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ABSTRACT
Background. One goal of expression data analysis is to discover the biological
significance or function of genes that are differentially expressed. Gene Set Enrichment
(GSE) analysis is one of the main tools for function mining that has been widely used.
However, every gene expressed in a cell is valuable information for GSE for single-cell
RNA sequencing (scRNA-SEQ) data and not should be discarded.
Methods. We developed the functional expression matrix (FEM) algorithm to utilize
the information from all expressed genes. The algorithm converts the gene expression
matrix (GEM) into a FEM. The FEM algorithm can provide insight on the biological
significance of a single cell. It can also integrate with GEM for downstream analysis.
Results. We found that FEM performed well with cell clustering and cell-type specific
function annotation in three datasets (peripheral bloodmononuclear cells, human liver,
and human pancreas).

Subjects Bioinformatics, Cell Biology, Genomics, Data Science
Keywords Single-cell RNA sequencing, Gene set enrichment analysis, Functional expression
matrix

INTRODUCTION
RNA sequencing (RNA-seq) has been widely used as an alternative to the microarray
platform over the past 10 years. It has provided valuable insight into complex biological
mechanisms, ranging from cancer genomics to diverse microbial communities. Single-cell
RNA-seq (scRNA-seq) can facilitate new and potentially unexpected biological discoveries
when compared with traditional bulk methods that profile batches of pooled cells. For
example, it can provide information on complex and rare cell populations and regulatory
relationships between genes and can track the trajectories of distinct cell lineages during
development (Gawad, Koh & Quake, 2016; Hwang, Lee & Bang, 2018; Chen, Ning & Shi,
2019).

Cells are the fundamental unit in biology. Biologists have known for centuries that
multicellular organisms are characterized by a plethora of distinct cell types (Kiselev,
Andrews & Hemberg, 2019).
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It is difficult to distinguish cell types from the genome sequence since all cells of an
individual share the same set of genetic material. Their differences may be characterized
by transcriptome similarity as defined by unsupervised clustering (Kiselev, Andrews &
Hemberg, 2019).

Bulk transcriptome studies using samples containing multiple cells cannot distinguish
between the cells within the sample. Single-cell transcriptomics can address this issue
(Kulkarni et al., 2019). High-throughput single-cell transcriptomics have provided
unprecedented insights into the cellular diversity of tissues across diverse organisms.
scRNA-seq is a promising approach in the study of the transcriptomes of organism’s
individual cells.

The data processing pipeline for scRNA-seq is based on bulk RNA-seq. The basic
workflow includes quality control (Luecken & Theis, 2019; Ilicic et al., 2016; Griffiths,
Scialdone & Marioni, 2018), normalization, data correction, feature selection, and
dimensionality reduction, followed by cell-level and gene-level downstream analysis
(Luecken & Theis, 2019). Many genes are expressed through RNA-seq data, which is made
up of pooled samples of multiple cells. However, it remains unclear whether these genes
are co-expressed or just the result of mixing. Therefore, a portion of the particularly
well-characterized genes must be screened for downstream analysis.

This type of scRNA-seq data analysis has specific shortcomings. First, the characteristics
of single-cell data are not fully utilized. scRNA-seq data are a direct reflection of the
physiological state of a cell, but the aforementioned method is an analytical process based
on multiple cells or cell clusters. Second, it cannot effectively capture all meaningful
functional groups since many genes are filtered but may still play important roles in
transient cell states. It is possible to miss meaningful biological functions since functional
enrichment analysis is based on all of the cell’s expressed genes, including genes that were
previously filtered out. Third, the results of downstream functional analysis and upstream
clustering are not integrated and visualized. To overcome these limitations, this study
proposes a method based on the functional expression matrix (FEM) which converts each
cell’s gene expression into an enriched gene set representing a specific function.

MATERIALS & METHODS
Motivation for this approach
Functional Gene Set Enrichment Analysis (GSEA) is often the last step of expression data
analysis. A gene set usually represents a biological function, and the function will be used
to refer to a gene set in subsequent analyses. Many R packages and some online sites, such
as DAVID, provide enrichment analysis tools. The software takes a set of genes given by the
user as input and returns functions (pathways) that are significantly enriched. Enrichment
analysis methods for individual samples have also been proposed (Foroutan et al., 2018;
Hänzelmann, Castelo & Guinney, 2013).

Zhang et al. (2020) summarized the widely used GSEA algorithms. We divided their
methods into three categories: methods based on dimension reduction, methods based on
single samples, and methods based on phenotype or cluster.
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Methods based on dimension reduction include Pagoda2 (Fan et al., 2016) and PLAGE
(Tomfohr, Lu & Kepler, 2005). These methods convert the gene expression matrix into
FEM by performing dimension reduction (SVD for PLAGE and PCA for Pagoda2) on each
gene set (pathway). Dimension reduction uses all samples and is not entirely based on a
single cell.

