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Abstract

Motivation: RNA secondary structure prediction is widely used to understand RNA function. Recently, there has
been a shift away from the classical minimum free energy methods to partition function-based methods that ac-
count for folding ensembles and can therefore estimate structure and base pair probabilities. However, the classical
partition function algorithm scales cubically with sequence length, and is therefore prohibitively slow for long
sequences. This slowness is even more severe than cubic-time free energy minimization due to a substantially
larger constant factor in runtime.

Results: Inspired by the success of our recent LinearFold algorithm that predicts the approximate minimum free en-
ergy structure in linear time, we design a similar linear-time heuristic algorithm, LinearPartition, to approximate the
partition function and base-pairing probabilities, which is shown to be orders of magnitude faster than Vienna
RNAfold and CONTRAfold (e.g. 2.5 days versus 1.3 min on a sequence with length 32 753 nt). More interestingly,
the resulting base-pairing probabilities are even better correlated with the ground-truth structures. LinearPartition
also leads to a small accuracy improvement when used for downstream structure prediction on families with the
longest length sequences (16S and 23S rRNAs), as well as a substantial improvement on long-distance base pairs
(500þ nt apart).

Availability and implementation: Code: http://github.com/LinearFold/LinearPartition; Server: http://linearfold.org/
partition.

Contact: liang.huang.sh@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

RNAs are involved in multiple processes, such as catalyzing reac-
tions or guiding RNA modifications (Bachellerie et al., 2002;
Doudna and Cech, 2002; Eddy, 2001), and their functionalities are
highly related to structures. However, structure determination tech-
niques, such as X-ray crystallography (Zhang and Ferré-D’Amaré,
2014), nuclear magnetic resonance (Zhang and Keane, 2019) and
cryo-electron microscopy (Lyumkis, 2019), though reliable and ac-
curate, are extremely slow and costly. Therefore, fast and accurate
computational prediction of RNA structure is useful and desired.
Considering full RNA structure prediction is challenging (Miao
et al., 2017), many studies focus on predicting secondary structure,
the set of canonical base pairs in the structure (A-U, G-C and G-U
base pairs) (Tinoco and Bustamante, 1999), as it is well-defined, and
provides detailed information to help understand the structure–func-
tion relationship, and is a basis to predict full tertiary structure
(Flores and Altman, 2010; Seetin and Mathews, 2011).

RNA secondary structure prediction is in general NP-complete
(Lyngsø and Pedersen, 2000), but nested (i.e. pseudoknot-free) sec-
ondary structures can be predicted with cubic-time dynamic pro-
gramming algorithms. Commonly, the minimum free energy (MFE)

structure is predicted (Nussinov and Jacobson, 1980; Zuker and
Stiegler, 1981). At equilibrium, the MFE structure is the most popu-
lated structure, but it is a simplification because multiple conforma-
tions exist as an equilibrium ensemble for one RNA sequence
(Mathews, 2004). For example, many mRNAs in vivo form a dy-
namic equilibrium and fold into a population of structures (Lai
et al., 2018; Long et al., 2007; Lu and Mathews, 2008; Tafer et al.,
2008); Figure 1A and B shows the example of Tebowned RNA
which folds into more than one structure at equilibrium. In this case,
the prediction of one single structure, such as the MFE structure, is
not expressive enough to capture multiple states of RNA sequences
at equilibrium.

Alternatively, we can compute the partition function, which is
the sum of the equilibrium constants for all possible secondary struc-
tures, and is the normalization term for calculating the probability
of a secondary structure in the Boltzmann ensemble. The partition
function calculation can also be used to calculate base-pairing prob-
abilities of each nucleotide i paired with each of possible nucleotides
j (McCaskill, 1990; Mathews, 2004). In Figure 1C, the upper tri-
angle presents the base-pairing probability matrix of Tebowned
RNA using Vienna RNAfold, showing that base pairs in Tebowned
RNA (TBWN)-A have higher probabilities (in darker red) than base
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pairs in TBWN-B (in lighter red). This is consistent with the experi-
mental result,
i.e. TBWN-A is the majority structure that accounts for 56% 6 16%
of the ensemble, whereas TBWN-B takes up 27% 6 12% (Cordero
and Das, 2015).

In addition to modeling multiple states at equilibrium, base-
pairing probabilities are used for downstream prediction methods,
such as maximum expected accuracy (MEA; Do et al., 2006;
Knudsen and Hein, 2003), to assemble a structure with improved
accuracy compared with the MFE structure (Lu et al., 2009). Other
prediction methods, such as ProbKnot (Bellaousov and Mathews,
2010), ThreshKnot (Zhang et al., 2019), DotKnot (Sperschneider
and Datta, 2010) and IPknot (Sato et al., 2011), use base-pairing
probabilities to predict pseudoknotted structures with heuristics,
which is beyond the scope of standard cubic-time algorithms.
Additionally, the partition function is the basis of stochastic sam-
pling, in which structures are sampled with their probability of
occurring in the Boltzmann ensemble (Ding and Lawrence, 2003;
Mathews, 2006).

Therefore, there has been a shift from the classical MFE-based
methods to partition function-based ones. These latter methods, as
well as the prediction engines based on them, such as partition
function-mode of RNAstructure (Mathews and Turner, 2006),
Vienna RNAfold (Lorenz et al., 2011) and CONTRAfold (Do et al.,
2006), are all based on the seminal algorithm that McCaskill pio-
neered (McCaskill, 1990). It employs a dynamic program to capture
all possible (exponentially many) nested structures, but its Oðn3Þ
runtime still scales poorly for longer sequences. This slowness is
even more severe than the Oðn3Þ-time MFE-based ones due to a
much larger constant factor. For instance, for Helicobacter pylori
23S rRNA (sequence length 2968 nt), Vienna RNAfold’s computa-
tion of the partition function and base-pairing probabilities is 9�
slower than MFE (71 versus 8 s), and CONTRAfold is even 20�
slower (120 versus 6 s). The slowness prevents their applications to
longer sequences.

