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Abstract

With the recent discoveries of novel post-translational modifications (PTMs) which play
important roles in signaling and biosynthetic pathways, identification of such PTM cata-
lyzing enzymes by genome mining has been an area of major interest. Unlike well-known
PTMs like phosphorylation, glycosylation, SUMOylation, no bioinformatics resources are
available for enzymes associated with novel and unusual PTMs. Therefore, we have
developed the novPTMenzy database which catalogs information on the sequence, struc-
ture, active site and genomic neighborhood of experimentally characterized enzymes
involved in five novel PTMs, namely AMPylation, Eliminylation, Sulfation, Hydroxylation
and Deamidation. Based on a comprehensive analysis of the sequence and structural
features of these known PTM catalyzing enzymes, we have created Hidden Markov
Model profiles for the identification of similar PTM catalyzing enzymatic domains in gen-
omic sequences. We have also created predictive rules for grouping them into functional
subfamilies and deciphering their mechanistic details by structure-based analysis of their
active site pockets. These analytical modules have been made available as user friendly
search interfaces of novPTMenzy database. It also has a specialized analysis interface for
some PTMs like AMPylation and Eliminylation. The novPTMenzy database is a unique
resource that can aid in discovery of unusual PTM catalyzing enzymes in newly
sequenced genomes.

Database URL: http://www.nii.ac.in/novptmenzy.html

Introduction

Post-translational modifications (PTMs) of proteins are a
crucial strategy used by both prokaryotes and eukaryotes
to modulate and regulate cellular processes. Modification
of proteins can range from the addition of a small chemical
moiety such as phosphate to the addition of peptides like

©The Author(s) 2015. Published by Oxford University Press.

ubiquitin and SUMO or the covalent cleavage of peptide
backbone (1). The modifications play a central role in
intracellular signaling; signaling pathways associated with
host-pathogen interactions (2) as well as the biosynthesis
of many bioactive natural products like lantibiotics (3) and
so enables proteins to acquire new functions. Therefore,
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the identification of enzymes involved in novel PTMs by
genome mining has become an area of major interest. The
exponential increase in genome sequences and the experi-
mental characterization of a large number of amino acid
modifications in proteins has created a bottleneck in con-
necting known PTMs to the genes catalyzing them (4).
Therefore, it is necessary to decipher the various biochem-
ical pathways associated with PTM catalyzing enzymes by
in silico genome analysis. PTMs like phosphorylation,
glycosylation, SUMOylation have been characterized
extensively and a number of bioinformatics tools are avail-
able for analysis of the enzymes involved in their catalysis.
O-GLYCBASE (5) and Phosphso.ELM (6) are some
examples of databases associated with specific classes of
PTMs. In contrast to these well-known PTMs, no user
friendly tools are available for the identification and ana-
lysis of enzymes associated with newly discovered novel
PTMs (Figure 1) like AMPylation (7) and Eliminylation (8)
and unusual PTMs like Sulfation (9), Hydroxylation (10)
and Deamidation (11). Even though these PTMs occur less
frequently, they play a crucial role in structural and func-
tional diversification of the proteome and their role in
expanding the metabolic and signaling capacities of an
organism cannot be underestimated (12).

AMPylation

AMPylation or adenylylation is the covalent transfer of the
AMP moiety from ATP to the hydroxyl group of a tyrosyl

i AMP
Fic/GS-ATase/ A *1 /T
. . ATP f g
f OH AMP
[ Target } t Target J’ q
AMPylation \ o
H3 CAMP-Tyr |
H2q CNFs '
2- Oxoglutarate
GIIn Gllu +0,
{ Target ] L Target J Pro

