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of chronic pain, by including pain as a co-variable in motor 
rehabilitation trials.
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Introduction

It is well established that people move differently in the 
presence of pain. Motor performance (e.g., speed, accu-
racy) is affected, and adaptation to pain involves neuroplas-
tic changes at multiple levels of the sensorimotor system 
(Bank et al. 2013; Hodges and Tucker 2011). The notion of 
a tight link between pain and movement is generally well 
accepted in the field of musculoskeletal pain (Boudreau 
et  al. 2010; Hodges 2011; Hodges and Tucker 2011). 
Indeed, musculoskeletal pain is usually localized and trig-
gered or exacerbated by specific movements. In contrast, 
the relationship between movement and neuropathic pain 
is less obvious. Neuropathic pain is one of the most com-
mon and disabling symptoms (besides motor deficits) that 
patients with neurological injury face (Flor 2002; Jons-
son et al. 2006; Nakipoglu-Yuzer et al. 2013; Zanca et al. 
2013), but is not necessarily localized or triggered by spe-
cific movements, nor necessarily spatially congruent with 
the location of sensorimotor deficits. Still, motor recovery 
has been reported to be inferior in patients with neurologi-
cal injury with associated pain as compared to patients with 
similar injuries but without associated pain (Jonsson et al. 
2006; Lundstrom et al. 2009; Roosink et al. 2011).

A better understanding of the relationship between pain 
localization (local, remote) and presentation (triggered by 
movement or not) and motor learning might be used to 
improve physical (neuro)rehabilitation outcomes in the 

Abstract  Although pain is present in a large proportion of 
patients receiving rehabilitation, its impact on motor learn-
ing is still unclear, especially in the case of neuropathic 
pain that is not tightly linked to specific movements. The 
aim of this study was to determine the effect of local and 
remote tonic cutaneous heat pain applied during training on 
motor learning of a finger-tapping sequence task. Forty-five 
healthy participants, randomized to the control, local pain 
or remote pain groups, were trained to perform an explicit 
finger motor sequence of five items as fast as possible. Dur-
ing the 10 training blocks (30 s each), local pain and remote 
pain groups received a heat pain stimulus on the wrist or 
leg, respectively. Performance was tested in the absence 
of pain in all groups before (baseline), immediately after 
(post-immediate), 60 min after (post-60 min) and 24 h after 
training (post-24 h) to assess both acquisition and next-day 
retention. Speed increased over time from baseline to post-
24  h (p  <  0.001), without any significant effect of group 
(p = 0.804) or time × group interaction (p = 0.385), indi-
cating that the acquisition and retention were not affected 
by the presence of pain during training. No changes were 
observed on error rates, which were very low even at base-
line. These results with experimental heat pain suggest that 
the ability to relearn finger sequence should not be affected 
by concomitant neuropathic pain in neurorehabilitation. 
However, these results need to be validated in the context 
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presence of pain. As such, this experimental pain study 
aimed to determine the effect of local and remote pain pre-
sented during training on motor learning (i.e., acquisition 
and next-day retention), using a heat pain model and a fin-
ger-tapping sequence task. The rationale for this approach 
is presented below.