To address this Oðn3Þ-time bottleneck, we present
LinearPartition, which is inspired by our recently proposed
LinearFold algorithm (Huang et al., 2019) that approximates the

MFE structure in linear time. Using the same idea, LinearPartition
can approximate the partition function and base-pairing probability
matrix in linear time. Like LinearFold, LinearPartition scans the
RNA sequence from 50-to-30 using a left-to-right dynamic program
that runs in Oðn3Þ time, but unlike the classical bottom-up
McCaskill algorithm (McCaskill, 1990) with the same speed, our
left-to-right scanning makes it possible to apply the beam pruning
heuristic (Huang and Sagae, 2010) to achieve linear runtime in prac-
tice (see Fig. 1D). Although the search is approximate, the well-
designed heuristic ensures the surviving structures capture the bulk
of the free energy of the ensemble. It is important to note that, unlike
local folding methods in Figure 1D, our algorithm does not impose
any limit on the base-pairing distance; in other words, it is a global
partition function algorithm.

More interestingly, as Figure 2 shows, even with the Oðn3Þ-time
McCaskill algorithm, the resulting number of base pairings with rea-
sonable probabilities (e.g. >0.001) grows only linearly with the se-
quence length. This suggests that our algorithm, which only
computes O(n) pairings by design, is a reasonable approximation.

LinearPartition is 2771� faster than CONTRAfold for the lon-
gest sequence (32 753 nt) that CONTRAfold can run in the dataset
(2.5 days versus 1.3 min.). Interestingly, LinearPartition is orders of
magnitude faster without sacrificing accuracy. In fact, the resulting
base-pairing probabilities are even better correlated with ground-
truth structures, and when applied to downstream structure predic-
tion tasks, they lead to a small accuracy improvement on longer
families (small and large subunit rRNAs), as well as a substantial
improvement on long-distance base pairs (500þ nt apart).

Although LinearPartition is inspired by LinearFold in many
ways, the success of the former is not obvious at all given the latter.
This is because, rather than finding one single optimal structure,
LinearPartition needs to sum up exponentially many structures
that capture the bulk part of the ensemble free energy. There are
many algorithmic techniques that can speed up the search for the
optimal or near-optimal solution (e.g. sparse folding; Backofen
et al., 2011), but very few can speed up the summation of all solu-
tions (see Section 4 for details). In addition, LinearPartition also
results in more accurate downstream structure predictions than
LinearFold.

Local partition function calculation algorithms (Bernhart et al.,
2006a; Kiryu et al., 2008), on the other hand, also achieve linear
runtime but can only consider pairs up to a fixed window size. More
importantly, they cannot output the partition function or
Boltzmann probabilities. Our work is the first to achieve linear run-
time without constraints on pair distance, and can still output the
partition function and Boltzmann probabilities, making it possible
to do stochastic sampling (Ding and Lawrence, 2003).

2 The LinearPartition algorithm

We denote x ¼ x1 . . . xn as the input RNA sequence of length n, and
YðxÞ the set of all possible secondary structures of x. The partition
function is:

Fig. 1. An RNA can fold into multiple structures at equilibrium. (A and B) Two sec-

ondary structures of Tebowned RNA: TBWN-A and TBWN-B (Cordero and Das,

2015). (C) Upper triangle shows the estimated base-pairing probability matrix for

this RNA using Vienna RNAfold, where darker red squares represent higher prob-

ability base pairs; the lower triangle shows the two different structures; (D)

Comparison between classical, local, and left-to-right algorithms for MFE and parti-

tion function calculation. �(Zuker and Stiegler, 1981), �(McCaskill, 1990), *(Lange

et al., 2012),
†
(Bernhart et al., 2006a), ‡(Kiryu et al., 2008) and •(Huang et al.,

2019). LinearFold and LinearPartition enjoy linear runtime because of a left-to-right

order that enables heuristic beam pruning, and both become exact Oðn3Þ algorithms

without pruning. ‘Span’ denotes the window size (max. pair distance) (1 means no

limit); it is a small constant in local methods (e.g. default L¼70 nt in RNAplfold)

Fig. 2. Although the total number of possible base pairings scales Oðn2Þ with the se-

quence length n (using the probability matrix from Vienna RNAfold as an example),

with any reasonable threshold h, the number of surviving pairings (in colors for dif-

ferent h) grows linearly, suggesting our approximation, only computing O(n) pair-

ings, is reasonable
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QðxÞ ¼
X

y2YðxÞ
e�

DG
�
ðyÞ

RT ;

where DG
� ðyÞ is the conformational Gibbs free energy change of

structure y, R is the universal gas constant and T is the thermo-
dynamic temperature. DG

� ðyÞ is calculated using loop-based Turner
free-energy model (Mathews et al., 1999, 2004), but for presenta-
tion reasons, we use a revised Nussinov–Jacobson energy model, i.e.
a free energy change of dðx; jÞ for unpaired base at position j and a
free energy change of nðx; i; jÞ for base pair of (i, j). For example, we
can assign dðx; jÞ ¼ 1 kcal/mol and nðx; i; jÞ ¼ �3 kcal/mol for CG
pairs and �2 kcal/mol for AU and GU pairs. Thus, DG

� ðyÞ can be
decomposed as:

DG
� ðyÞ ¼

X
j2unpairedðyÞ

dðx; jÞ þ
X

ði;jÞ2pairsðyÞ
nðx; i; jÞ;

where unpairedðyÞ is the set of unpaired bases in y, and pairedðyÞ is
the set of base pairs in y. The partition function now decomposes as:

QðxÞ ¼
X

y2YðxÞ

Y
j2unpairedðyÞ

e�
dðx;jÞ
RT

Y
ði;jÞ2pairsðyÞ

e�
nðx;i;jÞ

RT

 !
:

We first define span ½i; j� to be the subsequence xi . . . xj (thus
½1;n� denotes the whole sequence x, and ½j; j� 1� denotes the empty
span between xj�1 and xj for any j in 1::n). We then define a state to
be a span associated with its partition function:

