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Tumor-infiltrating lymphocytes (TILs) in gastric cancer are closely related to clinical
prognosis; however, little is known regarding the immune microenvironment in this
disease. Thus, RNA-sequencing data from gastric cancer patients were downloaded
from the Gene Expression Omnibus (GEO). The proportion of immune cells was
determined based on a deconvolution algorithm (CIBERSORT), and gene expression
profiles were analyzed in the context of clinical outcomes to construct an immune
risk score. Data were analyzed using least absolute shrinkage and selection operator
(LASSO) and multivariable Cox regression, to identify prognostic markers of gastric
cancer survival. The model included four immune cell types: neutrophils, plasma cells,
activated CD4+ memory T cells, and T follicular helper cells. Patients were classified into
two subgroups based on risk score, and a significant difference in overall survival (OS)
was seen between the subgroups in both the training and testing cohorts, particularly
in patients with tumor stages ≥T3. Multivariable analysis revealed that both T-stage
and risk score were independent prognostic factors for gastric cancer survival [hazard
ratio (HR) 1.505; 95% confidence interval (CI) 1.043–2.173, HR 1.686; 95% CI 1.367–
2.080]. Risk scores and clinical factors were then integrated into a nomogram to
build a model with both good discriminatory power and accuracy in predicting clinical
outcomes. Further analysis using gene set enrichment analysis (GSEA) identified strong
associations of immune risk with TGF-β and tumor metastasis-related pathways, which
could inform research on the molecular mechanisms of gastric cancer. Collectively,
the data presented here suggest that an immune risk model can make an important
contribution to predictions prognosis in gastric cancer patients.

Keywords: TIL, gastric cancer, GEO, immune risk score model, prognosis

INTRODUCTION

Gastric cancer is one of the most common forms of cancer worldwide, with over 1,000,000 new
cases diagnosed in 2018, resulting in ∼783,000 deaths (1). In recent years, the diagnosis and
treatment of early gastric cancer has progressed rapidly (2); however, the treatments for advanced
stage gastric cancer remain limited. Secondary treatment with chemoradiotherapy after surgery
has not provided satisfactory therapeutic results, and nor has the combination of paclitaxel with
ramucirumab, an anti-VEGFR2 antibody; the overall survival (OS) time remains below 2 years
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(3, 4). Additional biomarkers for tumor detection and
classification of gastric cancer subtypes are therefore necessary,
as well as more effective treatments for advanced-stage patients.

Evidence of much greater heterogeneity in gastric cancer
prognosis than previously thought is emerging from a growing
number of clinical trials, even after adjusting for TNM stage.
Thus, it is important to identify prognostic factors that are
independent of other clinical factors, such as immune markers.
As an essential component of the tumor microenvironment,
immune cell infiltrates have a profound effect on tumor
development and clinical outcomes. Recent studies showed
that immune cell infiltration phenotypes may be associated
with clinical outcomes, including tumor prognosis (5–7). Other
studies revealed strong correlations between clinical outcomes
and immune cells in gastric cancer, including CD8 T cells,
mast cells, and tumor-associated macrophages (8, 9). Moreover,
the tumor immune response has proven to be an important
target of precision therapy for cancer. Immune checkpoint
inhibitors have attracted significant attention in recent years, with
therapies targeting immune receptors such as PD-1 and CTLA-4
being capable of limiting T cell activity by modulating various
signaling pathways. As the targeting of immune checkpoint
inhibitors has proven highly successful for the treatment of
various cancers (10, 11), extension of this strategy to other
malignancies, including gastric cancer, has become a major topic
in clinical research (12).

Although previous studies have evaluated the prognostic
value of single immune cell populations, comprehensive
analysis of the tumor immune landscape and related molecular
mechanisms has been lacking, with few studies assessing the full
repertoire of immune cells present in tumor infiltrates. Such
an analysis is essential both for diagnosing and understanding
the progression of cancers, due to the diverse immune
cell networks and highly complex interactions thereof (13).
To understand the relevance of the immune response to
gastric cancer, and to identify immune therapeutic targets
and biomarkers, it is necessary to holistically evaluate the
overall composition of tumor immune cell infiltrate. Analysis
of a large number of cancer samples will increase the
statistical power of any such evaluation, lending credibility
to the outcomes.