Methods based on phenotype or cluster include Vision (DeTomaso et al., 2019) and
z-score (Lee et al., 2008). Vision methods clusters GEM into clusters by KNN, and GSEA
is based on these clusters. The Z -score method depends on phenotypes, which define each
pathway activity score based on the top gene of t -test score between two conditions. These
gradually join the genes in pathways to maximize the activity score and are not based on a
single sample.

Methods based on the single sample include AUCell (Aibar et al., 2017), ssGSEA
(Barbie et al., 2009), and GSVA (Hänzelmann, Castelo & Guinney, 2013), which are all
non-parametric test statistical methods based on gene rank. Data sparsity is the main
problem when analysing data from a single cell. Therefore, the level of gene expression is
not the primary consideration for a pathway, but rather, whether the gene is expressed. A
method based on Fisher’s exact test or the chi-square test may have better results than the
no-parameter test method based on ranking.

scRNA-seq has low capture efficiency and high dropouts due to the small amount
of initial material used. scRNA-seq expression data tend to be sparse (Hicks et al., 2018;
Eraslan et al., 2019). A true zero represents the lack of expression of a gene in a specific cell
due to the non-trivial distinction between true- and false-zero counts. Meanwhile, a false
zero is a technical deviation. The RNA-seq technique only detects mRNA molecules that
are present, therefore, a gene in the scRNA-seq dataset with a non-zero expression value
indicates that at least one mRNA molecule is present. These sparse non-zero expression
values provided inspiration for the possibility of performing functional GSEA analysis at
the single-cell level.

Functional enrichment analysis may be performed at the single-cell transcriptome
expression level given the characteristics of scRNA-seq data. The algorithm is as follows:
first, replace the initial expression matrix with a FEM that allows for the direct exploration
of the differences between cells from different biological perspectives. Second, the top
variable function of a cell cluster obtained by a gene expression matrix (GEM) can be
represented as a cell scatter plot. Third, the coverage of a functional gene set is more
important than the expression of individual genes for GSEA since genes often overlap
different functional groups, which makes single high-expression genes difficult to explain.
For example, the activation of a signalling pathway is the result of interactions between all
genes; the high expression of one gene does not mean that the pathway is activated.

The current factors affecting the discovery of cell groups are as follows: first, technical
covariates must be regressed out before downstream analysis can occur since these factors
introduce systematic error and confound the technical and biological variability. This error
may lead to systematic differences in gene expression profiles between batches (Leek et al.,
2010; Hicks et al., 2018; Chen, Ning & Shi, 2019). The most prominent technical covariates
in single-cell data are count depth and batch. The FEM method is based on a gene set,
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which makes it more robust than the GEM. The measured expression levels for the genes
related to a certain biological process may fluctuate between batches or single cells due
to variations in sequencing processing. That is, detection for one specific high-expression
gene in single cell has a certain randomness. If we can consider the expression of a set of
genes related to a specific process, we can increase the detection stability for the biological
process of single cells, since the number of expressed genes of a specific biological process
obey a hypergeometric distribution. Second, some biological effects may affect the results
of the cluster algorithms. For example, the cell cycle phase of a given cell within a cell type
population may cause separation from the same cells in the clustering analysis. However,
correcting for biological covariates is not always helpful in interpreting scRNA-seq data
(Kolodziejczyk et al., 2015). These influencing factors often do not have uniform filtering
criteria. In some cases, the cell cycle may be part of the study, or there may be a relationship
between the cell cycle and other functions (Haghverdi, Buettner & Theis, 2015;Vento-Tormo
et al., 2018; McDavid, Finak & Gottardo, 2016; Blasi et al., 2017). The FEM method can be
used to systematically survey the biological aspect of each cell before downstream analysis.
To this end, we developed an scRNA-seq FEM algorithm.

Workflow of the proposed methods
The FEM was divided into four steps (Fig. 1). Step 1: The standardized scRNA-seq GEM
was transformed into a FEM by multi-module gene enrichment analysis (gene ontology,
pathway). Step 2: The p-value represents the significance of enrichment, therefore, the
p-value obtained by enrichment analysis was converted into information content (FEM).
Step 3: FEM/GEM was used for data standardization, dimensionality reduction clustering,
and UMAP visualization (McInnes et al., 2018). Step 4: Differentially expressed genes
(DEG) and differentially expressed functions (DEF) analysis was performed based on GEM
clustering (see the ‘‘GEM and FEM fusion analysis’’ section for details).