½i; j� : Qi;j;

where Qi;j ¼
P

y2Yðxi ...xjÞe
�DG

�
ðyÞ

RT encompasses all possible substruc-

tures for span ½i; j�, which can be visualized as

For simplicity of presentation, in the pseudocode in Figure 3, Q
is notated as a hash table, mapping from ½i; j� to Qi;j; see
Supplementary Section A for details of its efficient implementation.
As the base case, we set Qj;j�1 to be 1 for all j, meaning all empty
spans have partition function of 1 (Line 4). Our algorithm then
scans the sequence from left-to-right (i.e. from 50-to-30), and at each
nucleotide xj (j ¼ 1 . . .n), we perform two actions:

• skip (Line 8): We extend each span ½i; j� 1� in Q to ½i; j� by add-

ing an unpaired base yj ¼‘.’ (in the dot-bracket notation) to the

right of each substructure in Qi;j�1, updating Qi;j:

Qi;j þ ¼ Qi;j�1 � e�
dðx;jÞ
RT

which can be visualized as

• pop (Lines 9–10): If xi�1 and xj are pairable, we combine span

½i; j� 1� in Q with each combinable ‘left’ span ½k; i� 2� in Q and

update the resulting span ½k; j�’s partition function

Qk;j þ ¼ Qk;i�2 �Qi;j�1 � e�
nðx;i�1;jÞ

RT :

This means that every substructure in Qi;j�1 can be combined
with every substructure in Qk;i�2 and a base pair ði� 1; jÞ to form

one possible substructure in Qk;j:

Above we presented a simplified version of our left-to-right
LinearPartition algorithm. We have three nested loops, one for j,
one for i, and one for k, and each loop takes at most n iterations;
therefore, the time complexity without beam pruning is Oðn3Þ,
which is identical to the classical McCaskill Algorithm (see Fig. 1D).
In fact, there is an alternative, bottom-up, interpretation of our left-
to-right algorithm that resembles the Nussinov-style recursion of the
classical McCaskill Algorithm:

Qk;j ¼ Qk;j�1 � e�
dðx;jÞ
RT þ

X
k< i� j

Qk;i�2 �Qi;j�1 � e�
nðx;i�1;jÞ

RT :

However, unlike the classical bottom-up McCaskill algorithm,
our left-to-right dynamic programming, inspired by LinearFold,
makes it possible to further apply the beam pruning heuristic to
achieve linear runtime in practice. The main idea is, at each step j,
among all possible spans ½i; j� that ends at j (with i ¼ 1 . . .j), we only
keep the top b most promising candidates (b is the beam size), ranked
by their partition functions Qi;j combined with the corresponding
‘prefix’ partition function for span ½1; i� 1�, i.e. states are ranked by
Q1;i�1 �Qi;j, in order to be fair for spans of different lengths (see
Supplementary Fig. S1 for pseudocode). With such beam pruning, we
reduce the number of states from Oðn2Þ to O(nb), and the runtime
from Oðn3Þ to Oðnb2Þ. For details of the efficient implementation
and runtime analysis, please refer to Supplementary Section A. Note
b is a user-adjustable constant (b ¼100 by default).

After the partition-function calculation, also known as the ‘in-
side’ phase of the classical inside-outside algorithm (Baker, 1979),
we design a similar linear-time ‘outside’ phase (see Supplementary
Section SA.3) to compute the ‘outside’ partition function (only for
those spans that survived the beam pruning in the ‘inside’ phase)
and the base-pairing probabilities:

pi;j ¼
X

y2YðxÞ;ði;jÞ2pairsðyÞ
pðyÞ;

where pi;j is the probability of nucleotide i pairing with j, which

sums up the probabilities of all structures that contain that pair, and

pðyÞ ¼ e�
DG
�
ðyÞ

RT =QðxÞ is y’s Boltzmann probability in the ensemble.

3 Results

3.1 Efficiency and scalability
We present two versions of LinearPartition: LinearPartition-V using
thermodynamic parameters (Mathews et al., 1999, 2004; Xia et al.,
1998) following Vienna RNAfold (Lorenz et al., 2011), and
LinearPartition-C using the learning-based parameters from
CONTRAfold (Do et al., 2006). We benchmark on a Linux machine
with 2.90GHz Intel i9-7920X CPU and 64G memory. We use RNAs
from two datasets, ArchiveII (Mathews et al., 1999; Sloma and
Mathews, 2016) [excluding 957 sequences from S-Processed dataset
(Andronescu, 2007)] and RNAcentral (RNAcentral Consortium et al.,
2017). See Supplementary Section B.1 for details of the datasets.

Figure 4 compares the efficiency and scalability between the two
baselines, Vienna RNAfold and CONTRAfold, and our two ver-
sions, LinearPartition-V and LinearPartition-C. To make the com-
parison fair, we disable the downstream tasks (MEA prediction in
CONTRAfold, and centroid prediction and visualization in

Fig. 3. Partition function calculation pseudocode of a simplified version of the

LinearPartition algorithm [the inside phase; see Supplementary Fig. S1 for the

pseudocode of beam pruning (Line 11)]. The base-pairing probabilities are com-

puted with the combination of the outside phase (Supplementary Fig. S2) (see

Supplementary Fig. S2 for the version with the Turner model)
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RNAfold) which are by default enabled. Figure 4A shows that both
LinearPartition-V and LinearPartition-C scale almost linearly with
sequence length n. The runtime deviation from exact linearity is due
to the relatively short sequence lengths in the ArchiveII dataset,
which contains a set of sequences with well-determined structures
(Sloma and Mathews, 2016). Figure 4A also confirms that the base-
lines scale cubically and the Oðn3Þ runtimes are substantially slower
than LinearPartition on long sequences. For the H.pylori 23S rRNA
sequence (2968 nt, the longest in ArchiveII), both versions of
LinearPartition take only 6 s, while RNAfold and CONTRAfold
take 73 and 120 s, respectively.

