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A B S T R A C T   

Duchenne muscular dystrophy (DMD MIM#310200) is a degenerative muscle disease caused by 
mutations in the dystrophin gene located on Xp21.2. The clinical features encompass muscle 
weakness and markedly elevated serum creatine kinase levels. An 8-year-old Chinese boy was 
diagnosed with Duchenne muscular dystrophy (DMD). Whole exome gene sequencing was con
ducted and the Sanger method was used to validate sequencing. A deletion (c.5021del) in exon 35 
of the dystrophin gene was identified, which was predicted to generate a frameshift mutation and 
create an early termination codon (p.Leu1674CysfsTer47). It has a pathogenic effect against 
dystrophin in the muscle cell membrane of the patient. As such, prednisone treatment at a dose of 
0.75 mg/kg.d was administered. After one month, a notable reduction in fall frequency was 
observed. Our new finding will expand the pathogenic mutation spectrum causing DMD.   

1. Introduction 

Duchenne muscular dystrophy (DMD) is a common, progressive and fatal X-linked recessive neuromuscular disorder, predomi
nantly affecting males with an incidence of approximately 1 in 5000 live male births globally [1,2]. The underlying cause of the disease 
lies in mutations within the Dystrophin gene, located at locus Xp21.2, leading to subsequent Dystrophin deficiency [3]. Dystrophin, a 
cytoplasmic protein situated at the sarcolemma (muscle fiber membrane), plays a crucial role as a link between the cytoplasmic 
compartment of muscle fibers and the extracellular matrix. This contribution is essential for the stabilization of muscle cell membranes 
during contraction sessions [4]. Clinical symptoms in individuals with DMD may manifest at any point from birth to the age of 8, 
including motor delays, abnormal gait, frequent falls, and an inability to climb stairs [5]. Rapid progression often leads to the loss of 
independent ambulation by age 13, necessitating wheelchair use. Mortality typically occurs around age 20, usually due to respiratory 
or cardiac complications, imposing immense suffering on affected individuals and their families [6]. 

Although DMD is still not completely curable, early diagnosis and timely intervention play crucial roles in mitigating disease 
progression and enhancing long-term outcomes. The therapeutic approach to managing DMD encompasses a range of strategies, 
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including the use of glucocorticoids, gene addition, exon skipping, stop codon read-through, genome editing, and a variety of other 
types of therapy. Corticosteroids remain among the most effective methods for managing complications, significantly increasing the 
longevity of these patients [7,8]. 

Here, we present a case of DMD in China and unveil an exon mutation within the dystrophin gene. To the best of our knowledge, the 
occurrence of DMD associated with a deletion (c.5021del) in the dystrophin gene has not been previously reported in the gnomAD 
database. This case study can contribute to delineating the DMD phenotype, raising awareness among clinicians about the link between 
this condition and the dystrophin gene, enhancing clinical suspicion, and optimizing early therapeutic interventions. 

2. Case presentation 

An 8-year-old Chinese boy was admitted to the Affiliated Hospital of Southwest Medical University with a complaint of “tiptoe 
walking, a distinctive duck-like gait and frequent falls”. The child is currently in elementary school and is struggling with poor grades. 
While language development followed a normal trajectory, with the child gradually becoming able to speak from the age of 1, there 
were noticeable delays in motor skills. The child achieved independent walking at 12 months, but by 15 months, gait wasn’t as steady 
as that of peers of the same age. During this period, the child experienced frequent falls, adopted an abnormal posture, walked on 
tiptoe, and reported pain in the feet after prolonged walking. Additionally, the child encountered difficulty rising independently from a 
supine position, requiring assistance. Upon closer observation, family members noted the presence of hardened muscles in both calves. 
This is his first visit to the hospital for medical treatment. Physical examination revealed bilateral gastrocnemius pseudohypertrophy, 
diminished tendon reflexes, and weakened knee reflexes (Fig. 1). Laboratory examination was conducted on blood samples, and the 
results are presented (Table 1). Among them, extremely high blood creatine kinase (CK) levels were noted at 31,406 U/L (reference 
range: 50–310 U/L). Using the MRC (Medical Research Council) scale for strength assessment, the findings indicated the following 
muscle strength levels: bilateral upper limbs exhibit grade IV + strength in the distal region and grade IV strength in the proximal 
region, while bilateral lower limbs demonstrate grade IV + strength in the distal region and grade III + strength in the proximal region. 
Pathological findings were inconclusive, while electromyography profiles mirrored myogenic damage. Sinus tachycardia was evident 
on electrocardiogram. Collectively, these findings substantiated the diagnosis of DMD. Echocardiography showed no abnormalities in 
the intracardiac structures (supplementary file). Clinical Practice Guidelines for Duchenne progressive muscular dystrophy [9] 
necessitate a diagnosis based on clinical presentation, physical findings, serum CK levels, and gene sequencing Thus, gene sequencing 
was pursued. 