Deamidation
NH, | ‘ oH |

Gin i . Glu

or threonyl residue in a protein (Figure 1). Three separate
families of enzymes, Filamentation induced by cAMP (Fic)
(13), Synthetase  Adenyl
(GSATase) (14) and Defects in Rab1 recruitment protein
A (DrrA) (15) are known to catalyze the AMPylation reac-
GSATase inhibits the
Synthetase (GS) in the nitrogen metabolism pathway by
AMPylation of tyrosine residues (14). AMPylation by Fic
and DrrA domains has been shown to be involved in
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the modification of host proteins by virulent pathogens
(13, 15, 16). This regulation of both metabolic and host
pathogen interaction pathways by AMPylation makes it a
topic of special interest. Involvement of Fic domains in
neurotransmission in glial cells (17) and the presence of
this domain in multicellular eukaryotes (18) suggest that
AMPylation could also have implications for regulation of
other biological processes. Computational studies have
shown that death on curing (Doc) proteins share sequence
similarity with Fic proteins and hence the Fic family is
quite often annotated as the Fic/Doc family (18, 19). Apart
from AMPylation, the members of Fic/Doc family have
been shown to catalyze phosphorylation and phosphocho-
line transfer (20). Therefore, it is necessary to identify
sequence and structural features which distinguish
AMPylators from other non-AMPylating family members.
Results from biochemical studies and information from
available three-dimensional (3D) structures have helped in
elucidation of the active site residues and other mechanistic

details of AMPylation domains (21-23). Recent studies
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Figure 1. Schematic representation of five unusual PTMs of proteins. For each PTM chemical structures of the amino acid and modified amino acid

have been depicted.
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have also revealed that how inhibitory helices in Fic
domains or in their genomic neighbors inhibit AMPylation
(21, 24).

Eliminylation

Eliminylation is another novel PTM associated with both
host pathogen interaction (25-27) and biosynthetic path-
ways (28, 29). Eliminylation involves f elimination of the
phosphate group of phosphoserine (pS) or phosphothreo-
nine (pT) converting these amino acids into dehydroala-
nine (DHA) or dehydrobutyrine (DHB)
Removal of phosphate by f elimination is catalyzed by

(Figure 1).

novel phosphothreonine lyase enzymes present in patho-
genic bacteria like Shigella, Pseudomonas syringae and
Salmonella (25-27). These bacterial phosphothreonine
lyases catalyze the irreversible PTM of host Mitogen-
activated protein kinases (MAPKs) by eliminylation of
functionally crucial phosphothreonines, converting them
to DHB. Since these MAPKs cannot be phosphorylated
again, this pathogen-mediated PTM results in the inhib-
ition of the host MAPK
Phosphothreonine lyase domains are also present in LanL

signaling  pathways.

like type III and type IV lanthipeptide synthetases along
with kinase domains (28). During the biosynthesis of
lanthipeptides, these LanL like phosphothreonine lyase
domains act on phosphorylated serine/threonine-rich pep-
tides to produce dehydro amino acids like DHA and DHB.
DHA/DHB are subsequently cyclized with cysteine resi-
dues by lanthionine cyclase enzymes to generate lanthio-
nine groups (28, 29) and so these enzymes are also
involved in biosynthesis of natural product lantibiotics.
Even though experimental studies so far have only identi-
fied phosphothreonine lyases in prokaryotic organisms,
based on bioinformatics studies using profile-based search-
ing, fold prediction and genomic neighborhood analysis,
we have recently predicted a phosphothreonine lyase
function for BLESO3 proteins in humans (30).

Hydroxylation

Collagen chains, the major component of animal tissues,
are heavily hydroxylated, majorly at proline and to a lesser
extent lysine residue (10, 31). Disruption of PTMs in colla-
gen has been shown to be linked to certain forms of osteo-
genesis imperfecta and might be linked to ocular and renal
pathologies (10). Hydroxylation of proline and asparagine
residues is also known to regulate the hypoxia inducible
transcription factor (HIF) (32, 33). HIF induces transcrip-
tion of numerous genes to respond to reduced oxygen
levels. The same enzyme, Factor inhibiting HIF (FIH), is
also known to regulate ankyrin repeat containing proteins

through asparagine and aspartic acid hydroxylation and
hence modulate its interactions with other proteins (34).
FIH has also been shown to hydroxylate histidine residues
in ankyrin repeat domain of tankyrase-2 and could prob-
ably be involved in modulation of hypoxic response (35).
Thus, aspartic acid or asparagine hydroxylating enzymes
can also hydroxylate histidine when it is presented in an
appropriate substrate context. Histidine hydroxylation is
also catalyzed by a new class of 2-oxoglutarate (20G)—
dependent oxygenase—ROX (36, 37). Human MYC-
induced nuclear antigen (MINAS53) and Nucleolar protein
66 (NOG66) have been shown to catalyze hydroxylation on
histidine residue within ribosomal proteins Rpl27a and
Rpl8, respectively (36, 37). Escherichia coli homolog YcfD
has been shown to catalyze hydroxylation on arginine resi-
due of ribosomal protein Rpl16 (36-38). Therefore,
enzymes catalyzing hydroxylation of protein residues con-
stitute another important class of PTM catalyzing

enzymes.