We also notice that both RNAfold and CONTRAfold have limi-
tations on even longer sequences. RNAfold scales the magnitude of
the partition function using a constant estimated from the MFE of
the given sequence to avoid overflow, but overflows still occur on
long sequences. For example, it overflows on the 19 071 nt sequence
in the sampled RNAcentral dataset. CONTRAfold stores the loga-
rithm of the partition function to solve the overflow issue, but can-
not run on sequences longer than 32 767 nt due to using unsigned
short to index sequence positions. LinearPartition, like
CONTRAfold, performs computations in the log-space, but can run
on all sequences in the RNAcentral dataset. Figure 4B compares the
runtime of four systems on a sampled subset of RNAcentral dataset,
and shows that on longer sequences the runtime of LinearPartition
is exactly linear. For the 15 780 nt sequence, the longest example
shown for RNAfold, LinearPartition-V is 256� faster (more than
3 h versus 44.1 s). Note that RNAfold may not overflow on some
longer sequences, where LinearPartition-V should enjoy an even
more salient speedup. For the longest sequence that CONTRAfold
can run (32 753 nt) in the dataset, LinearPartition is 2771� faster
(2.5 days versus 1.3 min.). Even for the longest sequence in
RNAcentral [Homo sapiens Transcript NONHSAT168677.1 with
length 244 296 nt (Zhao et al., 2016)], both LinearPartition versions
finish in �10 min.

Figure 4C shows that RNAfold and CONTRAfold use Oðn2Þ
space while LinearPartition uses O(n).

Now that we have established the speed of LinearPartition, we
move on to the quality of its output.

3.2 Correlation with ground-truth structures
We use ensemble defect (Zadeh et al., 2010; Fig. 5A and B) to repre-
sent the quality of the Boltzmann distribution. It is the expected

number of incorrectly predicted nucleotides over the whole ensem-
ble at equilibrium, and formally, for a sequence x and its ground-
truth structure y	, the ensemble defect is

Uðx; y	Þ ¼
X

y2YðxÞ
pðyÞ � dðy; y	Þ; (1)

where pðyÞ is the probability of structure y in the ensemble YðxÞ,
and dðy; y	Þ is the distance between y and y	, defined as the number
of incorrectly predicted nucleotides in y:

dðy; y	Þ ¼ jxj � jpairsðyÞ \ pairsðy	Þj
�junpairedðyÞ \ unpairedðy	Þj:

The naı̈ve calculation of Equation (1) requires enumerating all
possible structures in the ensemble, but by plugging dðy; y	Þ into
Equation (1) we have

Uðx; y	Þ ¼ jxj � 2
X

ði;jÞ2pairsðy	Þ
pi;j �

X
j2unpairedðy	Þ

qj ;

where pi;j is the probability of i pairing with j and qj is the probabil-
ity of j being unpaired, i.e. qj ¼ 1�

P
pi;j. This means we can now

use base-pairing probabilities to compute the ensemble defect.
Figure 5A and B employs ensemble defect to measure the average

number of incorrectly predicted nucleotides over the whole ensem-
ble (lower is better). RNAfold and LinearPartition have similar en-
semble defects for short sequences, but LinearPartition has lower
ensemble defects for longer sequences, especially 16S and 23S
rRNAs; in other words, LinearPartition’s ensemble has less expected
number of incorrectly predicted nucleotides (or higher number of
correctly predicted nucleotides). In particular, on 16S and 23S
rRNAs, LinearPartition has on average 15.9 and 56.3 more correct-
ly predicted nucleotides than RNAfold, and on average 8.3 more
correctly predicted nucleotides over all families (Fig. 5B).
Supplementary Figure S3 shows the relative ensemble defects (nor-
malized by sequence lengths), where the same observations hold,
and LinearPartition has on average 0.4% more correctly predicted
nucleotides over all families. In both cases, the differences on
tmRNA (worse) and Group I Intron (better) are statistically signifi-
cant ().

This finding also implies that LinearPartition’s base-pairing
probabilities are on average higher than RNAfold’s for ground-truth
base pairs, and on average lower for incorrect base pairs. We use
two concrete examples to illustrate this. First, we plot the ground-
truth structure of Escherichia coli 23S rRNA (2904 nt) in Figure 5C,
and then plot the predicted base-pairing probabilities from the local
folding tool RNAplfold (with default window size 70), RNAfold,
and LinearPartition in Figure 5D–F, respectively. We can see that
local folding can only produce local pairing probabilities, while
RNAfold misses most of the long-distance pairs from the ground-
truth (except the 50–30 helix), and includes many incorrect long-
distance pairings (shown in red). In contrast, LinearPartition suc-
cessfully predicts many long-distance pairings that RNAfold misses,
the longest being 582 nt apart (shown with arrows). Indeed, the en-
semble defect of this example confirms that LinearPartition’s ensem-
ble distribution has on average 211.4 more correctly predicted
nucleotides (over 2904 nt, or 7.3%) than RNAfold’s.

As the second example, we use Corymnbia ellipsoidea Group I
Intron (504 nt). First, in Figure 5G–J, we plot the circular plots in
the same style as the previous example, where LinearPartition is sub-
stantially better in predicting four helices in the ground-truth struc-
ture: [17,24]–[72,79], [30,45]–[66,71], [44,48]–[54,58] and
[80,83]–[148,151] (annotated with blue arrows). Next, in
Figure 6A, we plot the base pairs (in triangle) and unpaired bases (in
circle) with RNAfold probability on x-axis and LinearPartition
probability on y-axis. We color the circles and triangles in blue
where LinearPartition gives 0.2 higher probability than RNAfold
(top left region), the opposite ones (bottom right region) in red, and
the remainder (diagonal region, with probability changes < 0.2) in
green. Then in Figure 6B, we visualize the ground-truth structure