Dataset
Peripheral blood mononuclear cells (PBMCs) are populations of immune cells that remain
in the less dense upper interface of the Ficoll layer. PBMCs include lymphocytes (T cells,
B cells, and NK cells), monocytes, and dendritic cells (DCs). The frequencies of these
populations vary across individuals in humans. Lymphocytes are typically in the range of
70–90%, monocytes range from 10–30%, while DCs are only present at 1–2% (Norman,
1995). The PBMCs dataset used in this study was downloaded from the 10X Genomics
official website (https://www.10xgenomics.com/resources/datasets), which included B cells,
NK cells, CD8 T cells, memory CD4 T cells, naïve CD4 T cells, DC, CD14+ monocytes,
FCGR3A+ monocytes, and a small number of platelets. This dataset contained 2,700 cells
in total.

The human pancreas dataset contained 2,126 cells and 10 cell types. This included alpha,
ductal, endothelial, delta, acinar, beta, gamma, mesenchymal, and epsilon cells, as well as
a small number of unknown cell types (Muraro et al., 2016).

The human liver dataset consisted of 777 cells, including seven types of cells: definitive
endoderm cells, immediate hepatoblast cells, induced pluripotent stem cells (IPSCs),
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Figure 1 Workflow of the proposed method. (A) Flowchart of the FEM algorithm, which was used to
calculate Fisher’s exact test for each cell and each gene set, following which the calculated p-value matrix
was converted into the FEM through information content. The efficiency of the calculation method was
improved by matrix operation and multi-core parallel processing (see the Method section for details). (B)
Cluster differential expression analysis based on FEM and integration of FEM and GEM (including C and
D, the analysis is performed in Seurat). For downstream analysis, FEM can be regarded as another type of
GEM. Therefore, Seurat’s analysis pipeline can be used to analyse FEM (C) or treat FEM and GEM as two
different omics data for integrated analysis (D). (C) GEM/FEM was used for dimension reduction, clus-
tering, and differential expression genes/function analysis (GC-DEG/FC-DEF). (D) Due to the loss of gene
expression information in FEM, the dimensionality reduction and clustering is based on GEM, and differ-
ential expression function analysis among clusters in the GEM cluster (GC-DEF) was performed.

Full-size DOI: 10.7717/peerj.12570/fig-1

material hepatocytic cells, hepatic endoderm cells, endothelial cells, and mesenchymal
stem cells (Camp et al., 2017).

FEM algorithm
Selected functional groups and their profiles
Three functional gene sets were selected from the Msigdb (v6.2) database for enrichment
analysis: the Reactome pathways, gene ontology (GO), and immunologic signature gene
sets (Liberzon et al., 2011) (Table 1).
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Table 1 Functional gene set.

Function name Number of
gene sets

Details

C2: Reactome gene sets 1,499 Gene sets derived from the Reactome pathway database.
C5: GO gene sets 9,996 Gene sets that contain genes annotated by the same GO

term. The C5 collection is divided into three sub-collections
based on GO ontologies: BP, CC, and MF.

C7: immunologic
signature gene sets

4,872 Gene sets that represent cell states and perturbations within
the immune system. The signatures were generated by
manual curation of published studies in human and mouse
immunology.

Validation gene set
ImmuneSigDB (Godec et al., 2016) contained a gene set composed of differentially
expressed genes from human and mouse immune-related cells. These were collected
from the literature with corresponding expression data in the Gene Expression Omnibus
(GEO) database. All data weremanually reviewed and standardized using the samemethod.
The differentially expressed FDR value was less than 0.02, and the genes were sorted using
the mutual information algorithm. No more than 300 genes were selected for each gene
set.

Gene-functional group conversion
The cells’ non-zero–expressed genes (i.e., genes in which the read count or normalized
expression values, such as RPKM and FPKM, were not zero) in the GEM were extracted
first. In the second step, an enrichment analysis score for each cell was calculated. The
enrichment analysis method was based on Fisher’s exact test using the Python SciPy
package. The Fisher exact test is a statistical test based on a hypergeometric distribution
that is used to determine if there are non-random associations between two categorical
variables, or to test whether the theoretical value is consistent with the actual value.

P =

(K
k

)(N−K
n−k

)(N
n

) (1)

Here, N represents the total number of background genes, which is defined as all
non-redundant genes in all gene sets taken from a species’ function database, such as
Reactome pathway or GO database. K represents the number of genes in a particular gene
set, n represents the number of non-zero genes in a single cell, and k represents the number
of genes present in both K and n. The Bonferroni correction was used to counteract the
problem of multiple comparisons, but this is optional.

Expression value conversion based on information content
Information content measures the average rate of information from data. The smaller the
p-value, the greater the amount of information. For the adjusted p-value of enrichment
of a gene set, the null hypothesis is that there is no significant enrichment. So, the smaller
the adjusted p-value, the more significant the enrichment of the gene set (rather than
stochastic). Therefore, here the information content was used as a measure of the level of
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expression of a functional group.

GSi,j =−log(adj−pi,j) (2)

Here, i is the ith gene set, j is the jth cell, and adj−pi,j represents the adjusted p-value
in the ith gene set in the jth cell.