A cutaneous (thermode-induced) heat pain model was 
selected for two main reasons: (1) burning pain mim-
ics neuropathic pain; (2) compared to capsaicin, which 
has often been used in previous studies on the interaction 
between pain and motor learning (Boudreau et  al. 2007; 
Bouffard et  al. 2014; Dancey et  al. 2014; Lamothe et  al. 
2014), it allows the measurement of performance before 
and right after training in the absence of pain (disentan-
gling the effect of pain on motor learning from the imme-
diate effect of pain on motor performance during assess-
ment). Cutaneous heat pain provides a model in which pain 
intensity is not aggravated by the trained movement itself. 
This is important given that in the only previous study 
reporting decreased motor acquisition during training, pain 
was directly modulated by the trained task itself since par-
ticipants were required to push against a lever with their 
tongue that was sensitized with capsaicin (Boudreau et al. 
2007). In contrast, others reported either similar (Bouf-
fard et al. 2014; Ingham et al. 2011; Lamothe et al. 2014) 
or even increased (Dancey et al. 2014) performance when 
training was realized in the presence (vs. the absence) of 
capsaicin-induced pain that was not modulated by the task 
itself. Notably, in these studies, pain was generally local-
ized on the body segment directly involved in the trained 
motor task (Boudreau et  al. 2007; Bouffard et  al. 2014; 
Lamothe et al. 2014). To date, only one study assessed the 
effect of both local and remote (intramuscular) pain and 
proposed that remote pain may compromise learning due 
to distraction from the training task or from other com-
plex central pain processes while local pain does not (Ing-
ham et  al. 2011). Indeed, other studies have proposed the 
existence of a bidirectional relationship between pain and 
motor task performance that engage overlapping cognitive 
resources (Buhle and Wager 2010; Legrain et al. 2009). As 
such, it is of interest to investigate further whether local 
and remote pain have similar effects as pain location do 
not always coincide with motor deficits location in patients 
with injuries to the nervous system.

A finger-tapping sequence task was selected for several 
reasons. First, only one of the previous studies investigated 
the impact of pain on the performance of a motor task 
involving manual dexterity (Dancey et al. 2014), which is 
surprising given the fact that regaining manual dexterity 
is an important rehabilitation goal in several populations 
with neurological injuries and that most neurophysiologi-
cal studies on the impact of pain on corticospinal excita-
bility have focused on hand muscles (Cheong et al. 2003; 

Farina et al. 2001; Fierro et al. 2010; Kaneko et al. 1998; 
Kofler et al. 1998, 2001; Le Pera et al. 2001; Urban et al. 
2004; Valeriani et al. 1999, 2001). Second, this type of task 
is particularly suitable for studying retention, and sponta-
neous improvement in performance can even be observed 
between practice sessions, without any further train-
ing, a phenomenon called off-line improvement (Doyon 
et  al. 2009a; Robertson et  al. 2004). Importantly, factors 
improving or decreasing short-term motor acquisition are 
not always predictive of motor retention and as such it is 
crucial to investigate retention in order to truly character-
ize motor learning (Kantak and Winstein 2012). Only two 
recent studies investigated the impact of pain (capsaicin 
model) on motor retention so far, using motor adaptation 
tasks (force field) during a locomotor or an upper limb 
reaching task (Bouffard et al. 2014; Lamothe et al. 2014). 
For the locomotor task, it was shown that the presence of 
pain during task acquisition left task acquisition unaffected 
but reduced task retention (Bouffard et al. 2014), whereas 
for the reaching task, the presence of pain during task 
acquisition impacted on movement strategies (but not on 
performance) both during task acquisition and task reten-
tion (Lamothe et  al. 2014). Studying a motor sequence 
learning task, that relies on partially independent brain net-
works than those involved in motor adaptation (Doyon and 
Benali 2005), will provide complementary information.

Experimental procedures

Participants

Recruitment was done through an advertisement at the 
local university. Forty-five healthy subjects participated 
in the study. They were all right-handed according to the 
Edinburgh Handedness Inventory (Oldfield 1971). Indi-
viduals that played a musical instrument on a regular basis 
(≥1×/week) during the last 3  years were excluded from 
participation to avoid too much familiarity with sequential 
manual tasks. Additional exclusion criteria were acute or 
chronic pain of any kind, a history of neurological or psy-
chiatric disorders, or musculoskeletal disorders involving 
the left hand.

Finger‑tapping task

Participants were trained to perform a finger-tapping task 
of five items on a response box on which four keys were 
arranged ergonomically for the left hand (see Fig. 1a). The 
task required reproducing the sequence 4-1-3-2-4 with the 
non-dominant hand as quickly and accurately as possible 
for a period of 30 s (where 1 corresponds to the index and 4 
to the little finger, see Fig. 1b). The numeric sequence was 
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continuously displayed on a computer screen to reduce the 
demands on working memory to a minimum (Albouy et al. 
2013; Walker et al. 2002). No feedback on the accuracy of 
performance was provided: upon each key press, a gray dot 
appeared on the screen forming a row from left to right. 
Instruction was given that occasional errors should not be 
corrected, and participants had to continue the task without 
pause.

