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Coalescent models for developmental
biology and the spatio-temporal
dynamics of growing tissues

Patrick Smadbeck and Michael P. H. Stumpf

Centre for Integrative Systems Biology, Imperial College London, London SW7 2AZ, UK

Development is a process that needs to be tightly coordinated in both space

and time. Cell tracking and lineage tracing have become important experimen-

tal techniques in developmental biology and allow us to map the fate of cells

and their progeny. A generic feature of developing and homeostatic tissues that

these analyses have revealed is that relatively few cells give rise to the bulk of

the cells in a tissue; the lineages of most cells come to an end quickly. Compu-

tational and theoretical biologists/physicists have, in response, developed a

range of modelling approaches, most notably agent-based modelling. These

models seem to capture features observed in experiments, but can also

become computationally expensive. Here, we develop complementary genea-

logical models of tissue development that trace the ancestry of cells in a

tissue back to their most recent common ancestors. We show that with both

bounded and unbounded growth simple, but universal scaling relationships

allow us to connect coalescent theory with the fractal growth models exten-

sively used in developmental biology. Using our genealogical perspective, it

is possible to study bulk statistical properties of the processes that give rise

to tissues of cells, without the need for large-scale simulations.
1. Introduction
The connection between space and time is fundamental to developmental biology.

For over a century, the location of stem cell proliferation and differentiation during

development has been known to be well organized and of paramount importance

to cell fate decision-making (e.g. Spemann organizer and primitive knots) [1].

Through the control of cell division and other cellular actions, spatio-temporal

chemical signalling forms complex patterning vital to proper tissue development

[2,3]. Despite the long-established importance of spatial information in under-

standing tissue development, it was not until relatively recently that widespread

understanding of these effects has become possible.

More recent experimental work (relying on advanced microscopy [4] with

suitable dyes [5] and fluorescence tags [6], etc.) in the context of developmental

biology has focused on cell tracking and lineage tracing. These experiments

have already given rise to profound new insights. Opacity, three-dimensional

effects and stochasticity all make lineage tracing and cell-tracking experiments

difficult [5,7], however. Even if supported by state-of-the-art computational and

statistical analyses, these experiments will remain challenging. Computational

modelling is therefore emerging as a desirable, and ultimately essential, tool

to understand the carefully orchestrated processes underlying tissue growth

and homeostasis. Mathematical or computational models can encapsulate

complicated and quantitative mechanistic hypotheses and be used to test

systematically which aspects of these hypotheses are borne out by reality.

In tissue and tumour modelling, agent-based models (ABMs) are gaining in

popularity [8] and allow the inclusion of cellular composition of tissues from

the outset. Like cells, agents interact with their environment and each other;

occupy finite spatial areas/volumes; and can exhibit the hallmarks of cell
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behaviour: differentiation, proliferation, movement and death

[9–11]. All of these factors lead to cells organizing themselves

into tissues. While there is a large deterministic component

underlying tissue growth (as well as homeostasis), experiments

tracing cells and their progeny often demonstrate substan-

tial variability in the lineage behaviours [12–14] easily

captured by ABMs. Thus, ABM approaches provide a natural

computational complement to lineage-tracing experiments.

We draw inspiration from recent modelling approaches to

tissue growth and development [15] that exhibit dominant

ancestral lineages called superstars. ABMs that describe

neural crest growth and development suggest that the com-

petition between cells for space appears to affect the

development of the enteric nervous system. As cells produce

offspring differences emerge in the number of progeny pro-

duced, resulting in progeny from one or very few ancestral

cells dominating the tissue (or section of tissue). Similar emer-

gent phenomena are reported from other lineage-tracing

studies in both healthy and malignant tissue growth [16–18].

The most glaring issue is that of computational load. The

realization of many biological functions involves billions of

interacting cells. Simulating a single example of such a

system may take hundreds of central processing unit hours.

If we want to use statistical methods to calibrate such models

against data, then we would require hundreds or thousands

of such simulations, which can be all but impossible to

implement without incurring massive computational cost

[11]. Fortunately, by implementing methodologies inspired

by population genetics, it may be possible to distil many

important lineage-tracing concepts into easily digestible and

computationally light quantitative rules instead.

When we trace the ancestral relationships among the

cells in a tissue, we recover genealogical relationships that

are familiar from population genetics. Population genetics

has been applied with great success to, for example, map

out the genetic history of human and animal populations,

estimate the age of alleles and map out past population

movements [19]. A sophisticated mathematical framework

has been developed that allows us to elucidate evolutionary

dynamics; for example, in a population of N alleles that

evolve according to the standard neutral model, the average

time until an allele becomes fixed is 2N generations [19].