In contrast, considering the genotypic and phenotypic extreme heterogeneity of muscular dystrophies, whole exome sequencing 
proves to be a more feasible approach for identifying candidate genes. This is because whole exome sequencing enables the 
comprehensive screening of all genes associated with muscular dystrophies [7]. It exposed a hemizygous nucleotide deletion c.5021del 
within dystrophin gene exon 35. This alteration led to the replacement of leucine at codon 1674 with cysteine, prematurely termi
nating dystrophin gene translation due to a termination codon at position 47 post-mutation (Table 2). Notably, this variant had not 
previously been documented in the gnomAD database. Accordingly, we incorporated this new mutation into the ClinVar database 
(SUB12878480). Subsequent bioinformatics algorithms were engaged to predict pathogenicity (Table 3). According to the “Standards 
and Guidelines for interpretation of genetic variants” outlined by the American Society of Medical Genetics and Genomics (ACMG), the 
variant was initially classified as pathogenic [10]. To guarantee the reliability of WES results, DNA was extracted from the peripheral 

Fig. 1. Lower limb illustration depicting bilateral gastrocnemius muscle pseudohypertrophy.  
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blood of the child. Primers for PCR were designed, and Sanger sequencing was conducted (Fig. 2a). The above results confirmed our 
conjecture that the child was diagnosed with DMD. 

To assess the sequence conservation of Leu1674, a range of species available in the UCSC database were selected. The strict 
conservation of this mutation site was evident (Fig. 2b), underscoring the significance of Leu1674 for dystrophin protein integrity. 
Furthermore, SWISS-MODEL software was harnessed to construct pre- and post-frameshift mutation models, subsequently visualized 
through PyMol software (Fig. 2c–d). The resultant hemizygous mutation precipitated the formation of a truncated dystrophin protein, 
thereby meriting classification as “pathogenic”. 

Regrettably, the mother succumbed to uremia during pregnancy, while the father declined examination. Consequently, the origins 
and inheritance pattern of the mutation could not be validated. Given that DMD is an X-linked muscular dystrophy impacting up to 
3,500 male births, it can be inferred that the mother bears the causative gene. Randomized controlled trials [11] have demonstrated 
the efficacy of glucocorticoids in enhancing muscle strength and respiratory function, significantly prolonging independent ambu
lation time [12]. Two corticosteroids, prednisone and felazort, are the most commonly used in the treatment of DMD [13]. Therefore, a 
dose of 0.75 mg/kg/day of prednisone was given. One month later, we followed him up. A significant decrease in the frequency of falls 
was observed, with no immediate side effects. The entire family expressed satisfaction with the outcome. 

3. Discussion 

Dependence on abnormal clinical presentations as triggers for the diagnostic workup of DMD has resulted in a delayed diagnosis of 
this genetic disorder [14]. Often, parents mistakenly perceive the child as delicate and may not initially take the symptoms seriously. 
This delay has contributed to a mean age of diagnosis of 4.9 years in typical cases, but in this particular instance, the child was not 
diagnosed until the age of 8 years. 