Deamidation

In E. coli Cytotoxic Necrotizing Factors CNF1, CNF2,
CNF3 and CNFy cause the deamidation of a glutamine
residue to a glutamate, thereby constitutively activating
host the RhoGTPases (Figure 1) (11). Deamidation by
CNF1 from Uropathogenic E. coli has been implicated
in infections of the urinary tract while CNF2 has been
demonstrated to cause diarrhea in calves and lambs (11).
Recently, it was shown that CNFy induces apoptosis in
a prostate cancer cell line, making it a potential candidate
for the treatment of prostate cancer (39). Tissue transgluta-
minase-mediated deamidation of glutamine from gluten
peptides occurs in celiac disease (40). Transglutamination-
mediated transamidation of glutamine residues is also
known to be coupled with deamidation (41). Therefore, in-
volvement of deamidation in various infections, diseases
and treatment of cancer are also topics of great interest to

the scientific community.

Sulfation

The covalent transfer of sulfate group to tyrosine residues
occurs on several proteins like plasma membrane proteins,
coagulation factors, adhesion molecules, secretory pro-
teins, immune components and the neuropeptide chole-
cystokinin (Figure 1) (9). Sulfation helps in modulating the
interactions of these proteins and is necessary for their bio-
logical activity (42, 43). Therefore, the development of
bioinformatics tools for identification of novel sulfotrans-
ferases and their substrates is a topic of considerable
interest.
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The enzymes catalyzing the above-mentioned unusual
PTMs and their substrates have been biochemically charac-
terized in recent years. 3D structures for many of these
enzymes have also been elucidated by crystallographic
studies. This information about sequence, structure,
physiological substrates, i.e. particular proteins that these
enzymes are known to modify, and the substrate specificity
of these PTM catalyzing enzymes is extremely valuable,
not only for understanding mechanistic details of these en-
zymes, but also for identification of such novel enzymes in
newly sequenced genomes. Since no databases are available
for enzymes which catalyze AMPylation, Eliminylation
and Sulfation, protein function annotation resources like
Pfam cannot efficiently identify such novel enzymes in
newly sequenced genomes. Therefore, we have developed
the novPTMenzy database for cataloging sequence, struc-
ture and substrate specificity of these unusual PTM cata-
lyzing enzymes. Based on a comprehensive analysis of the
sequence and structural features of these enzymes, we have
also developed computational tools for identification and
classification of these novel enzymes in various genomes.
These tools have been made available as a search interface
of the novPTMenzy database. The novPTMenzy database
has been successfully used to identify several unusual PTM
catalyzing domains in proteins with previously unknown
function present in newly sequenced genomes.

Database development

Data integration and organization

Based on extensive manual curation of published litera-
ture, information on sequences, 3D structures, experimen-
tally verified active site residues, native pathways and
known substrates for enzymes associated with these five
PTMs have been cataloged in the novPTMenzy database
(Figure 2). The information on each of these five unusual
PTM
novPTMenzy database into three major sections: (i)

catalyzing enzymes has been organized in
Experimentally characterized enzymes (Figure 3A), (ii)
Available structures from X-ray crystallographic or NMR
studies and (iii) Active site or substrate binding pocket resi-
dues (Figure 3B). For each PTM catalyzing enzyme, as well
as the amino acid sequence information, other curated
information such as the source organism, enzyme commis-
sion number, known pathways where these enzymes have
been shown to be involved, related literature links and tar-
gets that are post-translationally modified by these
enzymes are also stored in novPTMenzy database.
Available 3D structures of PTM modifying enzymes were
downloaded from the Protein Data Bank (PDB) database
(44). 3D structures in complex with ligand or ligand

transformed from homologous 3D structures were stored
in novPTMenzy database. The structural information sec-
tion of the novPTMenzy database stores structure-related
information such as link to individual PDB page, their
CATH (45) and SCOP (46) IDs, source organism, PubMed
IDs of related literature. The active site or substrate bind-
ing pocket residues identified by structural studies as well
as mutational analysis have also been compiled in the
novPTMenzy database based on a literature survey.
Extensive cross-references are provided to various data-
bases such as UniProtKB (47), NCBI taxonomy (48),
KEGG (49), PubMed, STRING (50) and PDB (51). The
current version of the novPTMenzy database contains
information about 73 experimentally characterized un-
usual PTM catalyzing enzymes from 36 different organ-
isms and 95 crystal or NMR structures available in PDB
for enzymes catalyzing unusual PTMs.