Recently, a new gene expression matrix-based deconvolution
algorithm known as CIBERSORT was developed, which can
be used to assess the diversity characteristics of tumor-
infiltrating lymphocyte (TIL) populations. CIBERSORT has
proven highly effective in controlling for statistical noise and
distinguishing among closely related cell types, making it a
useful application for studying cell heterogeneity in multiple
tissue types, including solid tumors (14). Here, we applied
CIBERSORT to transcriptomic data collected from multiple
tissue types, to quantify the relative proportions of 22 types
of immune cells. RNA-sequencing data from gastric cancer
samples were obtained from the Gene Expression Omnibus
(GEO) to investigate the role of immune cells in the OS of
gastric cancer patients. Least absolute shrinkage and selection
operator (LASSO) and multivariate Cox regression analysis
were used to establish a risk model to predict the OS of

patients with gastric cancer. Gene set enrichment analysis
(GSEA) revealed a strong association of immune risk with
transforming growth factor (TGF)-β and tumor metastasis-
related pathways, and identified immune signatures that could
inform further research on the molecular mechanisms of gastric
cancer (15).

MATERIALS AND METHODS

Gastric Cancer Datasets and Processing
Gastric cancer gene expression data were obtained from the
GEO database1. Small datasets (<50 samples) were excluded
from the analysis, as were the data of patients with an OS
time <1 month, or with insufficient data regarding age, gender,
or TNM stage. Based on these criteria, we identified a single
study (GSE84437) of patients with gastric cancer. Normalized
matrix files for the dataset as well as the platform files
were downloaded.

Estimation of Immune Cell Type Fraction
To determine the proportions of the 22 infiltrating immune
cells in the normalized gene expression datasets, the
CIBERSORT algorithm and LM22 gene signature were
used. CIBERSORT, which is a deconvolution algorithm
for analyzing gene expression data, uses a series of gene
expression barcodes (comprising a “signature matrix” of 547
genes) for characterizing the proportion of each immune
cell type. Briefly, the gene expression datasets were uploaded
to the CIBERSORT web portal2, and the deconvolution
algorithm was run using the LM22 gene signature matrix
(1,000 permutations). CIBERSORT derives a p-value for the
deconvolution of each sample using Monte Carlo sampling,
as a measure of confidence in the results; only samples with
a p-value < 0.05 were considered for further analysis. For
each sample, the sum of all estimating infiltrating immune cell
fractions equaled 1.

Immune Cell Model Construction and
Verification
The CIBERSORT files were combined with relevant clinical data,
and the patients were divided into training and testing cohorts
according to a 1:1 ratio using a randomization method based on
survival status. We included all samples with p-values < 0.05 in
the CIBERSORT model for the training cohort analysis. LASSO
regression was used to identify the most valuable prognostic
immune cell subset among 22 types of immune cells, and the
optimal values of the penalty parameter λ were determined
by cross-validation. Associations between the proportions of
immune cell types and survival were tested using multivariate
Cox regression, which was also used to further filter the immune
cell populations and determine the final coefficient of each cell
type to construct the immune risk model. Final risk scores

1https://www.ncbi.nlm.nih.gov/geo/
2http://cibersort.stanford.edu/

Frontiers in Oncology | www.frontiersin.org 2 September 2020 | Volume 10 | Article 522015

https://www.ncbi.nlm.nih.gov/geo/
http://cibersort.stanford.edu/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


fonc-10-522015 September 30, 2020 Time: 0:6 # 3

Xie et al. Immune Risk Model in GC

were calculated and “high risk” and “low risk” groups were
distinguished according to the median risk score.

Risk score =
n∑

i=1

Coefi ∗ Fractioni

The associations of infiltrating immune cell subsets with OS were
analyzed using Kaplan–Meier curves, with receiver operating
characteristic (ROC) curve analysis used to verify the sensitivity
and specificity of the model for the training cohort. The
immune risk model was then applied to the testing cohort and
Kaplan–Meier and ROC curve analyses were used to verify the
reliability of the model.

