral OFC
respectively (Kringelbach and Rolls, 2004; Frank and Claus, 2006),
while another argues that this distinction lies between OFC and
ACC respectively (Aston-Jones and Cohen, 2005). Though there
are data to support and contradict both theories, in principle, it is
possible that different neural circuits represent different valences.
In contrast, saliency signals by definition cannot discriminate the
valence of the stimulus: if they did, they would be operationally
identical to value signals.

There are also psychological reasons why rewards and punish-
ments might not be encoded by the same neuronal population.
Whereas subjects work to obtain rewards, they work to avoid
aversive outcomes. This introduces a key paradox of avoidance
learning: as learning progresses, there is less and less exposure to
the reinforcing stimulus. By standard reinforcement learning the-
ory, this situation should produce extinction, yet robust avoidance
learning is readily obtained (Solomon et al., 1953). The influential
two-process theory (Mowrer, 1947) suggests that aversively con-
ditioned cues come to elicit a negative emotional state through
Pavlovian conditioning. Responses that terminate the cue are then
reinforced by the reduction of the negative emotional state. A sim-
ilar two-process theory has been postulated to underlie learning
about rewards (Rescorla and Solomon, 1967). In this case, the cues
activate positive emotional states, which in turn elicit responses
toward the desired outcome. Thus, if learning requires the acti-
vation of specific emotional states, it is possible that different
neuronal populations will be responsible for the representation of
different emotional states rather than a single neuronal population
encoding value along a common scale.

A second issue relates to the conflation of costs with aversive
stimuli. Motivated behavior typically accrues certain costs, such
as the time and effort involved in acquiring a desired outcome, or
the risk that the desired outcome will not be obtained. Although
costs influence behavior (e.g., all other things being equal the sub-
ject will choose the outcome whose acquisition involves the lowest
costs), the desired outcome, not the cost, provides motivation for
behavior. The subject’s goal is to acquire an appetitive stimulus
or avoid an aversive stimulus, and the cost is a necessary evil in
obtaining that goal.

DISSOCIATING VALUE AND SALIENCY SIGNALS
The goal of dissociating value and saliency signals motivated an
experiment in which hungry humans were shown a variety of food
items and asked whether they would like to eat them (Litt et al.,
2011). They provided ratings of “Strong no,”“No,”“Yes,”or“Strong
yes.” The food items were chosen to be appetitive (e.g., potato
chips) or aversive (e.g., baby food). BOLD signals in rostral ACC
and medial OFC showed a positive correlation with the value of the
item, lowest for items rated“Strong no”and highest for“Strong yes”
(Figure 4A). In contrast, areas such as the supplementary motor
area (SMA) and the insula consistently showed higher activity for
“Strong” responses, irrespective of whether they were a “Strong
yes” or a “Strong no,” consistent with a saliency-related signal
(Figure 4B).

However, there is an important caveat to the interpretation of
neuroimaging results. Neuroimaging studies tend to largely local-
ize value signals to the ventral part of the medial wall of prefrontal
cortex, yet single neurons encoding value are found throughout
frontal cortex (Wallis and Kennerley, 2010). This suggests that
neuroimaging methods are underestimating the extent of frontal
cortex involved in valuation processes. A possible explanation for
this lies in the fact among value encoding neurons, those that
increase their firing rate as values increase are found in approx-
imately equal numbers as those that increase their firing rate as
values decrease (Kennerley and Wallis, 2009a; Kennerley et al.,
2009; Padoa-Schioppa, 2009). It is possible that such signals could
cancel one another out when averaged together in the BOLD
signal. Support for this idea has come from recent studies that
have directly compared the BOLD response to underlying neu-
ronal activity in area MT (Lippert et al., 2010). Neuronal activity
(whether measuring action potentials or local field potentials)
shows parametric tuning related to the direction of motion of a
visual stimulus. However, the BOLD response is evoked by stimuli
moving in any direction, precisely as though tuned populations
were being added together thereby masking the tuning. Conse-
quently, it is important to dissociate value and saliency signals at
the single-unit level.

The first study that attempted to systematically dissociate these
two signals required a monkey to choose between stimuli that
were associated either with different amounts of juice or different
lengths of a “time-out” (the monkey had to simply sit and wait a
designated amount of time until the next trial started and did not
receive any juice; Roesch and Olson, 2004). Both OFC and pre-
motor neurons tended to increase firing rate as expected rewards
increased, appearing to code the value of different reward magni-
tudes. However, only OFC neurons decreased firing as expected
punishment increased, and thus scaled with the value of both
positive and negative outcomes. Premotor neurons, in contrast,
increased firing to increasing penalties, suggesting that they code
information related to motivation, arousal, or motor preparation.
Although this study suggests that OFC neurons encode rewards
and punishments along a single scale, there is an alternative expla-
nation. It is not clear that a “time-out” is necessarily a punisher
and could instead be construed as a cost that must be over-
come in order to obtain reward on subsequent trials. Indeed,
several studies suggest that OFC may be responsible for integrating
reward information with temporal costs (Roesch and Olson, 2005;
Rudebeck et al., 2006; Kable and Glimcher, 2007).
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FIGURE 4 | (A) When rating appetitive and aversive foods, BOLD
signals in rostral ACC and medial OFC showed a positive correlation
with the value of the item. They showed the weakest activity for a
“Strong no” response and the activation steadily increased as the
rating of the item became more positive. (B) Areas such as the

supplementary motor area (SMA) and the insula were activated by
saliency, showing higher activity for “Strong” responses,
irrespective of whether they were a “Strong yes” or a “Strong no.”
Adapted from Litt et al. (2011, pp. 98–99) by permission of Oxford
University Press.