Retrieval and visualization of stored data

Users can browse the database from the menu panel pro-
vided on the left side of each page. The menu panel pro-
vides links to all the five different PTMs and for each PTM
the user can view a detailed report or carry out a number
of different
novPTMenzy provides user-friendly graphical interfaces

analyses using various analysis tools.
for the visualization of 3D structures as well as the depic-
tion and analysis of their active site residues using the Jmol
applet (Figure 3C). The interface also facilitates visualiza-
tion of active site residues along with the ligand (Figure
3D). Figure 3D shows the analysis of the 3D structure
of the AMPylating enzyme NmFic (PDB ID: 2G03) to
highlight the utility of this interface. As can be seen, visual-
ization of active site residues along with transformed lig-
and not only helps in understanding their role in catalysis,
but also highlights how a negatively charged glutamate
residue can potentially obstruct the ATP binding site
(Figure 3D). This correlates well with experimental
evidence showing the glutamate containing helix to be
inhibitory and the mutation of the inhibitory glutamate
facilitates AMP binding and hence the AMPylation activity
by this enzyme (21, 24).

Editable database

As proteomic and metabolomic data increase exponentially
there is a need for quickly incorporating the growing infor-
mation in our database. In order to accomplish this
we have made provision for including data by a crowd-
sourcing approach through editable pages. An interested
user can incorporate any new information in the respective
database page. As community-based data incorporation
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Figure 2. Schema of novPTMenzy workflow. The right panel depicts various possible sequence and structure-based analysis.

might impact the data quality, added data are maintained
as a separate page and are added to the main database only
after careful review by administrators of the novPTMenzy
database. By these means, we hope to use crowd-sourcing
to keep the novPTMenzy database updated with latest
information.

Development of query interfaces

Sequence analysis tools

Based on a variety of analyses of sequence and structural
information, HMM profiles of the domains catalyzing the
five PTMs have been built and stored to be used for various
types of predictions in the novPTMenzy database. Since
certain PTMs like AMPylation and eliminylation are cata-
lyzed by more than one protein family, 11 different
Hidden Markov Models (HMMs) have been derived for
enzymes catalyzing these five different PTMs. One of the
major advantages of novPTMenzy over other domain iden-
tification tools is the presence of HMM profiles for
unusual PTM catalyzing enzymes that are not represented
in generic databases like Pfam (52). In fact the sequence
analysis interface of novPTMenzy cannot only identify dif-
ferent unusual PTM catalyzing domains in a protein

sequence, but can also group them into different functional
subfamilies using these 11 HMM profiles. For example, a
putative AMPylating domain can be classified as Fic, Doc
or a phosphocholine transferase.

Given a query sequence (fasta formatted or bare
sequence) or an accession number, the search interface of
novPTMenzy matches it to profiles of different PTM cata-
lyzing enzymes using HMMER (53) tool. Details of the hit
are provided as a table and a color-coded alignment of the
sequence with profile is displayed below it (panel 1 in
Figure 4). Alignment colors vary from green to red based
on the quality of alignment. It also annotates the putative
active site residues in the query sequence by highlighting
them in the alignment and also displaying them in tabular
form (panel 2 in Figure 4). novPTMenzy also provides
interfaces for alignment of the query protein sequence with
other homologous sequences which have been experimen-
tally characterized as well as with structural homologs pre-
sent in PDB (panel 3 in Figure 4). A local version of the
NCBI BLAST program is used to search for the closest
neighbors in the sequence database of experimentally char-
acterized enzymes and enzymes with 3D structures. The
accession numbers of closest neighbors displayed in the
table are linked back to our database for active site pocket
visualization and more annotation. This interface also
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allows construction of phylogenetic tree and its visualiza-
tion using a url-based link to the PhyloWidget (54) pro-
gram (panel 4 in Figure 4). Seed sequences for each PTM
catalyzing domains are stored in the novPTMenzy data-
base and are used for construction of the phylogenetic tree
using the ClustalW (55) program. Users have an option to
download the phylogenetic tree for future offline analyses.
An interesting aspect of novPTMenzy is that the HMM
profile-based method combined with the putative active
site prediction is used to distinguish between subfamilies of
PTM catalyzing enzymes which are functionally divergent.
For instance proteins of Fic/Doc family have diverged to
perform different functions. Although the Fic subfamily
catalyzes the AMPylation reaction, recent studies indicate
that members of Doc subfamily are involved in phosphor-
(56)
X (AnkX) like proteins are involved in phosphocholine