One of the reasons for the success of population genetic

theory is that evolutionary processes typically occur over

time scales that are so long that they cannot be observed

experimentally. Instead, mathematical models are used to

capture the evolutionary dynamics and relate them to the

observed data using statistical methods—it is probably no

coincidence that evolutionary theory has been linked in

lock-step to developments in statistical theory and practice.

One of the fundamental insights that has made this con-

nection between evolutionary/population genetic theory and

statistics even tighter is the realization that we can reconstruct

the genealogical processes underlying a sample of alleles

(drawn from a large population), i.e. we do not have to

model the evolution of a large population of N individuals for-

ward in time, but can instead look at the stochastic process that

describes the ancestral relationship among n (typically n� N)

individuals/alleles [12]. Starting from the present sample, we

follow their ancestral lineages back in time until all lineages

have coalesced into a single lineage; this allele/state is called

the most recent common ancestor (MRCA). In addition to

the computational efficiency (compared with forward
simulations), this coalescent approach also focuses explicitly on

the observed data and the properties of the underlying genea-

logical process, and not on the lineages that result in ‘dead

ends’, i.e. that do not contribute to the growth front.

Here, we adapt and apply coalescent theory to develop-

mental processes. Tissues do have MRCAs separate from

the MRCA of an organism, which is, of course, the fertilized

egg cell from which it originated. For most tissues, and this

includes tumours, we can start from an existing tissue and

go back in time until we reach a generation in which a

single cell exists from which all extant cell lineages are

derived. Coalescent theory allows us to study populations

of cells and their ancestral relationships backwards in time

and space. In fact, it is the relationship between space and

time that comes to the fore in this framework.
2. Methods
Below, we will establish a relationship between the exact

coalescent [20] (related to the Wright–Fisher model [21] of

population genetics) and tissue growth models that are inspired

by or are related to the classical Eden model [22] (or more

general models such as the processes described by the

Kardar–Parisi–Zhang (KPZ) equation [23]). To the best of our

knowledge coalescent theory, ABM and fractal growth theory

have not before been considered in combination in order to

understand developmental processes.

2.1. Coalescent process
The coalescent process is a description of population evolution and

underlies much of modern population genetics. The Wright–Fisher

model [21] is arguably the simplest description of evolutionary

change in a population of identical individuals. At each time step

(where time is scaled by a generation length and measured in

real-valued generations), the population (size N) is replaced by

choosing random members of the current population to reproduce

to form the next generation. The obvious advantage of such a model

is its straightforward probabilistic description whereby each

member of the population is equally likely to be the parent of any

child in the next generation (neutral evolution).

Population genetics, however, generally seeks to obtain infor-

mation about a population’s history based solely on a current

population’s genetic data. Coalescent theory reverses time and

explores a population’s history by tracking how distinct lineages

(branches on a family tree) eventually combine (coalesce) as the

population is traced backwards in time. Kingman, in 1982 [24]

(Griffiths [25] and Tajima [26] published their near-identical

approaches almost simultaneously), was able to use the

Wright–Fisher model and reverse time to develop this coalescent

approach mathematically.

Coalescent theory [19] reverses time—the present is t ¼ 0—

and the number of relevant lineages (n) that are ancestral to

the present-day sample are tracked backwards until the MRCA

has been reached. These lineages coalesce (when two lineages

arrive at their most-recent common ancestor), and the time

spent with a specific number (k) of active lineages (Tk) is mod-

elled probabilistically. The key to the use of coalescent theory

in population genetic analysis is in its limiting behaviour. At sev-

eral common limits (large population, N! 1, and small initial

lineage number, n� N), the coalescent process is characterized

by an exponentially distributed reaction process, where the

time before the next coalescent event among k lineages, Tk, is

given by

Tk � Exp
kðk � 1Þ

2N

� �
: ð2:1Þ
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Figure 1. Example of Wright – Fisher and Eden results for different geometries. (a) A graphical description of a single step in a small Eden model. Parents are
chosen uniformly at random from the neighbouring reproducing sites. (b) A graphical description of the Wright – Fisher growth process. Here, the reproducing cells
are chosen at random to be the parent of a cell in the next generation. (c) An example of an Eden growth process on a bounded domain growing in a single (left-
to-right) direction. The 200th generation is marked in green, active lineages in red and the MRCA in black. The MRCA is 104 generations in the past (contained
within the 96th generation). (d ) A tumour growth model (unbounded, with an initial population of one located at the origin). The 200th generation is marked in
green, active lineages in red and here the MRCA is the initial generation shown in black. Star-like genealogical trees are characteristic of unbounded tissue or
bacterial colony growth.
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Overall, starting at a full population (n ¼ N ), the average total