Fig. 4. Total runtime and memory usage of computing both the partition function

and base-pairing probabilities. (A) Runtime comparisons on the ArchiveII dataset;

the curve-fittings were log-log in gnuplot with n > 103. (B) Runtime comparisons

on the RNAcentral dataset (log scale). The partition function computation takes

about half of the total time shown here. (C) Memory usage comparisons on the

RNAcentral dataset (log scale)
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(Cannone et al., 2002) and color the bases as in Figure 6A. We ob-
serve that the majority of bases are in green, indicating that
RNAfold and LinearPartition agree with for a majority of the struc-
ture features. But, the blue helices (near 50-end and [80,83]–
[148,151], see also Fig. 5J) indicate that LinearPartition favors these
correct substructures by giving them higher probabilities than
RNAfold. We also notice that all red features (where RNAfold does
better than LinearPartition) are unpaired bases. This example shows
that although LinearPartition and RNAfold give different probabil-
ities, it is likely that LinearPartition prediction structure is closer to
the ground-truth structure (which will be confirmed by downstream
structure predictions in Section 3.3). The ensemble defect of this ex-
ample also confirms that LinearPartition has on average 47.1 more
correctly predicted nucleotides (out of 504 nt, or 9.3%) than
RNAfold.

Figure 6C gives the statistics of this example. We can see the green
triangles in Figure 6A, which denote similar probabilities between
RNAfold and LinearPartition are the vast majority. The total number
of blue triangles, for which LinearPartition gives higher base-pairing
probabilities, is 55, and among them 23 (41.8%) are in the ground-
truth structure. On the contrary, 56 triangles are in red, but none of
these RNAfold preferred base pairs are correct. For unpaired bases,
LinearPartition also gives higher probabilities to more ground-truth
unpaired bases: there are 40 blue circles, among which 37 (92.5%)
are unpaired in the ground-truth structure, while only 19 out of the
44 red circles (43.2%) are in the ground-truth structure.

3.3 Accuracy of downstream predictions
An important application of the partition function is to improve
structure prediction accuracy (over MFE) using base-pairing probabil-
ities. Here we use two such ‘downstream prediction’ methods, MEA

(Do et al., 2006) and ThreshKnot (Zhang et al., 2019) which is a
thresholded version of ProbKnot (Bellaousov and Mathews, 2010),
and compare their results using base-pairing probabilities from
Oðn3Þ-time baselines and our O(n)-time LinearPartition. We use posi-
tive predictive value (PPV, the fraction of predicted pairs in the
known structure, a.k.a. precision) and sensitivity (the fraction of
known pairs predicted, a.k.a. recall) as accuracy measurements for
each family, and get overall accuracy be averaging over families.
When scoring accuracy, we allow base pairs to differ by one nucleo-
tide in position (Mathews et al., 1999). We compare RNAfold and
LinearPartition-V on the ArchiveII dataset in the main text, and pro-
vide the CONTRAfold versus LinearPartition-C comparisons in the
Supplementary Figures S5 and S6.

Figure 7A shows MEA predictions (RNAfold þ MEA and
LinearPartition þ MEA) are more accurate than MFE ones
(RNAfold MFE and LinearFold-V), but more importantly,
LinearPartition þ MEA consistently outperforms RNAfold þ MEA
in both PPV and sensitivity with the same c, a hyperparameter that
balances PPV and sensitivity in MEA algorithm.

Figure 7B and C details the per-family PPV and sensitivity, re-
spectively, for MFE and MEA (c ¼ 1:5) results from Figure 7A.
LinearPartition þ MEA has similar PPV and sensitivity as RNAfold
þ MEA on short families (tRNA, 5S rRNA and SRP), but interest-
ingly, is more accurate on longer families, especially the two longest
ones, 16S rRNA (þ0.86 on PPV and þ1.29 on sensitivity) and 23S
rRNA (þ0.88 on PPV and þ0.62 on sensitivity).

ProbKnot is another downstream prediction method that is sim-
pler and faster than MEA; it assembles base pairs with reciprocal
highest pairing probabilities. Recently, we demonstrated
ThreshKnot (Zhang et al., 2019), a simple thresholded version of
ProbKnot that only includes pairs that exceed the threshold, leads to
more accurate predictions that outperform MEA by filtering out

Fig. 5. (A) Ensemble defect (expected number of incorrectly predicted nucleotides; lower is better) comparison between Vienna RNAfold and LinearPartition on the ArchiveII

dataset. (B) Ensemble defect difference for each family. LinearPartition has lower ensemble defects for longer families: on average 56.3 less incorrectly predicted nucleotides on

23S rRNA and 8.3 less over all families. An example of E.coli 23S rRNA (shaded point in A). (C) Circular plot of the ground truth. (D–F) Base pair probabilities from

RNAplfold (with default window size 70), RNAfold and LinearPartition, respectively; Blue denotes pairs in the known structure and Red denotes predicted pairs not in the

known structure. The darkness of the line indicates pairing probability (G–J). Circular plots of C.ellipsoidea Group I Intron (see Fig. 6 for another view of this example)
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unlikely pairs, i.e. those whose probabilities fall under a given
threshold h.

As shown in Supplementary Figure S4A, LinearPartition þ
ThreshKnot is almost identical in overall accuracy to RNAfold þ
ThreshKnot at all h’s, and is slightly better than the latter on long
families (þ0.24 on PPV and þ0.38 on sensitivity for Group I Intron,
þ0.12 and þ0.37 for telomerase RNA, and þ0.74 and þ0.62 for
23S rRNA; Supplementary Fig. S4B and C). We also perform a two-
tailed permutation test (Aghaeepour and Hoos, 2013) to test the
statistical significance, and observe that on tmRNA, both MEA and
ThreshKnot structures of LinearPartition are significantly worse

(p < 0.01) than their RNAfold-based counterparts in both PPV and
Sensitivity.

