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In spite of many decades of studies on experimental
V infection, there is very little information on how the

virus and host interact over an entire disease course. Many
experimental FIPV infection studies have also been limited
to the final disease outcome, e.g., the testing of vaccine
candidates for efficacy or testing of various types and
biotypes of feline coronavirus isolates for disease potential
(Pedersen, 2009, 2014a). Still other experimental studies
have concentrated on specific virus- or host-related
inflammatory or immune responses, also measured mainly
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A B S T R A C T

Twenty specific pathogen free cats were experimentally infected with a virulent cat-

passaged type I field strain of FIPV. Eighteen cats succumbed within 2–4 weeks to effusive

abdominal FIP, one survived for 6 weeks, and one seroconverted without outward signs of

disease. A profound drop in the absolute count of blood lymphocytes occurred around

2 weeks post-infection (p.i.) in cats with rapid disease, while the decrease was delayed in

the one cat that survived for 6 weeks. The absolute lymphocyte count of the surviving cat

remained within normal range. Serum antibodies as measured by indirect immunofluo-

rescence appeared after 2 weeks p.i. and correlated with the onset of disease signs. Viral

genomic RNA was either not detectable by reverse transcription quantitative real-time

PCR (RT-qPCR) or detectable only at very low levels in terminal tissues not involved

directly in the infection, including hepatic and renal parenchyma, cardiac muscle, lung or

popliteal lymph node. High tissue virus loads were measured in severely affected tissues

such as the omentum, mesenteric lymph nodes and spleen. High levels of viral genomic

RNA were also detected in whole ascitic fluid, with the cellular fraction containing 10–

1000 times more viral RNA than the supernatant. Replicating virus was strongly associated

with macrophages by immunohistochemistry. Virus was usually detected at relatively low

levels in feces and there was no evidence of enterocyte infection. Viral genomic RNA was

not detected at the level of test sensitivity in whole blood, plasma, or the white cell fraction

in terminal samples from the 19 cats that succumbed or in the single survivor. These

studies reconfirmed the effect of lymphopenia on disease outcome. FIPV genomic RNA was

also found to be highly macrophage associated within diseased tissues and effusions as

determined by RT-qPCR and immunohistochemistry but was not present in blood.
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in terminally ill cats (Pedersen, 2014a). There are several
longitudinal studies which have followed the entire
disease course, but these studies were concerned mainly
with disease signs such as fever, antibody responses and
cytokine expression and not with viral loads in various
tissues (Pedersen and Boyle, 1980; Weiss and Scott, 1981;
Gunn-Moore et al., 1998a). Only one other temporal study
has been performed on FIPV levels in peripheral blood of
experimentally infected cats (de Groot-Mijnes et al., 2005).
Although the authors suggested that there was a signifi-
cant viremia associated with disease, viremia was
erratic, observed mainly at week one post-infection and
terminally, and the levels of viral genomic RNA, even
when detected, were never high.

There has been a long standing belief that FIPV is not
shed from the body, at least to the very high levels seen in
FECV infection or in an infectious form (Pedersen et al.,
2009). FIPV does not appear to replicate in enterocytes
(Chang et al., 2010; Pedersen et al., 2012), and was first
associated with macrophages by electron microscopy and
immunohistochemistry (Ward, 1970; Pedersen and Boyle,
1980). Dean et al. (2003) studied the distribution of FIPV
by immunofluorescence at the time of death in experi-
mentally infected cats and also found macrophages to be
heavily infected in mediastinal and mesenteric lymph
nodes and spleen, with much less evidence of infection in
peripheral tissues such as popliteal and cervical lymph
nodes and bone marrow.