Subsequent studies have explored OFC responses to cues that
predict more unambiguous punishers such as electric shock
(Hosokawa et al., 2007) or an air puff to the face (Morrison
and Salzman, 2009). Notably, there was evidence that single OFC
neurons encoded the appetitive and aversive outcomes along a
single scale. For example, they would show a strong response
to a large reward, a weaker response to a small reward and an
even weaker response to the aversive stimulus. Importantly, there
was no evidence of a functional topography of responses. Neu-
rons that showed stronger responses to aversive events appeared
to be randomly interspersed with neurons that showed stronger
responses to appetitive events (Morrison and Salzman, 2009), cast-
ing doubt on the theory that appetitive encoding is located more
medially than aversive coding (Kringelbach and Rolls, 2004; Frank
and Claus, 2006). In this study, cue–outcome associations were
conditioned in a Pavlovian manner, eliminating decision-making
from the task design. It will be interesting in future studies to
examine how these findings extend to choice behavior.

GAINS AND LOSSES
Our discussion so far has focused on positive punishment: pun-
ishing behavior by presenting an aversive stimulus. However, there
is a second class of punishment, negative punishment, in which a
subject is punished by the removal of an appetitive stimulus. Most
studies of valuation in humans involve winning and losing money
(Breiter et al., 2001; Knutson et al., 2005), which is a form of neg-
ative punishment, in that losing money consists of the removal
of an appetitive stimulus. Critically, negative punishment requires
the use of secondary reinforcement. This is because once a subject
has received a primary reinforcement, such as a shock or a food
reward, there is no way to take it back. In contrast, a secondary
reinforcer, such as money, can be removed before the subject has
had the ability to consume it.

Few studies in animals have involved negative punishment. One
exception is a study that examined the ability of animals to play a
competitive game for tokens (Seo and Lee, 2009). Monkeys played
against a computer opponent, trying to guess which of two tar-
gets the computer would choose on each trial. If both subject and
computer chose the same target, the subject had a high probability
of gaining a token; if they chose different targets there was the risk
of losing a token. For every six tokens won, the animal received
juice as a primary reward. Although the optimal approach to the
task was to choose randomly, monkeys tended to modify their
behavior based on their previous choices, demonstrating that gains
and losses affected choice behavior. As such, individual neurons
in multiple cortical areas, including dorsomedial PFC, dorsolat-
eral PFC, and dorsal ACC, had differential responses to gains and
losses, the first time the effects of negative punishment have been
seen at the single neuron level. Furthermore, individual neurons
showed opposing responses to gains and losses relative to neu-
tral outcomes. For example, they might show a strong response to
a gain, a weaker response to a neutral outcome, and little or no
response to a loss indicating that reward and punishment may be
coded along a single value dimension.

Nevertheless, this use of gains and losses of conditioned rein-
forcers remains an exception in the animal literature. Most animal
studies do not include punishment, and if they do it is typically
positive punishment. The precise implications of this disconnect
between human and animal studies remains unclear, but recent
findings suggest that different regions of OFC may be responsi-
ble for the encoding of primary and secondary reinforcement. For
example, monetary reward, a secondary reinforcer, activates more
anterior regions of OFC than erotic pictures, a primary reinforcer
(Sescousse et al., 2010). Furthermore, aversive conditioning based
on monetary loss does not activate the amygdala, which is highly
interconnected with OFC, while the same conditioning based on
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electric shock does (Delgado et al., 2011), suggesting that OFC may
also respond differentially to positive and negative punishment.
Consequently, different conclusions may be reached by investiga-
tors studying decision-making in animals or humans, not because
of a genuine species difference, but rather because of a difference
in the way the species are tested behaviorally. In future neurophys-
iology studies it will be important to bring clarity to these issues
by comparing single neuron responses in both OFC and ACC to
primary and secondary reinforcement.

SUMMARY
In sum, measures of value and saliency signals are highly corre-
lated unless tasks employ both rewarding and punishing outcomes.
Aversive events can include either primary punishment, such as
electric shock, or negative punishment, such as the loss of a valu-
able item. In either case they should be distinguished from a cost
that accompanies reward, since it is unknown whether costs and
punishments are coded similarly at the neural level. A number of
studies have now successfully disambiguated value from saliency
signals, and found that ACC and OFC activity correlates with
value, not saliency. It is important to keep pursuing these types

of distinctions, since they have significant implications for our
interpretation of neuronal activity.

CONCLUSION
It has been over 30 years since the first studies determined that
frontal neurons showed responses that predicted reward outcomes
(Niki and Watanabe, 1976; Rosenkilde et al., 1981). In the ensu-
ing decades, researchers have made a great deal of progress in
understanding how positive and negative outcomes can influence
choices. Formal behavioral models have been adopted, which, in
turn, have allowed for a more quantitative analysis of neuronal
responses. In this paper, we have outlined a number of chal-
lenges confronted when assessing the neural correlates of these
behavioral models. We hope that this will prove useful for disam-
biguating the contribution of different neuronal populations to
choice behavior.
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