Design

Experiments were carried out on two consecutive days to 
evaluate motor acquisition (Day 1) and next-day retention 
(Day 2). For a given subject, the two sessions were held 
at the same time of the day (see Table 1 for experimental 
design).

Day 1

On Day 1, participants were first familiarized with 
the response box. After positioning their hand on the 
response box, the sequence (performed slowly by a hand 

model) was presented 4 times on video. Familiarization 
was considered successful when participants were able 
to repeat the sequence at least three times without errors. 
This was followed by a baseline evaluation of task per-
formance (baseline), a training session, and a post-train-
ing evaluation of task performance (post-immediate and 
post-60  min). Evaluation of task performance consisted 
of performing the task during two blocks of 30 s. During 
training, the task was performed for 10 blocks of 30  s. 
Both during evaluations and training, blocks were inter-
spersed with 30-s rest periods during which the computer 
screen turned white. An auditory signal 5  s before the 
start notified the participant to get prepared for the next 
block.

In addition, computer use (hours/week) was recorded.

Day 2

On Day 2 (24  h after the training session), a sleep diary 
of the previous night was completed followed by a last 
post-training evaluation of task performance (post-24  h) 
(2 × 30 s).

Fig. 1   a Response box “Razer 
Nostromo Gaming Keypad,” b 
sequential finger-tapping task

4 

  2 
      3 1 

Sequence 
 4-1-3-2-4 

A B

Table 1   Experimental design

Experiments were carried out on two consecutive days to evaluate motor acquisition (Day 1) and next-day retention (Day 2)

Day 1 Day 2

Familiarization Baseline  
evaluation

Training with/without  
pain

Post-immediate  
evaluation

Pause Post-60 min  
evaluation

Pause Post-24 h  
evaluation

Finger position
Video
Verify sequence

2 × 30 s 10 × 30 s 2 × 30 s 1 h 2 × 30 s 24 h 2 × 30 s
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Experimental pain during training

Participants were randomized to the control group (no 
experimental pain), the local pain group or the remote 
pain group (10 women and five men in each group). An 
experimenter-operated 3 ×  3  cm thermode (Model TSA-
II, Medoc Advanced Medical Systems, Durham, U.S.) was 
used to produce pain by applying a hot nociceptive stimu-
lus. For the local pain group, pain was applied to the dorsal 
face of the left wrist (the hand performing the task). For 
the remote pain group, pain was applied to the external face 
of the left leg, just below the knee. The experimenter was 
sitting next to the participant throughout the experiment 
regardless of group assignment.

At the very beginning of the experiment, for all par-
ticipants (including the control group) the temperature of 
the thermode was individually adjusted to reach a target 
pain level that was rated as 4–5 according to a numeral 
rating scale (NRS) of 0 (no pain) to 10 (worst pain imag-
inable). A first test was done at 47  °C for the wrist or at 
46 °C for the leg for a period of 30 s. Then, the tempera-
ture was increased or decreased in steps of 1  °C to reach 
the target pain level. Group assignment was revealed to the 
participant only after the baseline evaluation, just before 
the training. For the local and remote pain groups, experi-
mental pain was present only during training on Day 1 and 
not during any of the evaluations on Day 1 or Day 2. The 
stimulation temperature was kept constant during the train-
ing blocks and was interrupted during the rest periods. Pain 
was monitored after each training block using an NRS.

Primary outcome parameters

The following two variables were considered: (1) error rate 
(mean number of errors per completed sequence, reflecting 
accuracy) and (2) speed (number of completed sequences 
per 30 s).

For each evaluation time point, the two evaluation 
blocks were considered as associated pairs and the block 
corresponding to the best performance (depending on the 

number of correctly completed sequences per 30  s) was 
used for analysis.