time to the most recent common ancestor (TMRCA) is (adapted

from [19], p. 26, equation (1.31))

kTMRCAl ¼ 2 1� 1

N

� �
N: ð2:2Þ

Coalescent theory has also been extended [19,27–30] to account

for many features of growing populations including nonlinear

growth rates (used in the tumour growth model below), where

equations (2.1) and (2.2) do not apply.

While the Kingman coalescent uses this large population

approximation (and in particular n� N) an exact description of

the Wright–Fisher model is provided by Fu [20]. The fundamental

difference between the two is that in conventional coalescence

no more than one coalescent event can occur in any generation.

The exact or L-coalescent provides an exact description of the

genealogy of a population (rather than a small sample) where

multiple coalescent events can occur in a single time step.
2.2. Growth models
In total, the four models we use are all motivated by the ABM

introduced by Cheeseman et al. [15], which corresponds to an

Eden growth process [22] with diffusion. The basic assumptions

are that the growth occurs at the boundary of the growing

system, and that the system remains connected. The boundary

is defined as cells abutting unoccupied sites (these are the only

cells allowed to undergo growth in these models). In the systems

presented, the boundary is predominantly composed of the lead-

ing edge of the growing tissue with very little growth occurring

within the body of the tissue.

In figure 1a, we provide a graphical representation of a single

step during Eden growth. Figure 1b shows the same single step

for the Wright–Fisher model for comparison. In figure 1c, an

example of lineage tracing (and coalescence) in the Eden model
(N ¼ 20) is shown starting at the 200th generation and tracked

backwards from parent to child. The MRCA is marked in

black. The time to the TMRCA is thus measured in generations

backwards in time. Figure 1d shows similar results for

unbounded growth (e.g. in tumour growth [31]).

We use both the simple Eden growth model and the Eden

growth model modified by incorporating diffusion that allows

cells to move as well as reproduce; this alternative is referred to

as an Eden diffusion model. In all cases, we apply periodic bound-

ary conditions, and all simulations are conducted on a square

lattice. Although this introduces a clear anisotropy in the bacterial

colony structure, the critical exponents and thus the results herein

are generally independent of the lattice microstructure [32,33].

Note that in both fractal growth models the simulation was

stopped after a specified number of generations had been reached.

More detailed descriptions of the models used in this study are

provided in the electronic supplemental material.
3. Results and discussion
The intention of our analysis is fourfold: (i) to demonstrate

the direct connection between the space and time dimensions

in tissue growth; (ii) to establish that dominant lineages are a

natural feature of fractal growth models that is readily cap-

tured by a coalescent process; (iii) to determine the scaling

factors for coalescent models of biological growth processes

and to establish the link to the classical coalescent (as applied

to the Wright–Fisher model); and (iv) to show that simple

scaling relationships apply to lineage tracing in both uni-

directional and unbounded fractal growth systems. In terms

of developmental biology, this provides a framework in

which to analyse lineage-tracing experiments, as well as a

means to infer properties of the ancestral (e.g. stem cell or
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progenitor) population; such an ability will, we hope,

stimulate new experimental analyses.
3.1. The neutral evolution model results
We begin with a model whereby tissue growth proceeds in a

layer-by-layer fashion with parent cells chosen at random from

among the N cells in a population defined by the cells of the pre-

vious layer (mimicking the behaviour of the Wright–Fisher

model). Such a system could be thought of as a simplified version

of unidirectional and bounded (constant number of cells in each

tissue layer) tissue growth. In figure 2, we show the coalescent

results for three neutral evolution models with tissue widths of

N¼ 10 (dots), 100 (solid), 1000 (dashes). The mean number of

lineages (red) demonstrates an initial fast decay as a substantial

portion of lineages are eliminated in the first few time steps.

This behaviour is characteristic of the exact coalescent where

many multi-lineage coalescent events occur per generation.

The probability of coalescence (blue) shows that nearly all simu-

lations will coalesce within 5� N generations. By scaling the

time axis with the tissue width N, it is easy to see how as N
tends to infinity the coalescent process converges onto a single

general trajectory characterized by equations (2.1) and (2.2).

