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Endoscopic video sequences provide surgeons with direct surgical field or visualisation on anatomical targets in the patient during robotic
surgery. Unfortunately, these video images are unavoidably hazy or foggy to prevent surgeons from clear surgical vision due to typical
surgical operations such as ablation and cauterisation during surgery. This Letter aims at removing fog or smoke on endoscopic video
sequences to enhance and maintain a direct and clear visualisation of the operating field during robotic surgery. The authors propose a
new luminance blending framework that integrates contrast enhancement with visibility restoration for foggy endoscopic video processing.
The proposed method was validated on clinical endoscopic videos that were collected from robotic surgery. The experimental results
demonstrate that their method provides a promising means to effectively remove fog or smoke on endoscopic video images. In particular,
the visual quality of defogged endoscopic images was improved from 0.5088 to 0.6475.
1. Introduction: Interventional endoscopes (e.g. bronchoscope and
colonoscope) integrated with video cameras at their distal tips are
widely introduced in minimally invasive surgery. The endoscope
provides surgeons with real-time endoscopic video sequences
that are shown on medical displays. On the basis of endoscopic
vision or surgical field from these images, surgeons can directly
visualise and examine abnormal tissues and treat or resect
tumours in the body.

Unfortunately, the visual quality of endoscopic video images is
unavoidably degraded because of surgical smoke or fog during
robotic surgery. These endoscopic foggy images (Fig. 1) are gen-
erally generated from a surgical processing called cauterisation,
which is usually employed to limit the bleeding vessels, while
other typical operations such as laser ablation can also bring
surgical smoke in surgical field. Such fog or smoke commonly dis-
tracts surgeons who may wait for a while without doing anything
until surgical smoke is gone, which increases surgical time. On
the other hand, surgical fog also degrades the clear visualisation
of the surgical field from the endoscope, as well as covers the struc-
tural details (e.g. vessel structures) on the organ surface. This
harmful issue leads to inappropriate device use and incorrectly
targeted tissue, increasing surgical risks such as in tissue or
tumour resection during endoscopic surgery. Therefore, endoscopic
video defogging plays an essential role in enhancing and main-
taining a clear field of surgical vision, not only for safety by pre-
venting inadvertent injury, but also for improving precision and
reducing operative time.

Endoscopic field defogging methods generally consists of
hardware- and software-based strategies. While the former uses
typical devices to remove smoke, the latter is algorithmic, i.e. com-
putational photography techniques. This work develops a new lumi-
nance blending strategy for surgical video defogging. It combines a
contrast enhancement procedure with a fast visibility recovery
method to remove fog or smoke on endoscopic video sequences.
We also quantitatively and objectively evaluate the experimental
results of using our proposed method and others. The main contri-
butions of this work are two-fold: (i) a new luminance blending
approach with better performance than other defogging approaches
and (ii) an objective image quality metric for quantitative assess-
ment of dehazed images.

The remainder of this Letter is organised as follows. Section 2
briefly reviews work related to current dehazing methods. Our
hybrid luminance blending-based dehazing method for vision
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augmentation is presented in Section 3, followed by the experiment
settings in Section 4. Sections 5 shows and discusses the validation
results before concluding this work in Section 6.

2. Related work: Real-world natural image and video dehazing
or defogging techniques are widely discussed in computer vision
and computational photography in the literature. Fattal [1]
presented a graphical model used to calculate the atmospheric
light for hazy-free image recovery. They assume that scene
shading and transmission are locally independent of each other,
which are not practical in applications. Tarel and Hautiere [2]
introduced a fast visibility restoration strategy based on median
filtering, but it usually results in colour distortion and easily fails
at the image median filtering step that usually introduces null
pixels. On the other hand, the fast visibility method also requires
more efficient computation for real-time processing.