Immune cell populations were further classified based on
tumor stage, with matrices isolated from T1 and T2 tumors
divided into one cohort and T3 and T4 tumors into another. The
risk model was then applied to each cohort and “high risk” and
“low risk” groups were distinguished. Kaplan–Meier curves were
plotted for each cohort to illustrate the gastric cancer stage most
suitable for application of the model.

Independent Prognostic Factors and
Clinical Prognosis Model
Univariate and multivariate Cox regression analyses were used to
evaluate the correlations between OS and clinical factors, and to
identify factors independently predicting disease outcomes.

The independent prognostic factors were then used to
construct a new clinical model. The data were visualized using
a nomogram to assess the relationship between the variables in
the clinical model and prognosis. Harrell’s concordance index (C-
index) was calculated and the prognostic models were calibrated
using the R survival package.

GSEA
Gene set enrichment analysis was used to identify differences
in gene enrichment between the low- and high-risk cohorts
based on Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway analysis, and on
immunologic signatures.

Statistical Analysis
Statistical analysis was conducted using R software (version 3.6.1;
R Foundation for Statistical Computing, Vienna, Austria). All
statistical tests were two-sided, with p-values < 0.05 considered
statistically significant.

RESULTS

Flowchart
A total of 288 clinically annotated gastric cancer samples
were identified that met the screening criteria described above.
Supplementary Table S1 provides a summary of the immune
cell compositions within and across gastric cancer subgroups.
A schematic overview is shown in Figure 1.

Establishment of the Immune Risk Model
The normalized gene expression profiles of human gastric
cancer cells were analyzed using CIBERSORT. The proportions
of the 22 immune cell types are shown in Figure 2. To
evaluate the association between immune characteristics and
prognostic outcomes, four features were extracted from among
the 22 different immune cell types in the training cohort using
LASSO regression (λ = −4). The partial likelihood deviance
for this penalty parameter was 10.949 (minimum deviance).
Next, stepwise regression was used to further filter the different
immune cell types and identify the optimal coefficient for each
population. Finally, four cell types were selected to construct the
immune risk model. The formula of the model was as follows:
risk score = 35.127 ∗ neutrophils – 5.798 ∗ plasma cells – 4.155 ∗
activated CD4+ memory T cells - 6.239 ∗ T follicular helper (Tfh)
cells. The training and testing cohorts were both divided equally
into high and low risk groups using the above formula, according
to the median risk score in the training cohort.

Validation of the Risk Model for
Predicting Survival
Next, we evaluated the prognostic value of the immune risk
model with respect to OS. Cases in the high-risk group had a
significantly worse OS relative to the low risk group, both in the
training and testing cohorts (p < 0.001 and p < 0.05, respectively;
Figure 3). The 1-, 3-, and 5-year OS rates were 0.896, 0.639,
and 0.486 in the training cohort and 0.965, 0.854, and 0.750 in
the testing cohort, respectively. The accuracy of the model was
verified using time-dependent ROC curves, which confirmed the
reliability of the prognoses in both cohorts. The area under the
ROC curve for the risk score was 0.600, 0.691, and 0.716 for
1-, 3- and 5-year OS in the training cohort, versus 0.800, 0.580
and 0.632 in the testing cohort, respectively. Next, the training
and testing cohorts were combined to derive a new cohort and
then re-divided into two subgroups according to tumor (T) stage.
The degree of separation between the two groups, according to
Kaplan–Meier survival curves, showed a significant difference
between the T1–T2 (p = 0.02) and T3–T4 patients (p < 0.001).

Characteristics of the Immune Risk
Score Model
As can be seen in Figure 4, OS was obviously different between
subgroups for both the training and testing cohorts. Green and
red areas correspond to low and high risk scores, respectively.
The heatmaps demonstrated clear segregation of the four selected
immune cells into two subgroups. The proportions of activated
CD4+ memory T cells, plasma cells, and Tfh cells in the high risk
score group were significantly higher than in the low risk score
group, with the opposite pattern seen for neutrophils.