Lymphopenia is a consistent feature of both naturally
(Pedersen, 2009, 2014b) and experimentally induced-FIP
(Dean et al., 2003; de Groot-Mijnes et al., 2005). The role of
lymphopenia in FIP has not been determined, but it has
been equated with a decrease in cellular immunity and
ultimate disease outcome in experimental infections (de
Groot-Mijnes et al., 2005; Vermeulen et al., 2013).
Although lymphopenia appears to play a role in FIP,
temporal studies on the appearance, magnitude and
duration of lymphopenia in cats that succumb or survive
experimental infection have not been reported; most cell
counts have been taken prior to infection and terminally.

The emphasis of FIP diagnostics has long been on
developing a simple blood test that would reliably and
specifically detect the causative virus (Pedersen, 2014b).
Herrewegh et al. (1995) reported on the detection of viral
RNA in blood serum or plasma of cats experimentally and
naturally infected with FIPV using a nested RT-PCR that
amplified a sequence within the 30-UTR that was highly
conserved among 10 different FIPV and FECV isolates. They
were able to detect feline coronavirus RNA in the serum,
plasma or ascitic fluid of 14/18 cats with naturally
occurring FIP. Unfortunately, they were also able to detect
viral RNA in the plasma of 2/7 healthy cats that were
concurrently shedding FECV in their feces. An attempt
was made to eliminate this problem of specificity by
developing an RT-PCR that would only measure forms of
coronavirus mRNA that were replication competent
(Simons et al., 2005). The rationale was that FECV would
not replicate in the blood; therefore, the replicative form of
genomic RNA would only be found in the blood of cats with
FIP. The authors reported that this test was highly accurate
in identifying cats with FIP. Shortly thereafter additional

studies using the same assay demonstrated replicating
forms of RNA in the blood of healthy cats infected with
FECV (Can-Sahna et al., 2007; Kipar et al., 2010), casting
doubts on the specificity of such tests. The ability of FECV
to replicate in blood monocyte/macrophages was also
reported by other groups (Vogel et al., 2010). Chang et al.
(2012) subsequently identified two specific mutations
within the fusion peptide of the spike protein of FIPVs that
were not present in parent FECVs. These would seem to be
logical mutations to incorporate into a RT-qPCR. However,
a more recent study by Porter et al. (2014) demonstrated
the presence of coronavirus with the FIPV-specific fusion
peptide mutation in tissues of healthy cats. They concluded
that the spike fusion region specific mutation was an
adaptation of FECV for growth in blood monocyte/
macrophages and not directly related to disease. However,
all of these various tests and objections are moot if FIPV
genomic RNA is not consistently present in detectable
levels by RT-qPCR in blood or blood fractions in cats
with FIP.

The goal of this study was to temporally correlate
disease signs in experimental FIPV infection with lym-
phopenia, antibody response, and viremia with disease
outcome (death or survival) and specific cell and organ
localization of virus in terminal tissue samples by
RT-qPCR and immunohistochemistry. We will show
that lymphopenia is the strongest predictor of disease
outcome, virus is strongly associated with macrophages
in lesional tissues and effusions, and viremia is not
detectable at any stage of the infection even using a highly
sensitive RT-qPCR.

2. Materials and methods

2.1. Experimental animals

Specific pathogen free cats were bred in the facilities of
the Feline Research Laboratory (FRL), Center for Compan-
ion Animal Health, UC Davis under IACUC #16989. Cats
used in this study were part of a larger experiment
concerned with natural immunity (Pedersen et al., 2014)
and were 6–9 months of age and equally intact male and
female. They were housed in the FRL and cared for by FRL
staff under ultimate authority of the Campus Veterinary
Services.