In such a simplified spatio-temporal model, the connection

between tissue depth (spatial) and the generation number

(temporal) is deterministic.
3.2. The diffusive-Eden model results
Figure 3a shows that the more realistic diffusive-Eden growth

process exhibits a distinct non-deterministic spatio-temporal

connection. Generations 1 (red), 50 (yellow), 100 (green),

150 (blue) and 200 (magenta) are shown with each lattice

location weighted according to the probability a cell was

present in 1 million stochastic realizations of the diffusive-

Eden growth model. While the distribution along the tissue

width quickly reaches uniformity, figure 3b shows how

the distribution along the tissue depth appears normally

distributed with an increasing mean and variance.
It should be noted that throughout this study time is

represented in terms of successive generations in order to

more easily translate between the neutral evolution and

Eden growth models. For a particular lineage, the time

since the start of the simulation is proportional to how

many division events occur, and so generation number and

time are interchangeable.

The increasing variance is a function of the mean tissue

depth for a particular cellular generation as shown in

figure 3c. Here, the mean tissue depth versus generation

number (blue distribution, solid black line shows the mean)

exhibits an increasing mean and variance. Alternatively, the

variance around this mean (orange long-tailed distribution,

dashed black line showing the mean value) quickly reaches a

steady state. The values were calculated by taking the Ng

cells in generation g in any particular simulation and obtaining

a mean and variance for the tissue depth for this group. This

shows an easily defined statistical relationship between time

(generation number) and space (tissue depth) and thus, if

coalescence in time can be determined, the statistics for spatial

cell lineage tracing would be readily determined. Studies con-

cerning related models [34] have shown a similar linear

relationship between space and time in fractal growth models.

Figure 3d shows that there is a steady-state distribution for

the deviation from the mean position for any cell (of a specific

generation). The distributions are normally distributed around

zero with a variance equal to N and very quickly reach a

stationary distribution. The values were calculated by taking

the Ng cells in generation g in any particular simulation and

obtaining the deviations from the mean tissue depth for the

group. This relationship is related to the underlying fractal

growth dynamics for the Eden model whereby the roughness

of a unidirectional Eden growth frontier is proportional to N1/2

[35], where N is the tissue width.

The next question concerns whether it is possible to apply

the coalescent from the simpler neutral evolution model to

the more complicated fractal growth models. In figure 4a,

the lineage numbers (red) and probability of coalescent

(blue) are shown for tissue widths of N ¼ 10 (dotted line),

50 (solid line) and 100 (dashed line).

These results show two important characteristics for the

diffusive-Eden model: first, the coalescence is indeed inevita-

ble for the diffusive-Eden model with small tissue widths

(e.g. N ¼ 50); however, in the limit (N!1), this will not

be the case. As N increases, the time to coalescence will

drift further into the (relative) past until coalescence will

not be found under reasonable time/tissue depth expec-

tations. This suggests that, while single dominant lineages

may be important on developmental spatial scales, larger tis-

sues will be founded by several distinct ancestors derived

from more general stem cells. The coalescent framework

allows us therefore to estimate the number of founding

stem cells of a developing tissue given its size and age.

The results from figure 4a beg the question as to what the

scaling properties (with respect to the size of the tissue) of the

kTMRCAl are for the diffusive-Eden model. In figure 4b, a log–

log plot for the average TMRCA for tissue widths from N ¼ 3

to 1000 is shown (red squares, 1000 simulations). The mean

time to the most recent common ancestor (kTMRCAl, equation

(2.2)) for the classical coalescent scales with N (producing the

stationary trajectory on the normalized scale in figure 2), and

is provided for comparison (dashed green line). As is appar-

ent the slopes of the two lines are very different. A linear
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regression (black dashed line) can be matched to the diffu-

sive-Eden model and shows that the slope is approximately

1.51. It has been postulated that this scaling factor is related

to the dynamic exponent [36]. Indeed, this model is governed

by the (1 þ 1)-dimensional KPZ equation [23] that has a

scaling factor of z ¼ 3/2.

In figure 5a, the time domain for the lineage results (blue)

and probability of coalescence (red) from figure 4a are

rescaled using the N3/2 factor determined in figure 4b.