Algorithm optimization
Fisher’s exact test is a time-consuming process. For single-cell data, a statistical test would
be required for each function of each cell. Therefore, when the number of cells is large, the
computation time would be untenable. Therefore, the algorithm was optimized with the
addition of multi-core computing.

Optimization of the algorithm can be illustrated using the symbols in section ‘‘Gene-
functional group conversion’’. First, because N and K were invariable for all cells, these
values were stored in memory to avoid recalculation with each replicate. Second, the gene
expression matrix was transformed into 0,1 matrix A, where 1 represents the expression
of gene i in cell j and 0 represents the non-expression of gene i in cell j. The gene set was
also transformed into 0,1 matrix B, where 1 represents the presence of gene i in set s and 0
represents the absence of gene i in set s. The element (k) in the product A×BT of the two
matrices represents the number of genes expressed by cell j in set s (Fig. 2).

Cluster and differentially expressed gene detection based on FEM
and integration of GEM and FEM by Seurat
Analysis tools for scRNA-seq data
A number of integrated data analysis software packages and platforms exist, including
Seurat (Butler et al., 2018), Scater (McCarthy et al., 2017), and Scanpy (Wolf, Angerer &
Theis, 2018). Seurat provides integrated environments (including sample and feature
selection, data standardization, dimensionality reduction, clustering, and visualization) to
explore massive scRNA-seq datasets (Luecken & Theis, 2019). Seurat was used in this study
for normalization, dimensionality reduction, clustering, and visualization.

Dimensionality reduction
The dimensions of single-cell expression matrices were further reduced after feature
selection by dedicated dimensionality-reduction algorithms. These algorithms, such as
principal component analysis (PCA), embed the expression matrix into a low-dimensional
space, which is designed to capture the underlying structure in the data in as few dimensions
as possible (Luecken & Theis, 2019; Eraslan et al., 2019). Our data were converted into a
linear combination of the first N principal components by the PCA algorithm. The value
corresponding to the ‘elbow’ point was taken as the value of N .

Clustering
Single cells were clustered during the analysis of scRNA-seq transcriptome profiles. This
may reveal cell subtypes and infer cell lineages based on the relationships among cells.
Several software packages support the cluster analysis of scRNA-seq data (Petegrosso, Li &
Kuang, 2019). Seurat was used for clustering based on a graphical approach. The cluster
function was set to 0.4–1.2 according to the data. All parameters are show in Table S5
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Full-size DOI: 10.7717/peerj.12570/fig-2

Differential expression between clusters
Differential expression analysis is helpful for finding the significant DEG/DEF between
distinct subpopulations or groups of cells (Petegrosso, Li & Kuang, 2019). Seurat was used
to determine the subsets of functions that exhibited a high variation between clusters.

GEM and FEM fusion analysis
FEM is limited in that it only considers the presence or absence of gene expression
without considering the expression value of the gene. Therefore, FEM cannot replace
GEM-based methods in cell classification and type identification. In the present study,
data from the GEM and FEM were used for fusion analysis (Fig. 1). The multi-modal
data analysis module of Seurat was used for polymerization analysis to combine the GEM
and FEM results (Stuart et al., 2019; Stuart & Satija, 2019). GEM was used for clustering
because it contains information about gene expression values and can better distinguish
the differences between cells. FEM reduces all of the genes of the same function to one
dimension. If two cells express different genes of the same function, they will be clustered
together in FEM, but they may be separated in GEM since they are different genes. We also
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tested the Differential Expression Functions between Clusters based on GEM (GC-DEF)
and the Differentially Expressed Functions between Clusters based on FEM (FC-DEF).

The feature number selection, scaling ratio, PCA, and clustering parameter selection
were appropriately adjusted according to circumstances (Table S5), following the Seurat
instructions. In brief, we use the VlnPlot visualization function in the Seurat package
to select the feature number and scaling ratio value for subsequent analysis. The feature
number and the scaling ratio are respectively taken as the maximum value of ordinate
that can include all the points after excluding individual excessively high outliers. We can
select the number of principal components by observing the corresponding abscissa value
at the ‘‘elbow’’ point of the Elbow plot by Seurat. If the number of cell types is known, the
clustering parameters were set so that the number of clusters was greater than or equal to
the number of actual cell types. If the number of cell types is unknown, we can adjust the
number of clusters by setting the resolution parameter of FindClusters function in Seurat.
Like most clustering algorithms, there is no uniform standard to define a specific number
of clusters. Users can try multiple parameters to get a more appropriate number of clusters.
All parameters in this paper are detailed in Table S5.