2.2. Experimental FIPV infection

Cats were infected with a cat-passaged type I field
isolate of FIPV (FIPV-m3c-2) (Pedersen et al., 2009), which
has a functional mutation in the 3c gene and would not be
expected to actively replicate in the intestinal epithelium
(Chang et al., 2010; Pedersen et al., 2012). The inoculum
was prepared as a cell-free suspension of diseased
omentum (starting at 25 g/100 ml) that underwent differ-
ential centrifugation to remove particulate matter, bacte-
ria and subcellular debris and then stored at �60 8C. It was
diluted 1:80 in Hanks buffered saline prior to use and two
ml was injected intraperitoneally to infect each cat. The
final inoculate contained 4.32 � 105 viral genomes as
determined by RT-qPCR. Cats were infected under IACUC
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tocol #16637 and monitored for disease signs and
hanatized when their disease status was deemed
ically terminal, usually within 2–4 weeks of infection.

 Sample collection

Blood samples were taken at weekly intervals and a
ss necropsy performed at the time of death. Blood and
ue samples were harvested and archived for this and
re studies.

 Blood cell counts

Whole blood was diluted 1:10 with RBC lysis solution
agen, Valencia, CA), and total white blood counts
re done microscopically with a hematocytometer.
es of blood smears were stained using a Differential

ick Stain Kit (Modified Giemsa) (Polysciences, Inc.,
rrington, PA) and differential cell counts performed
nually.

 Histopathology and immunohistochemistry

Samples of tissues obtained at necropsy were immedi-
ly placed in 10% buffered formalin and fixed for 24 h
ore being routinely embedded into paraffin blocks.
ues that were examined histologically (all cats) and by
unohistochemistry (two cats) included liver, spleen,

ney, mesenteric lymph node, omentum, ileum, caecum,
rt, and lungs.
Immunohistochemistry was performed on 4 mm serial
tions of formalin fixed and paraffin embedded tissues
ng a streptavidin biotin detection system (Biocare
dical, Concord, CA). Mouse monoclonal antibodies to
V (Custom Monoclonal International, clone FIPV3-70,
00), CD18 (Peter Moore, UC Davis, clone Fe3.9F2), and

 (Peter Moore, UC Davis, clone CD3-12) were used
h some modifications. Before applying the primary
ibodies, slides were steam pretreated in citrate buffer
ko S1699) at 98 8C for 20 min followed by a 20 min
ling. They were then washed in PBS and blocked
h 10% normal horse serum for 20 min. Amino ethyl
bazole (AEC, Dako Corp.) was used as the chromogen
tions were counterstained with Mayer’s hematoxylin.
stituting a matched mouse IgG correlate for the

ary antibody served as the negative control.

 Ascites macrophage isolation and immunocytochemistry

Viable ascites macrophages were isolated by positive
unomagnetic selection columns (MACS MicroBeads,

tenyi Biotec) and anti-CD11b (Peter Moore, UC Davis,
e CA16.3E10-IgG1) following manufacturers proto-
. Enriched cells were deposited on a glass slide

ng cytocentrifugation (Cytospin 4; Thermo Shandon).
unocytochemistry for Coronavirus was performed as

cribed above with the following modifications: primary
ibody dilution 1:100 and no antigen retrieval step.
ally infected Fcwf-4 cells (ATCC) and uninfected cells

2.7. RT-qPCR for virus quantitation

FIPV genomic RNA was detected using a RT-qPCR
directed to a region of the accessory 7b gene according
to a published procedure (Gut et al., 1999). RNA integrity
and quantity was assessed in parallel with an 18S
rRNA based Real-time PCR test. The specificity of the
fluorogenic RT-PCR was confirmed by sequencing the
plasmid pT7-StFCoV by the chain termination method
(Microsynth, Balgach, Switzerland). The Real-time PCR
was run with three contamination controls including
regular negative controls, negative extraction controls
and laboratory monitoring for the absence of random
positive PCR signals. To eliminate PCR product carry over,
all reactions included the AmpErase UNG system (Pang
et al., 1992). Absence of PCR inhibition is confirmed by
using a spike-in internal positive control. This procedure
was reportedly 10–100 times more sensitive in detecting
FIPV mRNA than that achieved with a nested RT-PCR
that was described earlier (Herrewegh et al., 1995). The
sensitivity of the assay plotting cycle threshold (CT)
values against FIPV genomic RNA copy numbers is shown
in Fig. 1. At 40 cycles, considered the upper limit of
meaningful amplification for RT-qPCR, the assay was
capable of detecting �1000 mRNA copies/ml of fluid or g of
tissue.