Independent Prognostic Factors of
Gastric Cancer
Clinical parameters are crucial for accurate patient prognosis. In
this study, univariate Cox regression analysis was first conducted
to evaluate the correlations between survival prognosis and
clinical factors. T stage and risk score were the first factors
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FIGURE 1 | Study design and patient demographics. Step 1: The dataset of study GSE84437, containing 433 gastric cancer tissue samples, was mined using
CIBERSORT. Data were filtered based on p-values and clinical outcomes, yielding a final cohort of 288 patients. Patients were divided into training and testing
cohorts according to 1:1 ratio using a randomization method. Step 2: Four infiltrating immune cell types in the training cohort were screened by least absolute
shrinkage and selection operator (LASSO) and multivariate Cox regression, and validated in both the training and testing cohorts. Step 3: Gene set enrichment
analysis (GSEA) analysis was used to identify subgroup differences in gene enrichment.

tested, and both proved to be negative predictors of survival
[hazard ratio (HR) 1.505, 95% confidence interval (CI) 1.043–
2.173; HR 1.686, 95% CI 1.367–2.080]. These factors were also
identified as independent prognostic factors by multivariate Cox
regression (HR 1.468, 95% CI 1.010–2.135; HR 1.658, 95% CI
1.331–2.065). The HRs for T stage and risk score were both >1,
showing that these factors were strongly associated with poorer
survival outcomes.

Nomogram of Independent Factors
Next, independent prognostic factors were used to construct a
new clinical model. A nomogram was built that integrated the T
stage and risk score to predict 3- and 5-year OS in the training
cohort (Figure 5). The C-index of the nomogram was 0.662.

The calibration curves showed satisfactory predictive power with
respect to 3- and 5-year OS, as determined by comparing the
actual observations against the predictions.

Differences in Gene Enrichment Between
Immune Risk Subgroups
Gene set enrichment analysis was used to identify differences in
gene enrichment between low- and high-risk cohorts based on
GO, and KEGG pathway analysis, and immunologic signatures
(Figure 6). Several biological pathways associated with malignant
tumor phenotypes were significantly enriched in the high risk
group, including focal adhesion [normalized enrichment score
(NES) = 1.91, p < 0.001, false discovery rate (FDR) = 0.016],
TGF-β signaling (NES = 1.48, p = 0.038, FDR = 0.224), and
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FIGURE 2 | Construction of the risk model. (A) Box plot showing the proportions of 21 immune cell types across 288 samples filtered by CIBERSORT. (B) LASSO
regression coefficients of the 21 immune cell types. The dotted line indicates the value chosen by tenfold cross-validation. (C) Tenfold cross-validation informing the
parameter selection in the LASSO model. (D,E) Risk score determined by time-dependent receiver operating characteristic (ROC) curves for the training and testing
cohorts. The area under the ROC curve was 0.600, 0.691, and 0.716 for the risk scores for 1-, 3-, and 5-year overall survival (OS) in the training cohort, versus
0.800, 0.580, and 0.632 in the testing cohort, respectively.

leukocyte transendothelial migration (NES = 1.39, p = 0.067,
FDR = 0.234) in KEGG pathways. GO analysis revealed
significant up-regulation of adherens junction organization
(NES = 2.11, p < 0.001, FDR = 0.005) and positive regulation

of SMAD protein phosphorylation (NES = 2.16, p < 0.001,
FDR = 0.005) in activated CD4+ memory T cells compared
to study GSE32533 (NES = 1.93, p < 0.001, FDR = 0.046), a
study validating miR-17 from the miR-17-92 cluster regulating
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FIGURE 3 | Kaplan–Meier survival curves for gastric cancer risk score and tumor (T) stage. (A,B) Kaplan–Meier survival curves for the training and testing cohorts.
(C,D) Kaplan–Meier survival curves for stages T1–T2 and T3–T4.

activation-induced cell death in T cells and modulating inducible
regulatory T cell differentiation. Genes upregulated in CD4+
Tfh cells formed a unique immunologic signature compared
to study GSE21379 (NES = 1.85, p < 0.001, FDR = 0.064), a
study revealing a prominent role for SLAM receptor ligation
in IL-4 production by germinal center CD4 T cells but not
in Tfh and GC Tfh differentiation. For the low risk group,
natural killer (NK) cell-mediated cytotoxicity (NES = −1.75,
p = 0.010, FDR = 0.069) and T cell receptor signaling
(NES = −1.67, p = 0.026, FDR = 0.093) were shown to be
upregulated based by KEGG analysis, while positive regulation
of NK cell-mediated immunity (NES = −0.80, p < 0.001,
FDR < 0.001) and myosin heavy chain (MHC) protein binding

(NES = −0.74, p = 0.004, FDR = 0.072) were significant
based on GO analysis.