Figure 7D and Supplementary Figure S4D show that
LinearPartition-based predictions are subtantially better than
RNAfold’s (in both PPV and sensitivity) for long-distance base pairs

(those with 500þ nt apart), which are well known to be challenging
for the current models. Supplementary Figure S7 details the accura-

cies on base pairs with different distance groups.
Supplementary Figures S5 and S6 show similar comparisons be-

tween CONTRAfold and LinearPartition-C using MEA and

ThreshKnot prediction, with similar results to Figure 7 and
Supplementary Figure S4, i.e. downstream structure prediction using

LinearPartition-C is as accurate as using CONTRAfold, and (some-
times significantly) more accurate on longer families.

3.4 Approximation quality (default beam size)
LinearPartition uses beam pruning to ensure O(n) runtime, thus is
approximate compared with standard Oðn3Þ-time algorithms. We

now investigate its approximation quality at the default beam size
100.

First, in Figure 8, we measure the approximation quality of the
partition function calculation, in particular, the ensemble folding
free energy change (also known as ‘free energy of the ensemble’)

which reflects the size of the partition function,

DG
�

ensembleðxÞ ¼ �RT log QðxÞ:

Figure 8A shows that the LinearPartition estimate for the ensem-
ble folding free energy change is close to the RNAfold estimate on
the ArchiveII dataset and randomly generated RNA sequences. The

similarity shows that little magnitude of the partition function is lost
by the beam pruning. For short families, free energy of ensembles

between LinearPartition and RNAfold are almost the same. For 16S
and 23S rRNA sequences and long random sequences (longer than
900 nt), LinearPartition gives a lower magnitude ensemble free en-

ergy change, but the difference,

DDG
�

ensembleðxÞ ¼ DG
� vienna
ensembleðxÞ � DG

� linear
ensembleðxÞ 
 0

is smaller than 20 kcal/mol for 16S rRNA, 15 kcal/mol for 23S

rRNA and 37 kcal/mol for random sequences (Fig. 8B). The max-
imum difference for random sequence is larger than natural sequen-
ces (by 17.2 kcal/mol). This likely reflects the fact that random

sequences tend to fold less selectively to probable structures (Fu
et al., 2015), and the beam is therefore pruning structures in random
that would contribute to the overall folding stability. Figure 8C

shows the ‘relative’ differences in ensemble free energy changes,
DDG

�

ensembleðxÞ=DG
� vienna
ensembleðxÞ, are also very small: only up to 2.5%

and 1.5% for 16S and 23S rRNAs, and up to 4.5% for random
sequences.

Next, in Figure 9, we measure the approximation quality of

base-pairing probabilities using root mean square deviation (RMSD)

Fig. 6. An example of C.ellipsoidea Group I Intron. (A) Solid triangles (� � �)

stand for base-pairing probabilities and unfilled circles (� � �) stand for single-

stranded probabilities. blue: plinear � pvienna > 0:2; green: jplinear � pviennaj � 0:2;

red: plinear � pvienna < �0:2; (B) Ground-truth structure colored with the above

scheme; (C) Statistics of this example. ‘Total’ columns are the total numbers of tri-

angles and circles with different colors in (A), while ‘correct’ columns are the corre-

sponding numbers in the ground-truth structure in (B), which is better correlated

with LinearPartition’s probabilities than Vienna RNAfold’s (23 blue pairs and 0 red

pairs)

Fig. 7. Accuracy of downstream prediction (MEA) using base-pairing probabilities from Vienna RNAfold and LinearPartition on the ArchiveII dataset. (A) Overall PPV-

Sensitivity tradeoff of MFE (single point) and MEA with varying c (which can be tuned for higher sensitivity or PPV by adjusting c). (B and C) PPV and Sensitivity comparisons

of MEA structures for each family. (D) Accuracy comparison of long-distance base pairs (>500 nt apart) in the MEA structures. We conclude that MEA predictions based on

LinearPartition-V are consistently better in both PPV and Sensitivity than those based on Vienna RNAfold for all c’s. LinearPartition-V is substantially better on long-range

base pairs in MEA predictions
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between two probability matrices p and p0 over the set of all possible
Watson–Crick and wobble pairs on a sequence x. We define

pairingsðxÞ ¼ f1 � i < j � jxjj j� i > 3
xixj 2 fCG; GC; AU; UA; GU; UGgg

and:

RMSDðp; p0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

jpairingsðxÞj
X

ði;jÞ2pairingsðxÞ
ðpi;j � p0i;jÞ2

s
:

Figure 9A and B confirms that our LinearPartition algorithm
(with default beam size 100) can indeed approximate the base-
pairing probability matrix reasonably well. Figure 9A shows the
heatmap of probability matrices for E.coli tRNAGly. RNAfold
(lower triangle) and LinearPartition (upper triangle) yield identical
matrices (i.e. RMSD ¼ 0). Figure 9B shows that the RMSD of each
sequence in ArchiveII and RNAcentral datasets, and randomly gen-
erated artificial RNA sequences, is relatively small. The highest devi-
ation is 0.065 for Ascaphus truei RNase P RNA, which means on
average each base pair’s probability deviation in that worst-case se-
quence is about 0.065 between the cubic algorithm (RNAfold) and
our linear-time one (LinearPartition). On the longest 23S rRNA
family, the RMSD is about 0.015. We notice that tmRNA is the
family with biggest average RMSD. The random RNA sequences be-
have similarly to natural sequences in terms of RMSD, i.e. RMSD is
close to 0 (<10�5) for short ones, then becomes bigger around
length 500 and decreases after that, but for most cases their RMSD’s
are slightly larger than the natural sequences. This indicates that the
approximation quality is relatively better for natural sequences. For
RNAcentral-sampled sequences, RMSD’s are all small and around
0.01.

We hypothesize that LinearPartition reduces the uncertainty of
the output distributions because it filters out states with lower parti-
tion function. We measure this using average positional structural
entropy H(p), which is the average of positional structural entropy
H2ðiÞ for each nucleotide i (Garcia-Martin and Clote, 2015; Huynen
et al., 1997):

HðpÞ ¼ 1

n

Xn

i¼1

H2ðiÞ ¼
1

n

Xn

i¼1

�
Xn

j¼0

pi;j log 2pi;j

 !