Evaluation of FEM clustering results
Wedefined an evaluation score, SC, to compare the overlap between clusters based on FEM
clustering and real cell types. The number of clusters was related to specific parameters,
therefore, each cluster should contain only one cell type as much as possible. Additionally,
the cluster’s number should be greater than or equal to the number of cell types. Therefore,
the clustering parameters were set so that the number of clusters was greater than or equal
to the number of actual cell types. For each cluster i, SCi was measured by the consistency
of the cell type within the cluster (the proportion of the cell type with the largest number of
cells to the total number of cells in the cluster). We used the following formula to evaluate
clustering results:

SCi=
ci,max

ci,T
(3)

ci,max represents the cell type with the largest number of cells in the i-th cluster. ci,T
represents the total number of all cells in the i-th cluster.

Data availability
Publicly available scRNA-seq datasets were used in this study. The PBMCs dataset was
downloaded from the 10X Genomics dataset page (https://cf.10xgenomics.com/samples/
cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz). The liver and pancreas scRNA-seq
data can be accessed in the NCBI Gene Expression Omnibus (GEO) under accession
numbers: GSE81252, GSE85241.

Code availability
The FEM software and related scripts have been deposited in the GitHub repository
(https://github.com/qingyunpkdd/single_cell_fem).
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find the similarities between immune cells. (A) The results of GEM clustering. (B) The GO-based clus-
tering results. (C) The correspondence between each cluster and cell type of GO-based clustering. (D)
The differentiation tree of immune cells (Lim et al., 2013). All clustering results are plotted by UMAP. (C)
shows that there are three clusters with low SC scores. The G1 cluster is mainly composed of two types
of monocytes (CD14±Mono, FCGR3A± Mono). It can be seen from (D) that all monocytes have the
same recent developmental origin. G2 is composed of NK cells and CD8 T cells. (D) shows that both NK
cells and T cells are developed from T/NK cell progenitor cells. G3 is composed of naive CD4 T, CD8 T,
and memory CD4 T. The differentiation tree in (D) shows that all T cells have a common nearest ancestor.
The No. 7 cluster has a low score; however, it has a small number of cells and the number of cells in all cell
types is not the main cluster of the corresponding cell type, and is ignored.

Full-size DOI: 10.7717/peerj.12570/fig-3

RESULTS
FEM can separate different cell types
The Reactome pathway gene sets have only 5,741 unique genes and a large amount of gene
information was lost when using the FEM algorithm. In comparison GO gene sets had
15,578 unique genes. Therefore, GO gene set-based FEM was used for cluster analysis. The
Reactome pathway gene sets were used in the analysis of GC-DEF and their cluster results
are shown in Fig. S1. GO-based FEM results are shown in Figs. 3–5.

Three data sets (PBMCs, liver, pancreas) were used to replace GEM for dimensionality
reduction and clustering to verify whether the GO-based FEM algorithm could separate
different cell types. The number of clusters was artificially adjusted and the number of
clusters was set to be greater than or equal to the number of actual cell types. This was done
so that a cluster contained only one main cell type, which allowed us to better distinguish
the different cell types.
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Figure 4 Comparison of GEM clustering (4A) and GO-based FEM clustering (4B) helps to find the
similarities between liver cells. (A) The results of GEM clustering. (B) The GO-based clustering results.
(C) The correspondence between each cluster and cell type of GO-based clustering. (D) The developmen-
tal trajectory of stem cells (Camp et al., 2017). All clustering results are plotted by UMAP. (C) shows that a
cell group has a low SC score. G1 is mainly composed of definitive endoderm and hepatic endoderm cells.
These two types of cells are far apart in GEM (A). But it is close to each other in GO-based FEM cluster.
From (D), we find that these two cells are adjacent to each other on the cell differentiation trajectory, and
they are the progenitor cells of other cells in the liver.

Full-size DOI: 10.7717/peerj.12570/fig-4

We needed to discover different cell groups and determine the relationship between
different cell types for single-cell scRNA-seq data. These cells may have similar functions or
a common recent differentiation origin. The FEMmethodmay help determine functionally
similar cells. Cells were noted to be different subtypes of the same cell if the two groups of
cells were far apart in GEM, but close or partially overlapped in FEM. This result may also
indicate that the two groups of cells may perform similar functions.

We performed GEM clustering and GO-based FEM clustering on the scRNA-seq data,
and compared the two clusters. The FEM clustering results were also compared with real
cell types to determine the similarity of cell functions. A low SC score in a particular cluster
i indicated that the cluster may contain multiple cell types. A moderate number of a certain
cell type A in the cluster i was defined as the main cell typeMCi. For a cluster, allMCsmay
have the same or similar functions.