DISCUSSION

Our risk model, as a novel prognostic tool designed to improve
the accuracy of survival predictions for patients with gastric
cancer, was established and validated in this retrospective
study. LASSO and multivariate COX regression analyses of four
immune cell types, including activated CD4+ memory T cells,
plasma cells, neutrophils, and Tfh cells, were performed, with
significant correlations with OS seen for all cell types except Tfh
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FIGURE 4 | Risk curve and heatmap grouped according to risk score in the training and testing cohorts. (A,C,E) Risk curve and selected immunocyte populations in
the training cohort. (B,D,F) Risk curve and selected immunocyte populations in the testing cohort.

cells (p < 0.05). Due to the strong correlation between infiltrating
immune cell types seen in this study, LASSO regression was
essential for reducing collinearity through selection of the
optimal penalty parameter λ, after which stepwise regression
with the Akaike information criterion (AIC) was applied to
filter immune cells and select the optimal coefficient for each
cell population.

Previous studies revealed that memory T cells could provide
protection against both Helicobacter pylori infection and gastric
cancers, and were shown to be associated with lymph node
metastases in gastric cancer (16, 17). As CD4+ memory
T cells are the most abundant immune cells in tumor
tissues, more research into their role in tumor metastasis
and disease progression is necessary; these cells represent a
potential target for immune therapy. In this study, infiltration
of plasma cells was also shown to prolong survival in
gastric cancer as a component of the humoral immune
response, consistent with previous studies (18, 19); however,
the precise role of these cells remains poorly understood.
Neutrophils were assigned the highest coefficient in our risk
assessment formula, possibly due to their ability to regulate
many of the malignancy-associated behaviors of cancer cells,
such as migration and invasion (20, 21). The difference
in infiltration ratio among these four immune cell types
may be correlated with leukocyte migration-related pathways,
which were enriched in our high risk subgroup; a high risk
score was indicative of infiltrates with a high proportion of
neutrophils and low proportions of plasma cells, activated
CD4+ memory T cells, and Tfh cells. However, how this
influences clinical outcomes remains unclear, although methods

such as GSEA do suggest a variety of possible molecular
mechanisms (see below).

Stratified analyses were performed by T stage, and Kaplan–
Meier curves showed clear segregation between subgroups (T1–
T2 vs. T3–T4), indicating that our model may be more useful
for more advanced cases of gastric cancer. Furthermore, the
contribution of the risk score to the prognosis of each subgroup
was significant: the risk score was an independent prognostic
factor and could therefore be used to supplement the established
prognostic factor of T stage. The reason why the model appears
more suitable for advanced-stage patients may be the higher
proportion of T3–T4 stage samples in the training cohort used
to construct the model.

The molecular mechanisms and biological processes
underlying the impact of the immune cell infiltration ratio
on survival were also investigated. GO, and KEGG GSEA
analyses were used due to the limited number of differentially
expressed genes between the two subgroups. It is worth noting
that both the GO and KEGG GSEA results showed significant
enrichment in the regulation of adherens junction organization
and focal adhesion in the high risk subgroup, suggesting that a
change in the proportions of infiltrating immune cell types may
influence the risk of tumor metastasis and, by extension, the
prognosis. TGF-β signaling and positive regulation of SMAD
protein phosphorylation were also enriched in this subgroup
based on both GO and KEGG analyses. Thus, we suspect
that the TGF-β signaling pathway may interact with SMAD
phosphorylation to affect tumor metastasis. This is strongly
supported by a recent study showing that tumor-derived TGF-β
could suppress the anti-tumor function of CD4+ T cells through
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FIGURE 5 | Evaluation of independent prognostic factors in the training cohort. (A) Nomogram of independent prognostic factors including risk score and T stage.
The values attributed to each individual patient are located on the variable axis; the upward line shows the points received for each variable. The sum of the scores is
shown on the total points axis; the line drawn downward to the survival axis shows the likelihood of 3- or 5-year survival. (B) The calibration curve for predicting 3-
and 5-year OS in the training cohort. (C) The time-dependent ROC curves for 3- and 5-year OS in the training cohort.