While He et al. [3] proposed dark channel-based atmospheric
light and transmission estimation with soft editing, Meng et al.
[4] employed the boundary constraint and contextual regularisation
to modify this dark channel-based method, especially, they
improved the computational efficiency and skipped soft editing.
Nishino et al. [5] estimated two statistically independent com-
ponents of the scene albedo and depth by using the Bayesian
defogging model. While this Bayesian-based method works
well, it also results in colour distortion. Ancuti and Ancuti [6]
discussed a multi-scale fusion approach that combines the white
balance with linearly transformed images extracted from hazy
images. This multi-scale fusion approach is generally trapped in
dealing with inhomogeneous fog due to loss of transmission
depth information. While Sulami et al. [7] proposed a reduced
formation model to describe image pixels in small patches as
lines that are used to recover the atmospheric light orientation,
Galdran et al. [8] presented an improved variational framework
using inter-channel contrast in optimisation. More interestingly,
fusion-based defogging is generally recognised as a promising
framework to address the disadvantages of various dehazing
methods [9].

More recently, deep learning-driven methods are increasingly
developed for single image dehazing. While Ren et al. [10]
employed multi-scale convolutional neural networks for single
image dehazing, Li et al. [11] proposed All-In-One Dehazing
Network (AOD-NET) to directly create the clean image through a
lightweight convolutional neural network instead of separately
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Fig. 1 Hazy images in robotic-assisted endoscopic surgery
a Thin smoke
b Heavy smoke
computing the transmission map and the atmospheric light for
single image dehazing. Moreover, Ren et al. [12] developed a
deep video dehazing method based on semantic segmentation,
which can effectively use the abundant information that exists
across neighbouring frames for precise dehazing. Liu et al. [13]
introduced a simple generic model-agnostic convolutional neural
network trained end-to-end to recover clear images from hazy
inputs.
Although these methods work well on natural images, they

remain challenging to deal with surgical endoscopic video image
fog or smoke, particularly in the case of inhomogeneous or thick
haze. This work aims to address the problem of hazy images or
videos with inhomogeneous or thick haze, particularly foggy endo-
scopic videos.

3. Approaches: This section details our luminance blending
framework for surgical endoscopic video defogging. Our method
contains several steps: (i) contrast enhancement, (ii) visibility
recovery, and filtering, and (iii) luminance blending. Fig. 2 shows
the flowchart of our processing, as discussed in the following
section.
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3.1. Contrast enhancement: Surgical foggy images are of low-
contrast and limited illumination, especially in hazy regions. The
goal of contrast enhancement is to improve the contrast of hazy-
less regions on the endoscopic image and calculate the luminance
L(u, v) and to enhance the luminance of the final defogged
surgical image.

The contrast enhancement step assumes (i) most regions on the
foggy image are hazy pixels that critically affect the mean of the
foggy image and (ii) the level of haze in these regions depends
on the distance between the atmospheric light and the scene, as
discussed in [6]. On the basis of the assumption, we compute the
enhanced luminance L(u, v) by the magnifying difference
between the surgical hazy image I(u, v) and its average luminance
value l in the three channels c [ {r, g, b}

Lc(u, v) = b(I c(u, v)− l), l =
∑

U

∑
V H(u, v)

UV
, (1)

where b is the magnification factor to control the luminance of the
augmented foggy regions and U × V are the width and height of
the hazy endoscopic image. The original luminance H(u, v) at
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Fig. 2 Flowchart of our proposed defogging method for night-time images
each pixel is calculated by [14]

H(u, v) = a× I r(u, v)+ b× Ig(u, v)+ c× Ib(u, v), (2)

where coefficients a = 0.299, b = 0.587, and c = 0.114.

3.2. Visibility recovery and filtering: A widely used physical imag-
ing model is established for hazy images by Koschmieder’s law [3]

I(u, v) = F(u, v)T(u, v)+ A1(1− T(u, v)), (3)

where I(u, v) denotes an observed (foggy) image, F(u, v) refers to
as a haze-free image (also called scene radiance), and A1 indicates
the atmospheric light or the sky luminance. The transmission map
T(u, v) describes the amount of the unscattered light entering a
camera and can be computed by

T(u, v) = exp (− kd(u, v)) (4)

where k and d(u, v) are the atmosphere’s scattering factor and the
distance between the camera and any objects in a scene.