ylation and Ankyrin repeat-containing protein
transfer (20). Due to their sequence similarity these pro-
teins are grouped under the Fic family by generic databases
like Pfam. However, the search interface of novPTMenzy
uses profiles to distinguish between Fic and Doc proteins
and active site residues are used to distinguish the Fic

subfamily from the Doc and AnkX subfamilies. The sensi-
tivity and specificity of the Fic profile to distinguish
between Fic and Doc proteins were 84.07 and 98%,
respectively, and the corresponding values for Doc profile
were 90 and 92.47%, respectively (Table 1). Figure 4 dis-
plays the output from the novPTMenzy search interface
when sequentially similar but functionally divergent Fic
and Doc proteins are given as input. The interface recog-
nizes Fic and Doc proteins correctly giving the details of
the alignment like the e-value, start and end position of
Fic/Doc domains and the HMM profile used to identify the
corresponding domain. Using the predicted active site resi-
dues, the differences in the active sites of Fic and Doc pro-
teins can be inferred. Doc proteins have a conserved lysine
residue (K73) in place of glycine (G225) residue of Fic pro-
teins. Also, Fic proteins have an extra active site residue
(R229) compared with Doc proteins. In addition, the clos-
est experimentally characterized protein and PDB structure
is provided. Hovering the mouse over the accession num-
bers displays some details of the alignment whereas the
alignments to closest sequences can be visualized using the
clickable buttons.
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Figure 4. Screenshots depicting typical analysis using search interface and comparative sequence analysis tools of novPTMenzy database. Panel 1:

The Search interface used sequence to HMM profile alignment to identify AMPylation domain in query sequence and classified it as Fic type from
among Fic, Doc, AvrB and AnkX subfamilies. It also depicts putative active site residues identified in the Fic type AMPylation domain, provides links
to experimentally characterized homologs and also structural homologs. Panel 2: Structural homologs of the Fic domain in the query sequence.
Panel 3: Alignment with the closest structural homolog obtained by clicking the button labeled ‘Str Ali" in the structural homolog cell in Panel 1. Panel
4: Tree button in Panel 1 builds a phylogenetic tree of the PTM catalyzing domain in the query sequence along with seed sequences for the corres-
ponding domain stored in novPTMenzy. It could be either visualized by clicking ‘view tree’ button or downloaded for further analysis. Panel 5:
Identification of a Doc domain in a different query sequence using the search interface of novPTMenzy.

Table 1. Benchmarking the performance of novPTMenzy for
identification of different families of PTM catalyzing domains

Statistical parameter ~ AMPylation Eliminylation
Fic Doc  GSATase PTLs LanL
Sensitivity (%) 84.1 90.0 100 100 100
Specificity (%) 98.0 92.5 100 100 100
PPV (%) 99.5 72.6 100 100 100
Accuracy (%) 86.6 90.9 100 100 100

PPV, Positive Prediction Value; PTLs, Phosphothreonine lyase.

Additional analysis tools/features

Search for inhibitory helices of AMPylation
domains

For AMPylation, novPTMenzy provides specific tools for
identifying intra or inter inhibitory helices involved in the
regulation of AMPylation activity. AMPylation by Fic is
known to be regulated by small inhibitory domains present
on the same polypeptide chain or on neighboring genes
(21).