The results show that the FEM method can distinguish different types of cells that have
different functions on three data sets (Figs. 3–5). Figures 3–5 show that FEM can find cells
with similar origins or different subgroups of a cell. Figure 3 shows three clusters (G1, G2,
G3) that have a low SC score and all of the T cells overlapped in cluster G3. The MCi of
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Figure 5 Comparison of GEM clustering (5A) and GO-based FEM clustering (5B) helps to find the
similarities between pancreatic cells. (A) The results of GEM clustering. (B) The GO-based clustering re-
sults. (C) The correspondence between each cluster and cell type of GO-based clustering and the SC score.
(D) The differentiation lineage of pancreatic cells (Jacobson & Tzanakakis, 2017). All clustering results
are plotted by UMAP. (C) shows that the two cell groups have the lowest scores. Although G1 has a low
score; it has a small number of cells. The number of cells in all cell types is not the main cluster of the cor-
responding cell type, so it will be ignored. G2 is composed of five types of cells (alpha, beta, delta, gamma,
epsilon). Although the epsilon cell has only two cells in cluster 1, but it has only three cells, so it is consid-
ered that it is distributed in G2. These five types of cells are far apart in the GEM UMAP plot, but close to
each other in the GO-based FEM plot. (D) Shows that all these cells have a common progenitor cell differ-
entiation.

Full-size DOI: 10.7717/peerj.12570/fig-5

NK cells and T cells in cluster G2 literature show that they have a common differentiation
origin T/NK cell progenitor. G1’s MCi contained only monocytes (Lim et al., 2013). The
FEM in Fig. 4 helped determine the relationship of definitive endoderm cells and hepatic
endoderm cells (Camp et al., 2017). Figure 5 illustrates that alpha, beta, gamma, epsilon,
and delta cells form one cluster in the FEM clusters, and that the cell differentiation tree
verifies that they have a common endocrine progenitor (Jacobson & Tzanakakis, 2017).

FC-DEF can directly detect the functional differences between
clusters
GC-DEF can reveal the expression of specific functions from the UMAP(t-SNE) diagram
of GEM and the results of GC-DEF may aid GEM in determining the functions of a specific
group. Official data pre-processing in the PBMC dataset included the removal of cells with
excessive mitochondrial genes (>5%, quality control) and those with too many (>2,500) or
too few (<200) features (Bittersohl & Steimer, 2016). Some cells may have been filtered out
in the data pre-processing stage whereas our method did not filter out any cells. Indeed, the
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Figure 6 An example of GC-DEF functional analysis. (A) Official clustering results. (B) Results of GEM
without cell filtering show a small cell group above the NK cell cluster (when compared with (A). (C) By
directly displaying the expression value of specific pathways in all cells, this cell group was found to have
high expression of the cell proliferation-related pathway. For downstream analysis, cell screening may re-
sult in some cells being filtered out, which may hold some interest. In the process of biological research,
cells at special stages often account for only a small part of the total number of cells, but they may be im-
portant for explaining biological processes. For example, a small part of cells in the cell cycle stage (B).
They are clustered in the NK cell group in clustering, but compared with other NK cells, they are a promi-
nent part of the UMAP plot. When doing differential expression between cell groups, the signals of these
proliferating cells will be masked by NK cells. The FEM method is based on a single cell, so it can directly
display the functions of these special cells even at single cell level.

Full-size DOI: 10.7717/peerj.12570/fig-6

filtered cells were found to be located above the NC cells. Using the GC-DEF method, this
cell group was found to have a highly expressed cell proliferation-related pathway. Thus,
these cells were identified as proliferative (Fig. 6).

The most significantly expressed pathway, ‘‘hemostasis’’, was located in the platelet
clusters. The ‘‘innate immune system’’ pathwaywas significantly expressed in themonocyte,
DC cell, NK cell, and platelet cell populations, which was consistent with literature results
(NORMAN, 1995). The top five highly expressed functions were consistent with the cell
type characteristics. The other FC-DEF and GC-DEF results are provided in Table S1.

Table 2 shows that most of the corresponding cells were closely related to their
corresponding top functions, such as the high expression of ‘‘Reactome regulation of beta
cell development’’ in beta cells and the high expression of ‘‘Reactome gluconeogenesis’’ in
mature stem cells. All other results are shown in Table S1.
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Table 2 Top five pathways for mature hepatocyte cells (liver dataset) and beta cells (pancreas dataset).

Function Cluster Adjusted
p-value

reactome-regulation-of-gene-expression-in-beta-cells beta 7.47E−48
reactome-regulation-of-beta-cell-development beta 1.02E−25
reactome-activation-of-nmda-receptors-and-postsynaptic-
events

beta 1.83E−13

reactome-negative-regulation-of-tcf-dependent-signaling-
by-dvl-interacting-proteins

beta 2.05E−11

reactome-synthesis-of-pips-at-the-early-endosome-
membrane

beta 1.76E−06

reactome-gluconeogenesis mature hepatocyte 1.75E−11
reactome-signaling-by-bmp mature hepatocyte 4.50E−09
reactome-apoptotic-cleavage-of-cell-adhesion-proteins mature hepatocyte 9.00E−09
reactome-transport-of-nucleosides-and-free-purine-and-
pyrimidine-bases-across-the-plasma-membrane

mature hepatocyte 1.51E−08

reactome-bbsome-mediated-cargo-targeting-to-cilium mature hepatocyte 1.76E−08

GO-basedGC-DEF results was consistentwith the pathway-basedmethods and literature
results (Norman, 1995). All other results are presented in Table 3 and Tables S1–S4.