These results now match the exact coalescent trajectory on

average, and the coalescent probability becomes nearly

identical with increasing N. As with many empirical appli-

cations of coalescent theory [37], this can be thought of as

an effective population number. By scaling by the following

effective population:

Neff ¼ 0:13 �N3=2 ð3:1Þ

we are able to obtain an effective coalescent representation of

a more realistic biological growth model for any desired

tissue width (N ). With this in mind, we can apply coalescent

theory to model the ancestral relationships among cells in

developing tissues.

Figure 5b tests the dynamic exponent scaling factor by

extending the results from figure 4b to a (2 þ 1)-dimensional

system. Simulating across three orders of magnitude of tissue

width (100 trajectories per simulation) the (1 þ 1)- and (2 þ
1)-dimensional, bounded Eden growth models exhibit a scal-

ing factor of 1.5 and 1.61, respectively, for the mean time to

the MRCA. These models of tissue development are in the

same universality class [38] as models governed by the KPZ

equation. These slopes are identical to the reported dynamic

exponent for the (1 þ 1)- and (2 þ 1)-dimensional systems

governed by the KPZ equation [36]. Using the dynamic expo-

nent, it is then possible to determine nonlinear effective

population sizes for fractal growth models.
3.3. Tumour Eden growth simulation
We next model a two-dimensional tumour or bacterial colony

using a non-diffusive-Eden model without boundary con-

straints (see electronic supplementary material) starting
from a single founder cell at the origin. Figure 6a shows the

occupation probability of different sites for generations 1,

50, 100, 150 and 200. Once again, the relationship between

time and space is apparent; see figure 6b.

In this case, the mean position versus generation number

(figure 6c) is notably different from figure 3c. The mean radial

position is almost deterministic (blue distribution and solid

black line), whereas the increasing spread in the generational

position data (figure 6b) can almost entirely be attributed to

an increasing deviation from the mean. These results suggest

that any individual realization of this stochastic growth pro-

cess will have a non-stationary distribution as cells in the

same generation move further and further apart.

In figure 6d, the distributions for generations 350

(green), 600 (blue) and 850 (red) are shown to diverge as

the generation number increases. The lack of a stationary dis-

tribution, and thus an ever-increasing roughness to the

colony surface, is a well-known consequence of unbounded

Eden fractal growth [39]. It also has interesting consequences

in that the MRCA is at or close to the originating cell in the

system. The number of cells increases linearly with the gener-

ation number, and with non-constant growth processes

the genealogical tree takes on a star-like pattern (observed

experimentally in tumour growth models [31,40]).

In figure 7a, the number of ancestral lineages is traced back

in time starting from generation 450 (solid green line, with

N0 � 1250), generation 900 (solid red line, with N0 � 2500)

and generation 1800 (solid blue line, with N0 � 5000) of the

Eden growth model. We observe that a substantial percentage

of lineages remain when coalescence is forced by the linearly

decreasing total population size (grey line). For comparison,

classical coalescent models run for the same number of gener-

ations and an average population growth rate of V ¼ 2 � p cells

per generation are provided (dashed lines). Here, too, no com-

plete coalescence occurs. However, while the two lines differ

substantially, the dynamics of the tumour growth model and

coalescent with linear population growth do appear to have

the same basic behaviour.

The relationship between the classical coalescent model

and the Eden model results can be established using the

same fractal exponents observed in the diffusive-Eden

model results. In 1996, Manna & Dhar [41] explored the
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relationship between the critical exponents of the Eden model

and the underlying lineage ‘backbone’ (i.e. its genealogical

tree). The key relationship concerns the fractional number of

lineages that survive up to a height h away from the original

surface, Nh,

Nh / h�a, ð3:2Þ

where a(d21)/z, d is the dimension of the system (here,

we are on a two-dimensional surface), and z is the dynamic

exponent, which for the KPZ system is 3/2.
What we are actually interested in in figure 7 is the absol-

ute (and not the fractional) number of extant lineages. Thus,

we write

N̂g

NT
/ g�a, ð3:3Þ

where N̂g is the absolute number of lineages left g generations

back in time and NT is the total lineages at generation G – g,
where G is the total number of generations simulated. NT is

proportional to G – g and thus the absolute number of
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lineages for the Eden system can be written as

N̂g / G � g�a � g1�a ¼ G � g�2=3 � g1=3: ð3:4Þ

In figure 7b, we relate the Eden results to neutral evol-

ution on a similarly growing population (growing linearly

with generation number). Using the above graphical and

numerical arguments, this neutral evolution model then

scales with a equal to 1 and, thus,

N̂g,W�F / G � g�1 � 1: ð3:5Þ

In order to translate the trajectory of the Eden growth

model (N̂g) to that of the neutral evolution model (N̂g,W�F)

an effective lineage population for the Eden process can

be formed

N̂g,eff / g�1=3 � N̂g / N̂g,W�F: ð3:6Þ

Indeed, in figure 7b, this simple modification of the

Eden growth trajectory results in a nearly perfect overlap

with the coalescent model with linear growth. The actual

modification is

kLineagesleff ¼ 3:7 � t�1=3 � kLineagesl: ð3:7Þ

Here, time represents the generation number (starting at the

first generation in the past).