on the genome The inhibitory glutamate in

aforementioned helix obstructs the ATP binding site and
hence inhibits AMPylation by the Fic domain. Based on
the presence of inhibitory helix, Fic proteins are classified
as class I, II and III. Class I Fic proteins are regulated by
inhibitory helices present in neighboring proteins whereas
class II and class III proteins are regulated by inhibitory
helices present in N-terminal and C-terminal of the Fic
domain, respectively. It was shown that the inhibitory
helix contains a conserved motif containing the glutamate.
To identify the inhibitory domain either in the Fic protein
or in their genomic neighborhood, novPTMenzy uses the
structure-based profile—profile comparison tool HHSearch
(57). Profile HMM s for all the available Fic/Doc structures
were built and stored in the backend database. The
additional advantage of HHSearch over other profile-
based method is the incorporation of secondary structure
information in its profile and use of iterative searches to
build them. Also, HHsearch relies on profile-profile
comparison rather than sequence—profile comparison. This
makes HHSearch more compute intensive but its higher
sensitivity allows the detection of short helices with
divergent sequence containing the inhibitory glutamate.
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HHpred profiles were built for class II Fic domain BtFic
(PDB ID: 3CUC) and SoFic (PDB ID: 3EQX), class III Fic
domains NmFic (2G03) and HpFic (2F6S) and for class
I inhibitory protein VbhA (3SHG) present in the genomic
neighborhood of VbhT Fic domain. These structure-based
sequence profiles were stored in our database along with
information about the inhibitory motif. Users have an
option of giving either just a Fic protein or Fic protein
along with its neighbors (maximum 2). For each input se-
quence HHPred profiles containing structural information
are built. The structural information is based on PSIPRED
(58) predicted secondary structure. The profiles corres-
ponding to input Fic proteins are compared with the pro-
files stored for class II and class III Fic proteins in our
database. If the alignment has an e-value of <0.001 it is
checked for presence of a helix corresponding to inhibitory
helix of class II and class III proteins. If the inhibitory glu-
tamate is present in the helix, the query protein is classified
as class II or III Fic by novPTMenzy. If the inhibitory glu-
tamate and helix is not located in the Fic protein, profiles
of neighbors are aligned to VbhT profile. The Fic protein is
labeled as class I based on the presence of inhibitory glu-
tamate in the profile of the neighbor. An option to input
the accession numbers of Fic sequences is also available.
Accession numbers are mapped to NCBI accession num-
bers and the sequences are fetched from a locally down-
loaded nr database. Also, the sequences of its neighbors are
retrieved from completely or partially sequenced genomes.
novPTMenzy has stored the genomic positions of all pro-
teins from completely sequenced genomes based on infor-
mation from NCBI’s Mapviewer. A search for inhibitory
glutamate is done as described. Figure 5A shows a typical
output for inhibitory helix search, when a Fic protein
Huntingtin yeast partner E (HYPE) from Rattus norvegicus
is given as input. The best hit using structure-based
profile—profile match is 3CUC and HYPE is classified as a
Fic domain containing class II inhibitory helix with a motif
TVAIEG (Figure 5A). It may be noted that HYPE from
Homo sapiens has been experimentally shown to be a Fic
domain containing class II inhibitory helix (21). This mod-
ule of novPTMenzy would help biochemists in designing
experiments for detailed study of regulation of Fic

domains.

Synteny of LanL family

LanL, class IV lantibiotic syntheses, along with several
other enzymes which co-occur in its genomic neighbor-
hood post-translationally modify ribosomally synthesized
small peptides (28, 59). LanL like enzymes have kinase,
lyase and cyclase domains fused, which together cata-
serine/threonine involving

lyze the dehydration of

phosphorylation and eliminylation, and its subsequent cyc-
lization with cysteine. Transformation to mature lanthi-
peptides also involves PTMs by methyl transferases, acetyl
transferases, hydrolases, decarboxylases, etc. Peptidase,
transporters and two component regulatory proteins are
also involved in its synthesis (28). All these genes along
with potential lanthipeptides co-occur in the genomic
neighborhood of LanL proteins. Therefore, to understand
biosynthesis of lanthipeptides by LanL, it is also important
to study its synteny. What makes studying the biosynthesis
of these unusually modified peptides fascinating is that
they have bactericidal properties and their potential use as
new antibiotic.