Difference between GO enrichment analysis results based on DEG
and FEM
The general GSE analysis was based on DEGs between groups (cell types or clusters). The
FEM-based gene set (function) enrichment can be defined as the DEF between groups. The
results (Table S5, p-value threshold ≤ 0.05) show that: (1) the enrichment analysis results
obtained by the two methods are quite different. (2) There are more GO items based on
the FEM method than the method based on DEGs.

The possible explanation for the first point is that the twomethods are based on different
data, and the FEM method is an enrichment result of a single cell. The DEG method is
based on results from cell clusters. FEM uses all expressed genes in a cell to calculate GO
enrichment, while the DEG method only uses those differentially expressed genes, which
may explain why there are more GO items based on the FEM method than the DEGs
method. The FEM method focuses on the ‘‘differentially expressed GO items’’, and the
DEG method focuses on ‘‘the enriched GO items of differentially expressed genes’’.

Validation with an immune dataset
The Immunologic Signatures Collection (ImmuneSigDB) (Liberzon et al., 2011) was used
as a validation dataset to test whether the proposed method could detect sets of genes
that had been identified as up-regulated or down-regulated by traditional methods. The
ImmuneSigDB is composed of gene sets that represent cell types, states, and perturbations
within the immune system (Godec et al., 2016). Figure 7 shows that within the bulk
RNA-seq dataset, the cell types from the up-regulated expression marker gene set were
highly expressed using the method proposed in this study. This demonstrated the efficacy
of the proposed method for detecting cell-type-specific gene sets.
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Table 3 Results of the top five GO-based FEMmethods for each cluster (PBMC data set).

Function Cluster Adjusted
p-value

go-mhc-class-ii-receptor-activity B 1.31E−299
go-mhc-class-ii-protein-complex B 1.94E−207
go-clathrin-coated-endocytic-vesicle-membrane B 8.60E−183
go-clathrin-coated-endocytic-vesicle B 1.40E−174
go-mhc-protein-complex-assembly B 2.39E−173
go-collagen-containing-extracellular-matrix CD14+_Mono 3.17E−235
go-rage-receptor-binding CD14+_Mono 1.42E−226
go-chemokine-production CD14+_Mono 1.61E−211
go-defense-response-to-bacterium CD14+_Mono 9.86E−194
go-neutrophil-migration CD14+_Mono 2.36E−187
go-cytolysis CD8_T 2.61E−64
go-t-cell-receptor-complex CD8_T 7.62E−53
go-negative-regulation-by-host-of-viral-
transcription

CD8_T 5.71E−39

go-regulation-of-cell–cell-adhesion-mediated-by-
integrin

CD8_T 1.50E−36

go-t-cell-receptor-binding CD8_T 4.19E−29
go-ige-binding DC 4.78E−241
go-t-cell-activation-via-t-cell-receptor-contact-
with-antigen-bound-to-mhc-molecule-on-antigen-
presenting-cell

DC 6.80E−23

go-mhc-class-ii-receptor-activity DC 1.48E−14
go-hydrolase-activity-acting-on-ester-bonds DC 0.000373
go-lipid-metabolic-process DC 0.000529
go-igg-binding FCGR3A+_Mono 9.13E−143
go-negative-regulation-of-leukocyte-proliferation FCGR3A+_Mono 4.71E−60
go-regulation-of-mast-cell-activation FCGR3A+_Mono 7.62E−59
go-regulation-of-mast-cell-activation-involved-in-
immune-response

FCGR3A+_Mono 1.83E−58

go-dendritic-cell-differentiation FCGR3A+_Mono 3.00E−58
go-positive-t-cell-selection Memory_CD4_T 5.51E−40
go-positive-thymic-t-cell-selection Memory_CD4_T 1.80E−37
go-t-cell-receptor-binding Memory_CD4_T 1.89E−37
go-alpha-beta-t-cell-receptor-complex Memory_CD4_T 7.89E−35
go-positive-regulation-of-t-cell-receptor-signaling-
pathway

Memory_CD4_T 3.62E−33

go-t-cell-differentiation-in-thymus Naive_CD4_T 5.58E−123
go-thymic-t-cell-selection Naive_CD4_T 4.23E−87
go-positive-regulation-of-t-cell-receptor-signaling-
pathway

Naive_CD4_T 2.06E−58

go-t-cell-receptor-complex Naive_CD4_T 2.18E−57

(continued on next page)