3. Results

3.1. Clinical responses

The first clinical sign of disease was observed at around
2 weeks post-infection and consisted of a fever ranging
from 30.3 8C to 40.9 8C in 18 of the 20 cats (Fig. 2). A more
undulating fever was observed in one other cat (#31)
starting at around 2 weeks post-infection but it did not
become persistent until week 6. A final cat (#26) was
febrile (39.5 8C) only on day 19. The onset of fever was
followed by increasing inappetance, jaundice, bilirubi-
nuria, hyperbilirubinemia, and abdominal effusion in 19 of
the 20 cats. The one surviving cat demonstrated no clinical
signs of disease. In accordance with the IACUC protocol,

Fig. 1. Sensitivity of the RT-qPCR used in this study to detect FIPV
mes.
re used as positive and negative controls. geno
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18 cats were euthanatized at post-infection days 14–28,
one cat (#31) survived until week 6, and one cat (#26)
showed no clinical signs of disease through week 6 and
has remained healthy up to the time of this submission
(>7 months) (Table 1).

Diarrhea of a moderate to severe nature was noticed
pre-mortem in the litterboxes of some of the cats,
usually beginning 2–3 weeks post-infection. Diarrheic,
non-odorous, bile-tinged stool with excess gas and mucus
was identified in both the small and large intestine in
11/19 cats at necropsy. Feces from the remaining cats
were of normal form and consistency.

3.2. Serum antibody responses

Feline coronavirus-specific antibodies, as measured by
IFA, appeared in the serum between 2 and 3 weeks post-
infection and rose to terminal titers of 1:100–1:400 or
higher (Fig. 3). The appearance of antibodies in the serum
correlated with the onset of disease signs (Figs. 2 and 3).

3.3. Hematology

The total white blood cell count decreased somewhat
over the 2–6 week observation period in the 19 cats that

Fig. 2. Febrile responses of cats that were experimentally infected with FIPV.

Table 1

RT-qPCR CT values for FIPV genomic RNA in whole blood, plasma, and WBC fraction of experimentally infected cats during the six week post-infection

period.

Days Cat

P25 P26 P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 P40 P41 P42 P43 P44

D15a D15a D14a D20a D20a D42a D26a D14a D26a D15a D26a D23a D20a D26a D20a D22a D18a D19a D14a

Plasma

0 – – 37 – – – – – – – – – – – – – – 39 – –

7 – – – – – – – – – – – – – – – – – – – –

14 – – – –b – – – – –b – – – – – – – – – – 40b

–b –b –b 40b –b –b –b –b –b

21 – – – – – – – –b

–b

26 – – –b –b –b 40b

42 – –b

Whole blood

0 – – – – – – – – – – – – – – – – – – – –

7 – – – – – – 38 – – – – – – – – – – – – 37b

14 – – – –b – – – – –b – – – – – – – – 39 – 38b

–b 38b –b –b 39b 40b 40b –b

21 – – – – – – –b – –b

–b

26 – – –b 37b –b –b

42 – –b

WBC

0 – – – – – – – – – – – – – – – 37 – – – –

7 – – – – – – – – – – – – – – – – – 38 – 36

14 – – – –b – – – – 40b – – – – 40 – – – – – –b

–b 38b –b –b –b –b 40b 38b –b

21 – – – – – – – –b

37b

26 – – –b 37b 38b 38b

42 – 40b

a
 Euthanized.
b Terminal CT value.
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eloped FIP (Fig. 4). A profound lymphopenia occurred
ting at around 2–4 weeks post-infection and correlated
h the disease course (Fig. 4). The earlier lymphopenia
urred post-infection, the more rapid the disease course.

 one cat (P31) that survived 6 weeks did not become
erely lymphopenic until after week 4, while the one
viving cat (P26) never became lymphopenic (Fig. 5).
ss bilirubinuria and jaundice correlated with disease
rse, appearing earlier in cats with more rapid disease.