The DMD gene boasts one of the most extensive known human genomes, encompassing approximately 2.4 Mb, 79 exons, 78 introns, 
and 8 promoters. It is because this gene is so huge that it has a high mutation rate, >8 × 10− 5（OMIM: 300376） [15]. The ClinVar 
database houses records of over 8,000 genetic mutations, reflecting a diversity of mutation types: deletions (16.9%), duplications 
(8.2%), indels (0.4%), insertions (7.7%), and single nucleotide variations (66.8%). Within the context of our study, we have unveiled a 
c.5021del mutation within the dystrophin gene in a Chinese individual with muscular dystrophy, inducing a frameshift mutation. 
Among the 589 cases of frameshift mutations documented in the ClinVar database, this variant comprises roughly 13%. 

In this study, our focus centered on “Duchenne muscular dystrophy [Title] and mutation [topic]” by Web of Science and PubMed. 
Subsequently, we refined the search to specifically include “deletion”. Through this process, we identified a total of 45 research papers 
(Table 4). He X et al. [16] conducted comprehensive whole-exome sequencing, uncovering a hemizygous mutation in the DMD gene 
(c.5571del, p. Lys1857AsnfsTer8). Takizawa H et al. [17] presented a case study involving a 14-year-old DMD patient with a nonsense 
mutation in exon 70. Despite still being ambulant, the patient initiated ataluren treatment at 12 years of age and maintained stability 
for the subsequent two years. Wang Y et al. [18] reported the identification of a proband carrying a c.6794delG mutation in exon 47 of 

Table 1 
Biochemical analyses for the patient show muscle-specific changes.  

Lab finding Values Normal ranges 

CK (U/L) 31406 50–310 
ALT (U/L) 401.6 7–30 
AST (U/L) 645.2 14–44 
LDH (U/L) 2180.6 120–250 

CK: creatine kinase; ALT: alanine transaminase; AST: aspartate aminotransferase; LDH: 
lactate dehydrogenase. 

Table 2 
Mutation site details.  

Gene 
name 

Location Genomic 
variation 

Transcripts; Exon Protein defect Amino acid change/ 
Variation type 

American college of medical genetics 
classification 

DMD chrX:3238 
3141–32383141 

c.5021del NM_004006.3; 
exon 35 

p. 
Leu1674CysfsTer47 

frame shift mutation Pathogenic 
PVS1+PM2_Supporting + PP4 

PVS1: the variant is a zero-effect variant (frame shift mutation) that may cause loss of gene function; PM2_Supporting: frequency in the normal 
population database; PP4: the patient’s phenotype or family history is highly specific to a single genetic basis for the disease. 

Table 3 
Bioinformatics prediction results.  

Variation Bioinformatic Prediction 

c.5021del Polyphen2 _HDIV Mutation Taster Mutation Assessor SIFT 
1 Prediction disease causing – 0.01  
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the Dystrophin gene, resulting in a frameshift and a premature stop codon (p.G2265EfsTer6). Gibbs EM et al. [19] documented two 
individuals with significant in-frame 5’ deletions (exon 3–23 and exon 3–28), encompassing a substantial portion of the N-terminal 
region, including segments of the actin-binding and central rod domains. Dinh LT et al. [20], employing sequencing of 79 exons 
through MLPA against the dystrophin gene, revealed a 2-nucleotide deletion of c.2032_2033delCA, leading to p. Q678DfsTer41. Loss of 
function variants in the DMD gene have been previously linked to pathogenicity. However, all the mentioned instances differ from the 
findings reported in this article. Here, a hemizygous nucleotide deletion c.5021del within exon 35 of the DMD gene was observed, 
leading to premature stop codons and precluding protein translation, deviating from the wild-type length of 3,685 amino acid residue. 

In addition, we encountered challenges in verifying the origin and mode of inheritance of this mutation. Unfortunately, the 
mother’s death during pregnancy from uremia and the father’s refusal to undergo testing have impeded our ability to gather conclusive 
information in this regard. 

4. Conclusions 

In summary, we present a pathogenic DMD gene mutation, providing useful insights to the DMD gene mutation database. In this 
way, we want to raise awareness among parents and provide comprehensive assistance to each patient to the best of our abilities. 