Liu et al. (2021), PeerJ, DOI 10.7717/peerj.12570 15/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.12570


Table 3 (continued)

Function Cluster Adjusted
p-value

go-negative-t-cell-selection Naive_CD4_T 1.51E−39
go-granzyme-mediated-apoptotic-signaling-
pathway

NK 2.10E−190

go-cytolytic-granule NK 1.03E−150
go-positive-regulation-of-natural-killer-cell-
chemotaxis

NK 6.27E−128

go-cytolysis NK 6.91E−97
go-ccr5-chemokine-receptor-binding NK 9.03E−58
go-platelet-alpha-granule-membrane Platelet 6.75E−158
go-platelet-alpha-granule Platelet 4.94E−06
go-platelet-degranulation Platelet 5.90E−06
go-platelet-alpha-granule-lumen Platelet 6.23E−06
go-contractile-fiber Platelet 8.58E−06

gse26495-naive-vs-pd1low-cd8-tcell-up gse22886 naive tcell vs monocyte up

gse22886 naive bcell vs monocyte upgse11057 pbmc vs mem cd4 tcell upgse10325 myeloid tcell vs cd4 upgse7764 nkcell vs splenocyte up
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Figure 7 Validation results of Immunologic Signatures Collection gene sets. ImmuneSigDB (Godec et
al., 2016) is a collection of gene sets of human and mouse immune cells collected from the GEO database.
All data are manually corrected. Each gene set represents genes that are highly expressed in a specific im-
mune cell type compared to another or all other cell types. Here, we verify whether the expression of each
gene set (in this case, functional expression) is consistent with the corresponding cell type. (A) UMAP
plot for each cell type based on GEM. (B–G) The expression values of various cell type-specific gene sets
in each cell. The figures show that the functional expression obtained by our method is consistent with the
corresponding cell type.

Full-size DOI: 10.7717/peerj.12570/fig-7

DISCUSSION
We showed that FEM can be used for cell clustering. It also can merge the GEM method
for downstream differential expression analysis to find cell type-specific functions.

It was necessary to evaluate the impact of some biological effects on the cell clusters, such
as the impact of cell cycles on cell-type clustering results. Within the same cell type, cells
in the cell proliferation cycle and non-proliferating cells may be significantly separated in
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the cluster and UMAP plots, which affects the final cell type identification and differential
expression analysis. In some studies, these cells are removed, while they may still be of
interest and there is currently no uniform standard for handling these cells. The method
proposed in this study directly converts the expression of genes in cells to the expressions of
functions and cells can be screened according to their FEM score at any stage of processing.

It should be noted that FEM only considers the presence and absence of gene expression,
without considering the influences of gene-expression values. Therefore, the proposed
method and gene-expression–based methods are complementary and should not be
considered as alternatives to one another.

We have proven that the FEM-based method can also be applied to cell clustering, and
verified the accuracy of cell clustering when compared with real cell types. A direct analysis
of the differential expression function between the groups and visually elucidating the
differences in specific functions helps to intuitively understand the functions of cells. FEM
and GEM were used as two different data sources, while multi-omics data fusion analysis
was reused in Seurat and other tools to show the functional results of GEM analysis.

The information that each cell can provide may be valuable for single-cell transcriptome
data. The same cell type may also be in different physiological states (for example: different
stages of the cell cycle, different metabolic states). Cells in a differentiation stage may have
a series of cell states. Therefore, it is necessary to develop data analysis tools for individual
cells to find those few but possibly important cells, such as those cells that are in a transient
state of differentiation.

CONCLUSIONS
The final step in the analysis of gene expression data is to interpret the biological significance
of the genes based on a hypergeometric test between the listed genes of interest and the set
of genes representing specific functions. If each of the first n genes obtained by differential
expression analysis represents a function that does not overlap with the other, then the
enrichment analysis will fail. If most genes of a function are expressed in a cell and are
screened out in the process of gene selection, this function will also be missed. GSEA
at the single-cell level effectively avoids these problems based on the characteristics of
single-cell data. The results of the present study showed that direct enrichment analysis at
the single-cell level is feasible and yields powerful results.

We preliminarily discussed the applicability of the FEM method and the FEM have a
wider range of practical applications. The possible applications of the FEMmethod include:
determining the functional differences between different groups; analysing the function of
a few outlier cells; analysing the state of a small number of cells on the cell trajectory in
the pseudo-trajectory analysis; analysing which cell groups are more similar in function
by comparing GEM and FEM clustering; determining marker quality for different cell
groups compared with genes (though there is a need for future validation); and more
differential functions were found compared with the GEM method. The disadvantages of
the FEM method are: the influence of gene expression is not considered; it is impossible to
distinguish cell groups with similar functions; and the function of differential expressions
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and the result of DEG-based enrichment are quite different, and they cannot be substituted
for each other.
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