 Gross pathology

A diffuse peritonitis with effusion of 30–300 ml of
id, yellow-tinged, cloudy fluid was present at necropsy.

 omentum and gastro-splenic mesentery manifested
ere vascular congestion, edema, and serous atrophy of
(Fig. 6). Intestinal mesenteries, abdominal serosa, and
sular surfaces of abdominal organs were less severely
cted. Surface orientated plaques, <1 to several mm
ize, were a characteristic feature of the inflammation
. 6). Fibrin tags were free in the abdomen and common
the spleen and liver margins. The spleen, caecum and
cal-colic/mesenteric lymph nodes were frequently
arged. The liver appeared grossly normal below the
sule in all but two affected cats, which demonstrated
–1 mm whitish foci throughout the parenchyma. The
neys were not grossly involved below the level of the

capsule. The lungs, heart and other thoracic tissues
appeared normal in 15/19 cats necropsied. The remaining
four cats had signs of mediastinitis with enlargement of
the sternal lymph nodes. The pericardium was thickened
with an increased amount of pericardial fluid in two of
these cats. The popliteal lymph nodes were normal in size
and appearance.

3.5. Histopathology and immunohistochemistry

Histologic lesions were common to all of the cats and
included pyogranulomatous vasculitis of the omentum
(Fig. 7), mesentery, visceral peritoneal surface of the spleen,
liver, mesenteric lymph node, caecum, and ileum; predomi-
nantly histocytic, neutrophilic, and fibrinous peritonitis;
serous atrophy of omental fat (Fig. 7); subcapsular splenic
histiocytosis; splenic neutrophilia and ellipsoid hyperplasia.
Abnormalities not uniformly observed in all cats included
pyogranulomatous lymphadentitis and necrosis in the
mesenteric lymph nodes and caecal and ileal Peyers

3. Anti-feline coronavirus titers in plasma of cats experimentally

cted with FIPV.

Fig. 6. Gross appearance of the abdomen in a cat with experimentally

induced effusive FIP. The omentum is edematous, omental vessels

prominent and reddened, the surface of the spleen is covered with

Fig. 5. Absolute total white blood cell and lymphocyte counts of two cats

experimentally infected with FIP, one (p26) of which resisted disease and

one (p31) that died at 6 weeks post-infection.
whitish plaques (pyogranulomas) and fibrin, and the abdomen is filled

with a yellowish exudate.

4. Absolute total white cell and lymphocyte counts of 18 cats that died

in 2–4 weeks following experimental infection with FIPV.
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patches; pyogranulomatous vasculitis of the caecal and ileal
wall with associated local peritonitis; lymphoid hyperplasia
of mesenteric lymph nodes; and pyogranulomatous
hepatitis. The lungs and heart, with the exception of the
pericardium and mediastinum in several cats, appeared to
be unaffected by gross examination. No gross or clinical
signs of ocular or neurologic disease were observed and
tissues from these organs were therefore not studied.

Immunohistochemistry for feline coronavirus antigen,
CD18, and CD3 were performed on these same tissues from
two of the 19 cats. Immunoperoxidase staining demon-
strated the presence of cell-associated feline coronavirus
antigen within pyogranulomas and on the peritoneal
surface (Fig. 8). Pyogranulomas contained a predominance
of cells staining strongly positive for CD18, a characteristic
of macrophages (Fig. 9), and lower proportions of CD3
positive T-lymphocytes and typical neutrophils (Fig. 10).
Viral antigen was found exclusively in the large foamy
macrophage-like cells (Fig. 11). Enterocytes of the caecum
and ileum were uniformly negative for feline coronavirus

antigen, while cells in the inflammatory reaction on the
serosal surface stained positive (Fig. 12).