Statistical analyses

To compare the characteristics of participants between 
groups at baseline, one-way ANOVAs or Student’s t tests 
were performed. Two-way repeated measures analyses of 
variance (ANOVA) were performed to assess the effect of 
group (control, local pain and remote pain) and time (base-
line, post-immediate, post-60  min and post-24  h) for the 
two dependent variables (error rate and speed) separately. 
A two-way ANOVA (group × time) was also performed to 
assess the evolution of pain across training blocks. When 
the assumption of homogeneity was violated (based on 
Mauchly’s test of sphericity), the Greenhouse–Geisser 
correction was applied. Post hoc analyses were performed 
using a Sidak correction for multiple comparisons. A p 
value <0.05 was considered significant.

Results

Participants’ characteristics

Forty-five subjects participated in the study (see Table 2). 
Groups did not statistically differ with respect to age 
(p =  0.896), computer use (p =  0.485) or hours of sleep 
between Day 1 and Day 2 (p = 0.124). At baseline, no sig-
nificant differences were found when comparing the three 
groups according to Error Rate (F(2,42) = 0.170, p = 0.844) 
and Speed (F(2,42) =  0.391, p =  0.679). During the train-
ing, all groups had equal amounts of practice, i.e., the total 
number of completed sequences during the ten blocks was 
not significantly different between groups (p  =  0.648). 
Figure 2 shows the evolution of the perceived pain intensity 
across the 10 training blocks. A significant increase in per-
ceived intensity was observed over time (F(9,252) = 7.734, 
p < 0.001), with an average rise of 1.2/10 on the NRS from 
the first to the last block of training. No effect of group 

Table 2   Participants’ characteristics

Data are presented as number of participants or as mean ± SD

Control group Local pain group Remote pain group

N (women/men) 15 (10:5) 15 (10:5) 15 (10:5)

Age (years) 28.8 ± 8.8 27.4 ± 7.1 28.5 ± 9.5

Use of computer (hours/week) 29.9 ± 14.6 28.3 ± 17.4 22.8 ± 18.1

Sleep between Day 1 and Day 2 (hours) 6.9 ± 1.4 7.0 ± 1.4 7.8 ± 1.0

NRS rating during training (0–10) 4.5 ± 1.3 3.9 ± 1.8

Temperature of stimulus during training (°C) 46.8 ± 0.7 46.1 ± 0.8

Practice during training (number of completed sequences) 191.1 ± 20.5 177.1 ± 12.9 197.2 ± 11.9
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(F(1,28) =  7.734, p =  0.414) or time by group interaction 
(F(9,252) = 0.351, p = 0.851) was observed. This indicates 
that perceived pain intensity was successfully matched 
across local and remote pain groups, although requiring 
slightly different stimulation temperatures (p = 0.013).

Error rate

Error rates were found to be very low, as shown in 
Fig.  3. On average, subjects performed 97.1 ±  5.0  % of 

the sequences correctly. Consequently, no overall effect 
of time (F(3,40) =  2.468, p =  0.076), no effect of group 
(F(2,42) = 1.296, p = 0.284) and no interaction of time by 
group (F(6,82) = 0.700, p = 0.650) were observed.

Speed

Data for speed are presented in Fig. 3. An overall effect of 
time was seen across the different time points of evalua-
tion (baseline, post-immediate, post-60 m and post-24 h), 
(F(3,40)  =  92.881, p  <  0.001), indicating that, overall, 
speed increased over time from baseline to post-24  h. 
Post hoc contrasts showed that this increase in speed was 
significant when comparing baseline and post-immediate 
to all other time points (for all p < 0.001), but not when 
comparing post-60 m to post-24 h (p = 0.988). No effect 
of group (F(2,42) =  0.220, p =  0.804) nor time ×  group 
interaction (F(6,82)  =  1.074, p  =  0.385) was observed, 
indicating that motor acquisition and next-day retention 
were not affected by the presence of tonic heat pain dur-
ing training.