On the basis of (3), we aim to solve hazy-free image F(u, v)
under the unknown variables A1 and T(u, v). However, according
to a fast visibility recovery method [2], we did not directly estimate
T(u, v) since it is difficult to precisely predict the transmission map
related to depth information. To skip T(u, v), the atmospheric veil
X (u, v) was employed [6]

X (u, v) = A1(1− T(u, v)), T(u, v) = 1− X (u, v)

A1
. (5)
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Then, (3) can be rewritten to calculate F(u, v)

F(u, v) = A1(I(u, v)− X (u, v))

A1 − X (u, v)
. (6)

This requires the atmospheric light A1 and veil X (u, v) for which
robust estimates can be obtained much more easily than the depth
and transmission maps in the original formulation (3). The
methods that are used to determine A1 and veil X (u, v) have
been discussed in [2]. Here, we skip the technical details of how
to estimate light A1 and veil X (u, v).

Since the result F(u, v) of the fast visibility recovery usually con-
tains image noise and artefacts, we employ joint bilateral filtering to
process F(u, v) and obtain J (u, v).

The bilateral filter is an edge-aware image processing method
to denoise and simultaneously preserve edge information
[15, 16]. The concept of joint bilateral filtering is to perform
spatial filtering (particularly a Gaussian kernel) on a low-resolution
image and simultaneously apply a range filter to process a high-
resolution image (here the low- and high-resolution images refer
to the recovery image F(u, v) and the original image I(u, v),
respectively) [17]

J (p) = 1

Kp

∑
q[Np

F(q)V(p, q), (7)

V(p, q) = exp
p− q

∥∥ ∥∥2
2s2

s
+ Iu(p)− Iu(q)

∥∥ ∥∥2
2s2

c

( )
(8)
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where p = (u, v), q = (û, v̂), variances ss, sc in the region Np
centred at the pixel p, and Kp is computed by

Kp =
∑
q[Np

exp
p− q

∥∥ ∥∥2
2s2

s
+ Iu(p)− Iu(q)

∥∥ ∥∥2
2s2

c

( )
, (9)

which is the normalisation term to guarantee the sum of the weights
for all the pixels to be one.
Fig. 3 Comparison of using various defogging methods: (a)–(h) thin-fog image a
a Thin-fog image
b M1 [2]
c M2 [3]
d M3 [5]
e M4 [6]
f M5 [4]
g M6 [7]
h M7 (ours)
i Thick-fog image
j M1 [2]
k M2 [3]
l M3 [5]
m M4 [6]
n M5 [4]
o M6 [7]
p M7 (ours)
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3.3. Luminance blending: This step is to estimate illumination on
image J (u, v) and L(u, v) and blend their illumination to
improve the illumination of the defogged endoscopic surgical
image.

We transfer the images J (u, v) and L(u, v) from the red, green
and blue (RGB) to YCbCr colour space. For the Y-component or
luminance component of them, we used recursive filtering [18] to
estimate the illumination of J (u, v) and L(u, v) and obtain
GJ (u, v) and GL(u, v). By using image illumination GJ (u, v) and
GL(u, v), we seek to recognise pixels in hazy regions. So, a
nd (i)–(p) thick-fog image
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Table 1 Quantitatively objective assessment of the results obtained from the seven defogging approaches

Approaches M0 M1 [2] M2 [3] M3 [5] M4 [6] M5 [4] M6 [7] M7 (ours)

SSIM S — 0.6587 0.4781 0.6676 0.6488 0.7978 0.3944 0.9275
naturalness N 0.1411 0.2319 0.0218 0.1097 0.1439 0.0752 0.0602 0.2274
hybrid c — 0.4890 0.2956 0.4445 0.4468 0.5088 0.2608 0.6475

M0 indicates the quantitative results of the original foggy images and does not have the SSIM index that is a reference-based metric
weight function WK (GK (u, v)), K [ {J , L} is empirically intro-
duced, and the output Oe(u, v), e [ {Y, Cb, Cr} of the blending
fusion can be formulated

Oe(u, v) =
∑

K[{J , L} WK (GK (u, v))Oe(u, v)∑
K[{J ,L} WK (GK (u, v))

. (10)