¼ �1

n

Xn

i¼1

Xn

j¼0

pi;j log 2pi;j;

where p is the base-pairing probability matrix, and pi;0 is the

probability of nucleotide i being unpaired (qi in Equation 1). The
lower entropy indicates that the distribution is dominated by fewer
base-pairing probabilities. Supplementary Figure S8A confirms
LinearPartition distribution shifted to higher probabilities (lower
average entropy) than RNAfold for most sequences.

Supplementary Figure S8B uses E.coli 23S rRNA to exemplify
the difference in base-pairing probabilities. We sort all these proba-
bilities from high to low and take the top 3000. The LinearPartition
curve starts higher and finishes lower, confirming a lower entropy.

Supplementary Figure S8C follows a previous analysis method
(Zuber et al., 2017) to estimate the approximation quality with a
different perspective. We divide the base-pairing probabilities range
[0,1] into 100 bins, i.e. the first bin is for base-pairing probabilities
[0,0.01], and the second is for [0.01, 0.02], so on so forth. We visu-
alize the averaged change of base-pairing probabilities between
RNAfold and LinearPartition for each bin with purple bars. We can
see that larger probability changes are in the middle (bins with prob-
ability around 0.5), and smaller changes on the two sides (with
probability close to either 0 or 1). We illustrate the counts in each
bin based on RNAfold base-pairing probabilities with green dots
and line. We can see that most base pairs have low probabilities
(near 0) or very high probabilities (near 1). From Figure 9C we can
see that probabilities of most base pairs are near 0 or 1, where the
differences between RNAfold and LinearPartition are relatively
small. Supplementary Figure S9 provides the comparison of counts
in each bin between RNAfold and LinearPartition-V. The count of
LinearPartition-V in bin [99,100] is slightly higher than RNAfold,
while the counts in bins near 0 (being capped at 50 000) are much
less than RNAfold. This also confirms that LinearPartition prunes
base pairs with tiny probabilities.

3.5 Adjustable beam size
Beam size in LinearPartition is a user-adjustable hyperparameter con-
trolling beam prune, and it balances the approximation quality and
runtime. A smaller beam size shortens runtime, but sacrifices approxi-
mation quality. With increasing beam size, LinearPartition gradually
approaches the classical Oðn3Þ-time algorithm and the output is final-
ly identical to the latter when the beam size is 1 (no pruning).
Figure 10A shows the changes in approximation quality of the ensem-
ble free energy change, DG

�

ensembleðxÞ, with b ¼ 20! 300. Even with
a small beam size (b¼20) the difference is only about 5%, which
quickly shrinks to 0 as b increases. Figure 10B shows the changes
in RMSD with changing b. With a small beam size b¼20 the
average RMSD is< 0.035 over all ArchiveII sequences, which shrinks
to < 0.005 at the default beam size (b¼100), and almost 0 with
b¼500.

Beam size also has impact on PPV and Sensitivity.
Supplementary Figure S10A gives the overall PPV and Sensitivity
changes with beam size. We can see both PPV and Sensitivity im-
prove from b¼50 to 100, and then become stable beyond that.
Supplementary Figure S10B and C present this impact for two
selected families. Supplementary Figure S10B shows tmRNA’s PPV
and Sensitivity both increase when enlarging beam size. Using beam
size 200, LinearPartition achieves similar PPV and Sensitivity as
RNAfold. However, increasing beam size is not beneficial for all
families. Supplementary Figure S10C gives the counterexample of
16S rRNA. We can see both PPV and Sensitivity decrease with b
from 50 to 100. After that, Sensitivity drops with no PPV
improvement.

LinearFold uses k-best parsing (Huang and Chiang, 2005) to re-
duce runtime from Oðnb2Þ to Oðnb log bÞ without losing accuracy.
Basically, k-best parsing is to find the exact top-k (here k ¼ b) states
out of b2 candidates in Oðb log bÞ runtime. If we applied k-best pars-
ing here, LinearPartition would sum the partition function of only
these top-b states instead of the partition function of b2 states. This
change would introduce a larger approximation error, especially
when the differences of partition function between the top-b states
and the following states near the pruning boundary are small.
Therefore, in LinearPartition we do not use k-best parsing as in
LinearFold, and the runtime is Oðnb2Þ instead of Oðnb log bÞ.

Fig. 8. Approximation quality of partition function on ArchiveII dataset and ran-

dom sequences. (A) The x and y axes are ensemble folding free energy changes

DG
�

ensembleðxÞ of Vienna RNAfold and LinearPartition, respectively. (B) Difference

of ensemble folding free energy change (top), DDG
�

ensembleðxÞ, between RNAfold and

LinearPartition. and the relative differences (bottom), DDG
�

ensembleðxÞ=DG
� vienna
ensembleðxÞ,

in percentages
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Finally, we note that the default beam size b ¼ 100 follows
LinearFold and we do not tune it.

4 Discussion

4.1 Summary
The classical McCaskill (1990) algorithm for partition function and
base-pairing probabilities calculations are widely used in many stud-
ies of RNAs, but its application has been impossible for long sequen-
ces (such as full length mRNAs and lncRNAs) due to its cubic
runtime. To alleviate this, we design LinearPartition, a linear-time
algorithm that dramatically reduces the runtime without sacrificing
quality. We confirm that:

1. LinearPartition takes only linear runtime and memory usage,

and is orders of magnitude faster on longer sequences (Fig. 4);

2. The base-pairing probabilities produced by LinearPartition are

better correlated with the ground-truth structures on average

(Figs 5 and 6);

3. When used with downstream structure prediction methods such

as MEA and ThreshKnot, LinearPartitionhe base pair probabil-

ities have similar overall accuracy (or even a small improvement

on MEA structures) compared with RNAfold, as well as better

accuracies on longer families and long-distance base pairs

(Fig. 7);

4. LinearPartition has a reasonable approximation quality (Figs 8

and 9) in terms of RMSD.