3.6. Immunomagnetic isolation CD11b cells from ascites and

immunocytochemistry

In order to confirm that FIPV was replicating exclusively
in macrophages, cells positive for the CD11b cell surface
marker were isolated from the ascites fluid of one of the
cats. Both neutrophils and macrophages were isolated in
pure form as expected, given that CD11b is present on the
surface membranes of both cell types. Positive staining for
FIPV antigen was limited to the large mononuclear cell
population, while neutrophils did not stain (Fig. 13).

3.7. FIPV genomic RNA levels in tissues, feces, ascites and

blood

FIPV genomic RNA, expressed as viral copies, was
detected at high levels only in inflamed organs and

Fig. 7. Omentum (Hematoxylin and Eosin). The omentum is greatly

expanded by pyogranulomatous inflammatory nodules and peritoneal

inflammation. Blood vessels are prominent and there is multifocal serous

atrophy of fat.

Fig. 9. Omentum (Immunoperoxidase). High magnification of an omental

pyogranuloma demonstrates a predominance of strongly CD18 positive

macrophages (400�).
Fig. 8. Omentum stained for FIPV antigen (Immunoperoxidase). FIP

antigen is present in inflammatory nodules and on the peritoneal surface.

Fig. 10. Omentum (Immunoperoxidase). Immunoreactivity for CD3 demon-

strates few T lymphocytes present in omental pyogranulomas (400�).
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sion, while tissues from organs that did not appear
be grossly and histologically involved in the disease
cess frequently tested negative or were positive at
ch lower levels (Figs. 14 and 15). FIPV genomic RNA
ld not be detected from an identical set of tissues from

 healthy cats (data not shown). The highest FIPV
omic RNA levels were in omentum, mesenteric lymph
es, spleen and ascites, while low to negative levels

re found in the kidney, lung, heart muscle, and popliteal
ph node. Viral genomic RNA was detected at variable

els in the liver and feces (Fig. 14). Although diarrheic
ol had CT values ranging from 27.5 to 40.0 (3.94 � 106 to
7 � 102 FIPV genomes/g) and normal appearing stool
40 (8.87 � 104 to 3.57 � 102 FIPV genomes/g), the

pective mean CT values were 34.8 and 34.3, indicating
ck of relationship between fecal virus shedding and

rrhea. FIPV genomic RNA was not detected in a 6-week
l sample taken from the single surviving cat. A high

el of viral genomic RNA was detected in the ascitic fluid

and over 90–99% (10 to 100-fold greater) was cell-
associated rather than in the supernatant (Fig. 15).

FIPV genomic RNA levels in whole blood, white cell
fraction, and plasma collected prior to any feline corona-
virus exposure had CT values ranging from 37 to 40.0
(Table 1). Therefore, only CT values �37 were considered to
be reliably positive for blood.

4. Discussion

The clinical abnormalities, complete blood count
changes, feline coronavirus antibody responses, and gross
and histologic pathology were typical of experimentally
induced and naturally occurring effusive abdominal FIP.
The first sign of disease was fever appearing around
2 weeks post-infection followed by the more specific
clinical signs of effusive abdominal FIP. The occurrence of
fever coincided with the appearance of serum antibodies,
as has been previously shown (Pedersen and Boyle, 1980;
Weiss and Scott, 1981). There was no relationship between
the magnitude of the antibody response and disease
outcome, with the highest titer being found in one cat
that lived 6 weeks before succumbing. The relationship
between the onset of disease signs and appearance of

11. Omentum (Immunoperoxidase): High magnification of an

ntal pyogranuloma shows a predominance of mononuclear cells.

unopositivity for FIPV antigen is present in a population of large

y macrophages (400�).