Note that the weight function WK (·) (also called the weight matrix)
depends on the level of smoke. In the heavy-smoke case, if the
foggy pixel intensity belongs to the range of 16–128, these pixels
will be assigned with weight 1. In the thin-smoke case, the pixels
on the interval [128, 235] will be assigned with weight 1. The
luminance output OY (u, v) may not be distributed into the full
range of pixel intensity, resulting in a low-contrast image. We
implement the following linear transformation to stretch its histo-
gram to a specific intensity range [P, Q]

ÔY (u, v) = P + OY (u, v)− OMin(u, v)

OMax(u, v)− OMin(u, v)
(Q− P), (11)

where ÔY (u, v) denotes the final luminance, OMin(u, v) and
OMax(u, v) are the minimum and maximum intensities of the blend-
ing output OY (u, v), respectively. We empirically set P = 15 and
Q = 236 in our work. Eventually, we combine the Y-component
ÔY (u, v) and the chromatic components OCb(u, v) and OCr(u, v)
and transform them into the RGB colour space, obtaining the
final defogged image.

4. Validation: Foggy endoscopic videos were acquired from
robotic surgery. All the experiments were executed on a laptop
installed with Windows 8.1 Professional 64 bit system, 32.0 GB
memory, and processor Intel(R) Xeon(R) CPU × 8 2.8 GHz and
MATLAB R2017a. We tested about 1200 frames in this Letter.

We compare the proposed method with the following
approaches: (i) M1, Tarel et al. [2], (ii) M2, He et al. [3],
(iii) M3, Nishino et al. [5], (iv) M4, Ancuti and Ancuti [6],
(v) M5, Meng et al. [4], (vi) M6, Sulami et al. [7], and (vii) M7,
our method.

We introduce a naturalness metric to depict how natural surgical
images appear based on statistically analysing thousands of images
[19]. On the other hand, we also employ structural similarity
index (SSIM) [20] to evaluate structural information on images.
Eventually, we define a hybrid quality metric c to evaluate
defogged endoscopic images

c = gS + (1− g)N , (12)

where S denotes the SSIM and N indicates the naturalness. The
coefficient g is set to 0.6, which was experimentally determined
to balance the structural information and naturalness.

5. Results and discussion: Fig. 3 visually compares the defogged
results of endoscopic images with thin and thick fogs. The visual
quality of the results demonstrates that our method works better
than others since it removes fog without introducing colour
distortion. On the other hand, two surgeons manually inspected
all the dehazed results and generally believe that our defogged
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method outperforms other approaches since the subjective visual
quality of using our method is more natural and colourful, which
is better than the original foggy image.

Table 1 quantitatively compares the objective assessment
of the dehazed results obtained from the seven approaches.
The quantitative assessment results show that our proposed
approach outperforms other methods. While the average natural-
ness of M1 and our proposed method M7 were comparable,
the average SSIM was improved from 0.7978 to 0.9275. More
interestingly, the average hybrid quality of our methods was
0.6475, which was much better than other approaches (M5 provides
0.5088).

Additionally, the computational times of the methods M1,
M3, M4, M5, M6, and M7 were 31.3, 62.3, 1.3, 5.2, 75.6, and
1.1 s/frame, respectively. Method M2 deals with an image in
more than 2700 s since soft editing was extremely slow [3]. Our
method works faster than others.

This work aims to enhance the surgical field visualisation
of endoscopic surgery. We developed a new luminance blending
defogging algorithm. The experimental results demonstrate that
our algorithm outperforms others from subjective and objective
evaluations. The effectiveness of our algorithm lies in fusing the
advantages of the enhancement and restoration dehazing methods.
Our method has several potential limitations including unclear par-
ameter sensitivity, effective enhancement, quality assessment, and
heavy processing time. These limitations will be further investi-
gated in the future. In addition, though our method works better
than other approaches, it still introduces colour distortion, which
will be further investigated.

6. Conclusion: We proposed a new luminance blending defogging
framework that integrates contrast enhancement, joint bilateral
filtering, and visibility recovery to remove smoke in endoscopic
videos from robotic surgery. We evaluated our method on
endoscopic video sequences acquired from robotic prostatectomy.
The experimental results demonstrate the effectiveness of our
proposed method, which outperforms other approaches. In
particular, our method improved the hybrid quality of the
dehazed results from 0.5088 to 0.6475.
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