Discussion

The aim of this study was to determine the effect of acute 
local and remote experimental tonic heat pain presented 
during training on the acquisition and next-day retention 
of a finger-tapping sequence task. Regardless of the pres-
ence of pain, the speed increased from pre- to post-train-
ing, while the error rate was constant over time. As such, 
it seems that local and remote tonic heat pain did not affect 

Fig. 2   Average perceived pain intensity (/10) across the 10 training 
blocks as a function of group (for local and remote pain group only, 
as no pain was reported in the control group). Data are presented as 
mean ± SE of the mean

Fig. 3   a Average error rate (mean number of errors per completed sequence) and b speed (number of completed sequences per 30 s) as a func-
tion of group and time. Data are presented as mean ± SE of the mean. *p < 0.001
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the acquisition and/or the next-day retention of the finger-
tapping sequence task.

It appears unlikely that this absence of interference 
with learning would be due to the experimental design. 
For example, when looking at the motor task, the speed 
observed at baseline (~16 sequences) was comparable to 
that reported in the literature using this type of task (Doyon 
et al. 2009b; Karni et al. 1995; Walker et al. 2002, 2003), 
and a clear improvement of performance was observed 
over time, also comparable in magnitude to that of previ-
ous studies (Doyon et al. 2009b; Walker et al. 2002, 2003). 
However, the error rates were very low, presumably 
because the numeric sequence was continuously displayed, 
and it is possible that a more complex task involving a 
stronger cognitive component would be more susceptible 
to interference from pain. Pain level during training was 
also close to the targeted pain level (mean of 4.5/10 for 
the local pain group and 3.9/10 for the remote pain group), 
and subjects did not adapt to tonic heat pain during training 
(conversely, a gradual increase in pain was reported over 
time). These pain levels are comparable to those of previ-
ous studies showing an impact of pain on motor learning 
(Boudreau et al. 2007; Bouffard et al. 2014; Dancey et al. 
2014). Moreover, a study looking at the effect of pain 
on M1 excitability showed that even a low-to-moderate 
level of heat pain (intensity of 2.8 ±  1.9/10) is sufficient 
to inhibit corticospinal excitability, suggesting that such a 
pain level might be sufficient to interfere with motor learn-
ing (Dube and Mercier 2011). The sample size was also 
comparable to that of previous studies that have shown a 
significant effect on motor learning (Bouffard et al. 2014; 
Dancey et al. 2014; Lamothe et al. 2014).

Then, how can we explain the discrepancies in the effect 
of pain on motor learning reported across studies? A new 
theory was recently proposed to explain movement adap-
tation to pain, highlighting the fact that pain can have 
effects at multiple sites along the motor pathways which 
may be complementary, additive or competitive (Hodges 
and Tucker 2011). Because of that, the net effect of pain 
the motor system is likely to vary both within (i.e., depend-
ing on effectors, types of motor tasks, and types of pain) 
and between individuals, which may account for some of 
the variability in experimental findings. Given that per-
formance was not found to be more variable across indi-
viduals in the pain groups compared to the control group 
within our study (see Fig.  3), between-subject variability 
is unlikely to explain the negative findings. Other factors 
that might contribute to explain discrepancies between 
our results and that of previous studies are outlined below. 
Importantly, although these factors are discussed indepen-
dently for clarity reasons, it is likely that a combination of 
these factors account for differences between studies, with 
potential interactions between factors (i.e., a specific type 

of pain might interfere more with a specific type of motor 
task).