12. Terminal ileum (Immunoperoxidase). FIP antigen is present

Fig. 13. Ascites fluid (Immunoperoxidase). Cytospin concentrated

CD11b positive cells from FIP infected cat ascites fluid is comprised

prodominantly of macrophages and lesser numbers of neutrophils.

Macrophages demonstrate abundant membranous and variable cyto-

plasmic immunoreactivity for FIPV antigen by immunocytochemistry.

Neutrophils are diffusely negative for FIPV.

Fig. 14. Levels of FIPV genomic RNA in various tissues from cats
in macrophages on the inflamed serosal surface, but is not observed

nterocytes. experimentally infected with FIPV.
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antibodies was not coincidental. Previous studies have
shown that virus neutralizing antibodies to S gene epitopes
play a key role in enhancing disease by facilitating the
uptake of FIPV by macrophages (Hohdatsu et al., 1998;
Dewerchin et al., 2006) and participating in antigen/
antibody/complement mediated vasculitis (Pedersen and
Boyle, 1980; Jacobse-Geels et al., 1982). Antibody-depen-
dent enhancement involving antibodies against S gene
proteins has also been shown to play a role in SARS
coronavirus infection (Wang et al., 2014).

The absolute lymphocyte count in blood was the most
accurate predictor of disease outcome. The one surviving cat
(P26) never manifested lymphopenia, while a second cat
(P31) that survived for 6 weeks maintained near normal
lymphocyte numbers until the last week of life. In contrast,
the 18 cats that died within 4 weeks of infection
demonstrated a precipitous drop in blood lymphocytes
starting at 2 weeks post-infection. A similarly profound
decrease in blood lymphocytes has been previously
associated with disease signs in experimental FIPV infection
(Dean et al., 2003), and varying degrees of lymphopenia are a
common feature of naturally occurring FIP (Pedersen, 2009).
Although T lymphocytes were entering diseased tissues,
their proportion was low compared to macrophages and
their numbers not appear sufficient to be solely responsible
for the pronounced lymphopenia. Previous studies have
associated lymphopenia in cats with experimentally in-
duced FIP with a major apoptotic event (Dean et al., 2003).
Apoptosis of lymphocytes has been implicated as a cause of
lymphopenia and associated immunodeficiency in other
virus infections (Razvi and Welsh, 1993).

Our finding that disease outcome in experimental FIP
infection is associated with the degree of lymphopenia is in
agreement with a conclusion made by de Groot-Mijnes
et al. (2005), who studied experimental disease caused by
the highly virulent type II FIPV-70-1146 – ‘‘Our combined
observations suggest a model for FIP pathogenesis in
which virus-induced T-cell depletion and the antiviral

T-cell response are opposing forces and in which the
efficacy of early T-cell responses critically determines the
outcome of the infection.’’ This conclusion has been
mirrored by Fan et al. (2014), who postulated that
‘‘depending on intensity of the apoptosis of healthy cells,
the apoptosis can either promote or comfort the long-term
evolution of HIV infection.’’

We did not determine the lymphocyte subclasses that
were most affected although the severity of the lympho-
cyte depletion suggested that both T and B subsets were
involved. However, previous studies indicate that T cells,
NK cells and T regs are most severely reduced in cats with
naturally and experimentally induced FIP (Dean et al.,
2003; Vermeulen et al., 2013).

Fecal levels of viral genomic RNA were low compared to
what has been seen during primary infection with a field
strain of FECV (Pedersen et al., 2008). Fecal virus in these
FIPV infected cats ranged from around 1000 to 100,000
genomic RNA copies per gram of feces, far below levels
detected in a single fecal swab during primary FECV
infection (Pedersen et al., 2008). Although we did not
determine the source of the fecal virus in these FIPV
infected cats, it did not appear to be from enterocytes.