There are two possible reasons why our approximation results in
better base-pairing probabilities:

1. This is consistent with the findings in LinearFold, where ap-

proximate folding via beam search yields more accurate

structures.

2. LinearPartitionin pruning of low-probability (sub)structures has

a ‘regularization’ effect. It eliminates some noise in the current

energy model which is highly inaccurate, especially for long-

distance interactions.

The success of LinearPartition is arguably more striking than
LinearFold, since the former needs to sum up exponentially many
structures that capture the bulk part of the ensemble free energy,
while the latter only needs to find one single optimal structure.

4.2 Extensions
Our work has potential extensions.

1. Existing methods and tools for bimolecular and multistrand

base-pairing probabilities as well as accessibility computation

(Bernhart et al., 2006b; Chitsaz et al., 2009; DiChiacchio et al.,

2016; Dirks et al., 2007) are rather slow, which limits their

applications on long sequences. LinearPartition will likely pro-

vide a much faster solution for these problems.

2. We will linearize the partition function-based heuristic methods

for pseudoknot prediction such as IPknot and Dotknot. These

heuristic methods use rather simple criteria to choose pairs from

the base-pairing probability matrix, and their runtime bottleneck

is still the Oðn3Þ-time calculation of the base-pairing probabil-

ities. With LinearPartition we can overcome the costly bottle-

neck to get an overall much faster tool.

3. We can also speed up stochastic sampling of RNA secondary

structures from Boltzmann distribution. The standard stochastic

sampling algorithm runs in worst-case Oðn2Þ time (Ding and

Lawrence, 2003), but relies on the classical Oðn3Þ partition func-

tion calculation. With LinearPartition, we can apply stochastic

sampling to full length sequences such as mRNAs, and compute

their accessibility based on sampled structures.

4.3 Related work
There are other algorithmic efforts to speed up RNA folding and
partition function calculation, including sparsification (Backofen
et al., 2011; Chitsaz et al., 2013). But our work differs from those
efforts in the following ways: (i) our dynamic programming is left-
to-right and theirs are bottom-up; (ii) our work guarantees linear
runtime while theirs cannot; (iii) our search is inexact while theirs
are exact.

A local partition function calculation (Bernhart et al., 2006a;
Kiryu et al., 2008), on the other hand, also achieves linear runtime
but can only consider pairs up to a fixed window size. Figure 5
shows the difference between the results of RNAplfold and

Fig. 10. Impact of beam size. (A) Relative difference of ensemble folding free energy

change, DDG
�

ensemble=DG
�

ensemble, against beam size. (B) RMSD against beam size

Fig. 9. Comparison of base-pairing probabilities from Vienna RNAfold and LinearPartition. (A) LinearPartition (upper triangle) and RNAfold (lower triangle) result in identi-

cal base-pairing probability matrix for E.coli tRNAGly. (B) The RMSDðpvienna; plinearÞ, is relatively small between RNAfold and LinearPartition; all tRNA and 5S rRNA

sequences RMSD is close to 0 (e.g. RMSD< 10�5); the ðC6G6Þn (blue diamonds) constructed sequences are repetitions of 6 C’s and 6 G’s. (C) Purple bars show mean absolute

value of change in base-pairing probabilities between Vienna RNAfold and LinearPartition (left y-axis); these changes are averaged within every probability bin. The green line

shows pair probability distribution of Vienna RNAfold (right y-axis); note that the right y-axis is limited to 50 000 counts, and the counts of first three bins (with probability

<3%) are far beyond 50 000
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LinearPartition. But more importantly, as pointed out by (Kiryu
et al., 2008), RNAplfold only outputs approximate local base-
pairing probabilities, because each pi;j is computed as an average
over local pairing probabilities pu;L

i;j from all windows ½u; uþ L� that
contain the (i, j) pair. We further note that this approximation actu-
ally leads to a much more serious problem that the base-pairing
probabilities do not normalize. Indeed, Supplementary Table S2
shows that, strikingly, almost all sequences in the ArchiveII dataset
have at least one nucleotide whose unpaired probability from
RNAplfold is negative, and about 40% of nucleotides in all sequen-
ces have that problem.

To compare RNAplfold and our work, we cannot use ensemble
defect because RNAplfold’s unpaired probabilities can be negative.
Furthermore, RNAplfold can only output (approximate) local base
pair probabilities, and cannot output the partition function or the
Boltzmann probabilities, making it impossible to do stochastic sam-
pling (Ding and Lawrence, 2003).

So we compare the RMSDs. To do a fair comparison between
two very different algorithms, we plot in Supplementary Figure S11
the RMSD against runtime, with varying L (window size) for
RNAplfold and b (beam size) for LinearPartition. It is clear that
LinearPartition can achieve substantially lower RMSDs with the
same amount of computing time.

4.4 Limitations
Our work still has the following limitations:

1. We are unable to derive any guarantee of the approximation

quality due to the ‘hard beam’ heuristic in pruning (only allow-

ing a fixed number of states in each step). But, we also note that

it is this very heuristic that guarantees linear runtime. An ap-

proximation guarantee would be possible if we had used a ‘soft

beam’ heuristic that allows all states above a threshold to sur-

vive, but with the cost of linear runtime.

2. LinearPartition seems to be slightly worse on random sequences

than natural sequences, and even worse on some special

designed sequences such as ðC6G6Þn, i.e. repetitions of 6 C’s fol-

lowed by 6 G’s, which would have rather flat distributions as

there are so many competing pairing options. This is because the

non-natural sequences tend to fold less selectively to probable

structures (Fu et al., 2015), thus their distributions (both

Boltzmann and base-pairing probabilities) are ‘flatter’ (i.e.

higher entropy). This makes it harder for beam search to capture

the bulk part of the ensemble free energy. Figure 9B confirms the

RMSDs of ðC6G6Þn is higher than random sequences, which are

in turn higher than natural sequences.
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