Regarding the effector, the two studies that have shown 
a negative impact of pain on motor learning involved 
either the tongue (protrusion movements) (Boudreau et al. 
2007) or the leg (gait) (Bouffard et  al. 2014), while stud-
ies focusing on upper limb have reported either no effect 
or a positive effect on motor performance in response to 
motor training (Dancey et  al. 2014; Ingham et  al. 2011; 
Lamothe et al. 2014), consistent with the results of the pre-
sent study (although Ingham et  al. 2011 reported reduced 
cortical plasticity in the presence of remote pain). It could 
be hypothesized that movements relying more on subcorti-
cal control could be more vulnerable to pain interference. 
Animal studies showing that brain-dependent mechanisms 
can play a protective role against spinal learning deficits 
induced by nociceptive stimuli provide some indirect evi-
dence supporting that view (Grau et  al. 2014). However, 
this remains speculative given both force field adaptations 
during gait and force tracking with the tongue are likely 
to depend both on cortical and subcortical (i.e., spinal or 
brainstem) structures (Barthelemy et  al. 2012; Sawczuk 
and Mosier 2001).

Regarding the type of task, it has been suggested that 
sequence motor learning and force field adaptation tasks 
rely on different brain mechanisms, the former depend-
ing more on cortico-striatal plasticity and the latter more 
on cortico-cerebellar plasticity (Doyon and Benali 2005). 
Hemodynamic changes in the cerebellum and striatum have 
been reported during pain in several neuroimaging studies 
(in addition to M1 and SMA) (Apkarian et al. 2005; Farina 
et al. 2003; Peyron et al. 2000). This raises the possibility 
that pain could interfere with learning relying on cortico-
striatal plasticity, cortico-cerebellar plasticity or both. How-
ever, the effect of pain on each of these two pathways could 
be different, as the physiological impact of these hemody-
namic changes is still unclear.

Finally, different types of pain could also have a different 
impact on motor acquisition and retention. For example, in 
one of the studies showing an impact of pain on motor acqui-
sition, participants were required to push against a lever with 
their tongue that was sensitized with capsaicin. Thus, task 
performance provoked movement-related pain in the task 
effector, which might have impacted on the amount of prac-
tice during training (e.g., lower force amplitude or duration). 
This contrasts with the type of pain that was used in the pre-
sent and in other studies (Bouffard et al. 2014; Dancey et al. 
2014; Lamothe et al. 2014), which was not directly related to 
the trained movement. Notably, while Bouffard et  al. 2014 
reported an effect of constant pain induced by capsaicin on 
retention of motor learning, no effect was observed on motor 
acquisition during training. Another potentially impor-
tant aspect is that in the present study all assessments of 
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performance were done in the absence of pain. This contrasts 
with studies using capsaicin, in which motor performance at 
the end of training (i.e., motor acquisition) is measured while 
the subject is still in pain.

The absence of effect of local (wrist) or distant (leg) 
tonic heat pain in the present study [as well as in the pre-
vious study on the effect of capsaicin-induced pain on 
a manual sequence task (Dancey et  al. 2014)] suggests 
that the ability to relearn this type of task should not be 
affected by the presence of concomitant neuropathic pain 
in patients with motor deficits affecting the hand. However, 
the impact of chronic pain could differ from that of acute 
pain in several ways. Chronic pain is generally more severe 
and affects a larger territory than the heat pain model that 
was used in the present study. Moreover, sensitization 
occurs in response to injury or sustained nociceptive input 
(Rahn et al. 2013). Individuals with chronic pain also often 
exhibit pain-related fear leading to avoidance of movement 
and activity (Zale et al. 2013) that can affect motor train-
ing and learning. Finally, factors such as the use of medica-
tion, sleep problems, etc. could also interfere with motor 
acquisition or consolidation (Doyon et  al. 2009b; Hook 
et al. 2007). Therefore, it would be needed to validate these 
results in a clinical population. This could be achieved by 
assessing pain as a co-variable in future clinical trials tar-
geting manual dexterity, something that is typically not 
done in this type of study.

Conclusion

The current study showed that neither local nor remote 
acute tonic heat pain interfered with motor learning of a 
sequence finger-tapping task. Further research is needed 
to clarify the discrepancies observed between studies that 
have used different effectors, types of motor task and types 
of pain. This will help clarify if and how rehabilitation 
interventions involving motor learning need to be adapted 
in patients presenting motor deficits with concomitant pain.
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