For a detailed understanding of eliminylation domains
in lanthipeptide biosynthesis we have developed the inter-
face ‘Synteny of LanL family’, which helps to analyze the
genomic neighborhood of eliminylation domains co-
occurring with other enzymes associated with biosynthesis
of lanthipeptides. We have collected sequences of the LanL
family from the nr database using a novPTMenzy profile.
Neighbors of these LanL enzymes were extracted from
completely sequenced genomes. To understand their func-
tional significance, the Pfam domain definition for each
neighbor was collected and stored in the database. Pfam
domain descriptions provide functional insight into the
protein of interest. ‘Synteny of LanL family’ uses a backend
database of 208 LanL proteins. Of these 208 LanL pro-
teins, genomic neighborhood information was present for
only 51 proteins. Five hundred genomic neighbors for these
51 LanL proteins were extracted and stored in the backend
database. The interface ‘Synteny of LanL family’ can be
accessed from the Eliminylation main page. From this
interface the user can choose a single LanL protein or all
LanL proteins from an organism using the drop down
menu. LanL protein(s) from the chosen organism along
with its neighbors is displayed graphically. Also, associated
Pfam domains with a link to the Pfam database is provided
for each protein. Hovering on the link gives the accession
number of the neighboring protein and details of its align-
ment with the Pfam profile. Because the lyase domain of
LanL-like proteins is not recognized by Pfam, alignment
details of the protein with the novPTMenzy profile is
shown by hovering the mouse and the link out is provided
to the eliminylation database page of novPTMenzy. Figure
5B shows a typical output containing three LanL proteins
when Saccharopolyspora erythraea NRRL 2338 is selected
for synteny analysis. As can be seen, all three clusters are
associated with peptidases and transporters and tailoring
enzymes such as dehydrogenases, amidases and oxidases.
The Pfam domain description provides functional classifi-
cation for the neighbors, which will help in predicting the
complete lantibiotic synthesis pathway.
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Figure 5. (A) Results from ‘Search Inhibitory helix’ interface that predicts inter or intra inhibitory helices of Fic domains. Along with classification of
the identified inhibitory helix as class I, Il or Ill, it helps in prediction of inhibitory motif. It also shows the structure-based profile-profile alignment
based on which the given inhibitory helix was predicted. (B) Screenshot depicting genomic neighborhood of a typical LanL protein containing elimi-
nylation domain. Each gene is represented by a thick black line and the functional domains present in a given gene are depicted by red-colored rect-
angular boxes with the name of the domain inscribed in the box. novPTMenzy has assigned all functional domains using Pfam database, except for
eliminylation domain which has been identified by HMM profiles stored in backend databases of novPTMenzy.

Results and benchmarking

Our benchmarking studies on completely independent
datasets indicate that novPTMenzy can predict the pres-
ence of different PTM catalyzing domains with very high
sensitivity and specificity (Table 1). The significance of this
tool was evaluated by testing it on a set of newly sequenced
hypothetical proteins. These proteins have not been used
to train any of the profiles and were released within a span
of 5 days, thereby forming a completely independent set.
Using novPTMenzy we could identify 141 unusual PTM
catalyzing domains in this set of hypothetical proteins. Of

these 141, 67 were predicted to be a hydroxylase, 53
AMPylators and 22 Sulfotransferases. The complete list of
these 141 proteins and their classification is provided on
the ‘Benchmark’ page of novPTMenzy.

Discussion

In summary, novPTMenzy is a unique resource for in silico
identification and analysis of enzymes catalyzing novel/
unusual PTMs. It is therefore a valuable resource for
deciphering unusual PTM associated pathways by genome
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Table 2. Features of novPTMenzy

PTM catalyzing  Active site  Comparative Sequence Analysis 3D Visualization ~ Other Analysis Tool
domain Prediction (Jmol)
prediction Closest Closest Phylogenetic Search Inhibitory ~ Synteny
homolog  structural  Prediction helix of LanL
homolog
AMPylation + + + + + + +
Eliminylation + + + + + + +
Deamidation + + + +
Sulfation + + + +
Hydroxylation + + + +

mining. A unique feature of novPTMenzy is the availability
of HMM profiles for the identification and classification of
these PTM catalyzing enzymes. novPTMenzy also contains
specialized search interfaces for the prediction of inhibitory
helices that regulate Fic domains and the analysis of
genomic neighborhood of eliminylating enzymes. In add-
ition to these sequence analysis tools the novPTMenzy
database also provides a graphical interface for visualiza-
tion of structural details of the active site pockets. Though
AMPylation and Eliminylation have complete set of the
features mentioned above, database and analysis tools for
Deamidation, Hydroxylation and Sulfation are still in
development (Table 2). Our future plan is to include more
unusual PTMs in our database and to develop specific ana-
lysis tools for them. To keep our database updated, we
have made provision for the inclusion of growing informa-
tion about these PTMs with the participation of user com-
munity through editable pages.
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