Immunohistochemistry failed to show infected enter-
ocytes in either the ileum or caecum, sites of known virus
replication during acute FECV infection (Pedersen et al.,
1981; Meli et al., 2004). Moreover, enterocyte infection
was not expected in these cats because the FIPV isolate
used in this study had a truncated 3c gene and such
mutants appear to have lost their ability to replicate in the
intestinal epithelium (Chang et al., 2010; Pedersen et al.,
2012). The viral RNA detected in feces was more likely to be
a product of the intense inflammation that often involved
the serosal surface of the intestines and often extended
deeper into the intestinal wall in organs such as the ileum,
caecum and colon. This conclusion was supported by the
lack of fecal virus shedding in the one cat that never
showed signs of disease.

The most significant findings in this study involved the
relative paucity of viral genomic RNA detected in blood
over the course of the infection and terminally in various
tissues, which has direct implications on the use of RT-
qPCR for diagnosing FIP from blood. It was not surprising to
find high levels of virus terminally in grossly diseased
tissues such as omentum, spleen and mesenteric lymph
node and in abdominal effusions, and lower levels in
organs such as liver, kidney, heart and lung that did not
show gross parenchymal involvement. The levels of viral
genomic RNA paralleled the intensity of the inflammatory
response, which in turn paralleled the numbers of infected
macrophages in the tissues or effusion. The selective
targeting of macrophages by FIPV, which has been
previously demonstrated (Pedersen and Boyle, 1980; Kipar
et al., 1998), was reconfirmed by immunohistochemistry
of heavily involved tissues such as the omentum, spleen,
mesenteric lymph nodes and caecum, and ascitic fluid.
Cells present in the ascitic fluid, which were predominantly
macrophages, contained from 90 to 99% of the virus present
in the each sample. The most parsimonious scenario would
be that virus released from infected macrophages is
immediately taken up by other macrophages and that this

Fig. 15. Levels of FIPV genomic RNA in ascitic fluid from cats

experimentally infected with FIPV.
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le builds in intensity over time as more and more virus is
duced and more and more macrophages either arrive

 the blood as monocytes or proliferate locally from
entitial progenitors (Psaltis et al., 2014). The strict
tainment of an infectious agent in a single cell type such

acrophages is reminiscent of fastidious mycobacterial
ases of cats (Malik et al., 2013) and tuberculosis of
ans (Mehrotra et al., 2014).

Although we failed to reliably detect coronavirus
omic RNA in blood at any stage of experimental
ction with a field strain of Type I FIPV, others have
orted a viremia using an identical RT-qPCR procedure
t et al., 1999). However, closer examination of these

dies indicates that detection of feline coronavirus
omic RNA has not been as clear-cut as assumed,
inly because detection is often at or beyond the limits of
ability for the assay procedure. Three studies reported
the detection of feline coronavirus RNA in blood, but all
re concerned with FECV rather than FIPV infection and
ection was inconsistent (Meli et al., 2004; Kipar et al.,
0; Vogel et al., 2010). Kipar et al. (2001, 2006)
pared virus loads in various tissues, excluding blood,
aturally infected cats and indicated that virus loads

re higher in FIPV than FECV infected cats. Gunn-Moore
l. (1998b) used RT-PCR to detect FIPV genomic RNA in
ole blood or plasma of 80–90% cats with FIP, both
ctly and after co-cultivation with WFE cells; plasma

s just as likely to test positive as whole blood. However,
y also found that 83–89% of healthy cats from FECV
ootic households also tested positive. de Groot-Mijnes
l. (2005) described a viremic phase in a subset of cats
h FIP but virus loads were derived from RT-qPCR and
PCR data, as well as other data not shown. Moreover,
s levels where elevated usually at week one and
inally and were usually associated with CT values
 36 to 40. We conclude that viremia even in cats with

hly fulminant experimentally induced FIP is either non-
stent or below the reliable detection limits of highly
sitive RT-qPCR at all stages of the infection. Virus
ection should concentrate on tissues and effusions
taining FIPV infected macrophages.
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