Funding statement 

This work was supported by Sichuan Province Science and Technology Support Program [grant numbers 2022YFS0312 and 
2021YFH0190] and Luzhou Science and Technology Program Project [grant numbers 2023JYJ052]. 

Fig. 2. Sanger sequencing, conservation analysis, and three-dimensional (3D) modeling of the DMD protein structure. a Sanger sequencing of partial 
DNA sequence of DMD gene. Boxes indicate missing loci. b Leu1674 is highly conserved among Human, Chimp, gorilla, pig, Alpaca, Dolphin, 
Tibetan antelope, Cow, Sheep, Dog, Panda, Armadillo, Opossum, American alligator and Green seaturtle. c DMD wild-type exon 31 to exon 40 
protein sequence. Amino acid and hydrogen bond at position 352 of wild-type protein. d Truncated protein due to the mutation site. Amino acid and 
hydrogen bond alteration at position 1674 due to the variation. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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Table 4 
Summary of genetic variations and corresponding amino acid changes as reported by various authors.  

Reference Year Region Variation site Amino acid changes 

He X et al. [16] 2022 China c.5571del p. Lys1857AsnfsTer8 
Aiello GM et al. [21] 2022 U.S. exon 45-50  
Pasca L et al. [22] 2021 Italy exon 70  
Takizawa H et al. [17] 2021 Japan exon 45-54  
Wang L et al. [23] 2021 China exon 49-52  
Xia Y et al. [24] 2021 China exon 50  
Wang Y et al. [18] 2020 China c.6796del p.Ile2266PhefsTer5 
Guan J et al. [25] 2019 China exons 49-50  
Gibbs EM et al. [19] 2019 U.S. exon 3–23 and exon 3-28  
Tsurumi F et al. [26] 2018 Japan exon 44  
Dinh LT et al. [27] 2018 Vietnam c.2032_2033del p.Gln678AspfsTer41 
Mukherjee S et al. [28] 2018 Italy exon 43-52  
Finsterer J et al. [29] 2018 Australia exon 12-29  
Bianco B et al. [30] 2017 Brazil exon 2-47  
Takeshita E et al. [31] 2017 Japan exon 48–50 and exon 51-53  
Kaczorowska E et al. [32] 2015 Poland c.9055del  
Strmecki L et al. [33] 2013 U.S. exon 45-52  
Donkervoort S et al. [34] 2013 U.S. exon 48-50  
Balci-Hayta B et al. [35] 2012 Turkey exon 43-50  
Schänzer A et al. [36] 2012 Germany exon 49-52  
López-Hernández LB et al. [37] 2011 Mexico exon 24-41  
Yoon J et al. [38] 2011 Korea exon 44  
Ou Z et al. [39] 2010 China exon 46-47  
Rajakulendran S et al. [40] 2010 U.K. exon 3-13  
Jiang YH et al. [41] 2009 U.S. exon 30-43  
Nakamura A et al. [42] 2008 Japan exon 45-55  
Korngut L et al. [43] 2008 Canada exon 6  
Purushottam M et al. [44] 2008 India exon 45  
Vondracek P et al. [45] 2007 Chech c.3609-3612del p.K1204LfsTer11 
Katayama Y et al. [46] 2006 Japan exon 12-19  
Takeshima Y et al. [47] 2005 Japan exon 20  
Todorova A et al. [48] 2003 Bulgaria exon 44  
Becker K et al. [49] 2003 U.K. c.10099_10101del p.E3367del 
Gussoni E et al. [50] 2002 U.S. exon 44-45  
Patria SY et al. [51] 1999 Japan exon 46-54  
Quan F et al. [52] 1996 U.S. exon 50  
Takenaka T et al. [53] 1995 Japan exon 46-50  
Uchino M et al. [54] 1994 Japan exon 45  
Mostacciuolo ML et al. [55] 1994 Italy exons 10-44  
Mostacciuolo ML et al. [55] 1994 Italy exon 45  
Wallgren-Pettersson C et al. [56] 1993 U.K. exon 35-43  
Clemens PR et al. [57] 1992 U.S. exon 48  
Matsuo M et al. [58] 1991 Japan exon 19   
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