SMAD protein phosphorylation in the tumor effusion fluids of
metastatic patients (22). Also, a known determinant of PD-1/PD-
L1 immunotherapy outcomes is TGF-β pathway regulation,
which can restrain anti-tumor immunity by restricting T cell
infiltration (23).

NK cell-mediated immunity was associated with our low
risk group, with neutrophils potentially influencing the clinical
outcome of gastric cancer via regulation of this immune response

(24); this is consistent with neutrophils having the highest
coefficient in our risk assessment model. Indeed, enriched
neutrophils have been shown to induce NK cell activation via
receptor-ligand interactions (25) and production of interleukin
(IL)-18 (26).

The immunologic signature analysis described herein was
accomplished via GSEA. Enrichment of miR-17-regulated genes
in activated CD4+ T cells was shown to facilitate CD4+ T cell
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FIGURE 6 | Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and immunologic signature analysis using gene set enrichment analysis
(GSEA) according to risk subgroup in the merged dataset. NES, normalized enrichment score; NOM-p, nominal p-value; FDR-q, false discovery rate. (A–C) SMAD
protein phosphorylation, adherens junction and cell junction enriched in the GO analysis. (D–F) Transforming growth factor (TGF)-β signaling, adherens junction, and
focal adhesion pathway enriched in the KEGG analysis. (G–I) Immunologic signature analysis.

expansion, and to modulate cell death and the differentiation
of regulatory T cells (27). As the activated CD4+ memory
T cell population in this risk model was shown to be a
protective factor (HR 0.0157, 95% CI 0.0007–0.3394), this
phenomenon could be interpreted as a byproduct of miR-17
activity. The miR-17 cluster is essential for a T cell-mediated
anti-tumor response in vivo, through strict enforcement of
Th1 lineage–specific functions (28, 29). Similarly, SH2D1A-
regulated genes in CD4+ Tfh cells, as well as genes up-
regulated in CD4+ memory T cells (27), were also enriched.
Through adoptive transfer of antigen-specific subpopulations
of CD4+memory T cells, distinct CD4+ memory T cell

populations committed to Tfh lineages could be identified
(28). As Tfh cells are essential for the development of
germinal center, this population could provide the signals
required by B cells to facilitate maturation (30). The above
findings may explain why the activated CD4+ memory
T cells and plasma cells were identified as protective by
our LASSO-COX regression analyses (HR 0.016, 95% CI
0.0007–0.3394; HR 0.003, 95% CI 0.001–0.642). Beyond these
observations, many similar immunologic signatures remained to
be investigated.

Despite the findings detailed above, there were also some
limitations to our analysis. First, the accuracy of the model
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remains suboptimal, as the area under the ROC
curves for both the training and testing cohorts was
<0.8. Second, the GSEA of the molecular mechanisms
underlying the relationship between risk score and clinical
outcomes was not robust. Moreover, even though the
results suggested that tumor metastasis may be well
explained by our model, it was difficult to validate
this due to the absence of N and M stage data.
Further research may provide greater insight into the
mechanisms driving gastric cancer. Finally, the conclusions
of this study were based on bioinformatic analyses
only. Whether the model could be used to predict
patient survival based on tumor biopsies remains unclear.
Further validation of our findings is necessary using
experimental data.

In summary, we analyzed 22 distinct immune cells
present in the tumor infiltrates of gastric cancer and
established an immune risk model which is not only a vital
supplement to the prognostic prediction of gastric cancer
but also providing a new direction for the subsequent
targeted therapy in patients with high immunological
risk. On this basis, a new clinical prognosis prediction
model was constructed combining the immune risk
model with clinical data. Thus, the new clinical model
might have crucial implication in predicting prognosis of
postoperative gastric cancer.
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