Ultimately, the results for the unbounded Eden growth

model agree with the results determined for the bounded

growth model (and the corresponding coalescent results for

growing populations found in figure 7). These results also

confirm the close relationship between the dynamic exponent

in fractal growth and the underlying tree structure that is the

objective in cell lineage-tracing experiments. Both results

suggest that it is possible to use coalescent theory to capture

and describe the results found in complex fractal growth

models in a computationally efficient manner. Statistically

valid results about the spatial locations of cells belonging to

ancestral populations of cells can also be determined from

such analyses.
4. Conclusion
In this study, we used ABMs to simulate tissue growth and to

establish shared properties of their respective ancestral trees

by borrowing from the theory of coalescent processes. The

resulting relationships, exemplified by shared dynamic expo-

nents from fractal growth theory, establish non-trivial

relationships between coalescent theory and fractal surface

growth models relevant to developmental biology and

tissue growth modelling.

The scaling property for kTMRCAl in our diffusive-Eden

model is related to the dynamic exponent for Eden growth

(z ¼ 3/2). Indeed, research in the field of directed polymers

suggests that the mean time to the MRCA will scale according

to Nz (written as N1/n in [36]), and it is known that the

directed polymer dynamics at zero temperature are equival-

ent to Eden growth [42]. Thus, knowing the dynamic

exponent (z) provides a general scaling rule that can be

applied a priori to a biological system exhibiting fractal

growth. To this end, dynamic exponents have already been

experimentally determined for bacterial colonies [43]. More

importantly, in our opinion, it confirms that the treatment
of space as equivalent to (developmental) time is meaningful.

Even in a more realistic growth model in which cells can

move and rearrange, the genetic tree exhibits the same

general scale for both the spatial and temporal domain.

Coalescent theory then is immediately applicable and

valuable to the analysis of biological tissue and growth

models, especially if the cellular nature is explicitly modelled.

The emergence of dominant lineages, for example, is readily

understood without the need for simulations, and can further

be rationalized using the scaling properties outlined above.

Additionally, the presence of a single dominant lineage for

large domain sizes can now be completely ruled out for the

diffusive-Eden model, because as N goes to infinity an

MRCA will never be observed for any practical tissue

depth. Going even further the presence of a dominant lineage

can now potentially be ruled out for a range of tissue models,

because any fractal growth system with a dynamic exponent

larger than 1 is not likely to have a single MRCA within rel-

evant tissue depths as N increases. Finally, we can begin to

make non-trivial biological statements about systems that

are too large or complicated to simulate.

Importantly, many of the results presented here can

be confirmed experimentally. In particular, the determina-

tion of a dynamic exponent for an actual growing bacterial

population combined with lineage-tracing experiments can

confirm the results presented in figure 5. Of particular

appeal is the potential to estimate the number of stem cells

required to generate the cells in a tissue of given size over a

certain limited time frame. We hope that this study motivates

experimental analyses that allow us to gauge the required

size of the stem cell pool, as this (i) would be the most strin-

gent test for our theoretical analysis and (ii) could have

profound implications for developmental biology as well as

regenerative medicine. Finally, the fact that tissue growth

models fall into the same universality class as KPZ models

should enable some general insights into the dynamics at

the surface of growing tumours, including the roughness of

such tumours.

The perspective taken here focuses solely on the ancestry

of cells—but so does lineage tracing. Intra- and intercellular

processes that shape the decisions of cells [44,45] will be an

obvious extension to consider, especially in the context of

multi-scale models [46] applied to developmental processes.

Already, however, this analysis provides a useful comp-

lementary framework for the analysis of lineage-tracing

studies. There is, we believe, an intrinsic appeal of applying

evolutionary concepts to developmental problems. Evolution

does, of course, provide a framework against which we view

development, but here it can also provide powerful compu-

tational tools for the analysis of tissue dynamics during

growth as well as homeostasis.
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