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Previous studies on deep learning (DL) applications in pathology have focused on pathologist-versus-algorithm comparisons.
However, DL will not replace the breadth and contextual knowledge of pathologists; rather, only through their combination may
the benefits of DL be achieved. A fully crossed multireader multicase study was conducted to evaluate DL assistance with
pathologists’ diagnosis of gastric cancer. A total of 110 whole-slide images (WSI) (50 malignant and 60 benign) were interpreted by
16 board-certified pathologists with or without DL assistance, with a washout period between sessions. DL-assisted pathologists
achieved a higher area under receiver operating characteristic curve (ROC-AUC) (0.911 vs. 0.863, P= 0.003) than unassisted in
interpreting the 110 WSIs. Pathologists with DL assistance demonstrated higher sensitivity in detection of gastric cancer than
without (90.63% vs. 82.75%, P= 0.010). No significant difference was observed in specificity with or without deep learning
assistance (78.23% vs. 79.90%, P= 0.468). The average review time per WSI was shortened with DL assistance than without (22.68
vs. 26.37 second, P= 0.033). Our results demonstrated that DL assistance indeed improved pathologists’ accuracy and efficiency in
gastric cancer diagnosis and further boosted the acceptance of this new technique.
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INTRODUCTION
Gastric cancer is the third most common cause of cancer-related
death worldwide, and it ranks second in China1–3. It is estimated
that over 1 million new cases of gastric cancer are diagnosed
annually globally3. Histopathological evaluation of gastric speci-
mens is essential for clinical management, which requires
experienced pathologists and is time-consuming. However, a
shortage of pathologists exists globally. It has been reported that
there is a shortage of 90,000 pathologists in China, and the
deficiency is more severe in many African countries4,5. Western
countries are also facing a similar problem due to the increasing
retirement of pathologists6,7.
Artificial intelligence, especially deep learning algorithm, has

shown better or on par performance with human pathologists in
several fields, using hematoxylin and eosin (H&E)-stained whole-
slide images (WSIs)8–10. Ehteshami et al.8 demonstrated that deep
learning achieved better performance than a panel of 11
pathologists in the detection of lymph node metastasis of breast
cancer. Recent studies have shown that deep learning achieved
relatively high sensitivity and specificity in diagnosing gastrointest-
inal cancer11, lung cancer12, prostate cancer13,14, and others15,16.
We have developed a deep learning algorithm for gastric cancer

detection, and it achieved a sensitivity near 100% and a specificity

of 80.6% in 3212 real-world WSIs scanned by different scanners17.
In an internal examination, the performance of the algorithm was
on par with 12 pathologists in interpreting 100 WSIs17. However,
our study and previous studies focused on pathologist-versus-
algorithm comparisons rather than their combination8,9,17. An
accurate deep learning algorithm will not replace the breadth and
contextual knowledge of pathologists. Rather, only through their
integration into a clinical setting may the benefits of the algorithm
be fully achieved18. Based on the above considerations, we
conducted a reader study to evaluate the performance of
pathologists in interpreting WSIs of gastric specimens with and
without deep learning assistance.

MATERIALS AND METHODS
Cases enrollment
A total of 110 gastric slides based on pathology reports were retro-
spectively selected from PLA general hospital (PLAGH) between 1 July
2019 and 31 December 2020. Among these specimens, 60 were benign
and 50 were malignant, which basically represented all gastric specimens
encountered in the daily workflow (Table 1). The 110 gastric slides were
from 110 distinct cases. All samples were biopsy specimens because
surgical specimens often indicate malignant tumors, which may affect
pathologists’ judgment.
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Reference standard diagnosis
The reference gold standard diagnosis was established for each of the
110 slides. Three senior pathologists from PLAGH independently reviewed
the glass slides and made a diagnosis for each case. For cases with
inconsistent opinions, all three specialists reviewed the slides, including
immunohistochemistry, together using a multiheaded microscope to reach
a consensus. Slides were scanned into WSIs with a KF-PRO-005 scanner
(0.238 μm× 0.238 μm per pixel). The resulting WSIs were inspected one by
one to ensure image quality. WSIs with out-of-focus or missing tissue were
rescanned.

Pathologists
A total of 16 board-certified anatomic pathologists from 12 different
hospitals participated in this study. They were not participants in either the
test set enrollment or establishing of reference standard diagnoses. Their
anatomic pathology experience ranged from 6 to 20 years. Because most
pathologists did not have experience of reviewing WSIs with or without
deep learning assistance, all of them read no <50 WSIs to establish
familiarity with the reading system within a month prior to the assessment
study. All pathologists participated voluntarily, and understood and agreed
with the basic principles and purposes of this research.

Deep learning algorithm
In our previous work17, we utilized a convolutional neural network of
DeepLab v3 architecture for gastric cancer detection. The deep learning

algorithm was trained with 2123 pixel-level annotated H&E-stained WSIs
and achieved a sensitivity of 99.6% with an average specificity of 80.6% on
a real-world test dataset of 3212 WSIs, digitalized by three scanners. The
generalization ability of the algorithm was further tested with 1582 WSIs
from 2 other medical centers. The deep learning algorithm can
automatically output pixel-level malignant probabilities, which were
integrated into the slide-level prediction.

Study design
A fully crossed multireader multicase (MRMC) study was performed to
evaluate deep learning assistance in pathologists’ diagnosis of gastric
lesions. A total of 110 WSIs (50 malignant and 60 benign) were interpreted
by 16 board-certified anatomic pathologists with or without deep learning
assistance, separated by a washout period of 5 weeks (Fig. 1). To mitigate
bias for possible performance differences at the beginning versus the end
of interpreting the test set, the 110 WSIs were divided into blocks of 20
WSIs (the last block with 10 WSIs), with each block containing roughly the
same proportion of benign and malignant WSIs, but in random order. In
addition, to establish familiarity for reviewing WSIs, each order began with
a review of 5 WSIs. The 16 pathologists were randomized into 2 groups,
either of which began with (order 1) or without (order 2) deep learning
assistance first. In either order, the WSIs interpreted were identical; the only
difference was with or without deep learning assistance.

Sample size
We calculated the sample size using the “Multi- and Single-Reader Sample
Size Program for Diagnostic Studies” (available at https://perception.lab.
uiowa.edu/power-sample-size-estimation), which is based upon the
methods of Hillis, Obuchowski, and Berbaum. A pilot study demonstrated
16 readers and 100 WSIs would provide more than 90% power with a 5%
significance level, with the aim of proving the superiority of the area under
receiver operating characteristic curve (ROC-AUC) of the pathologists with
assistance over without assistance.

With or without deep learning assistance review
In the assessment study, when the pathologists reviewed the WSIs,
modalities (with or without deep learning assistance) switched every 20
WSI intervals. For WSIs with deep learning assistance, a heat-map flagging
suspicious malignant areas over the WSI could be turned on and off by
tapping the space bar on the keyboard. For WSIs without assistance, only
the WSI was displayed. The participants provided a diagnosis by clicking
the buttons on the screen (Supplementary Fig. S1). WSIs were presented
on a 13.3″ 2560*1600 LED monitor (Apple MacBook Pro 13.3).

Table 1. Test set for assessment study.

Gastric specimen No. WSIs

Benign (non-gastric cancer) 60

Low-grade intraepithelial neoplasia 6

Other benign lesions or normal mucosa 54

Malignant (gastric cancer) 50

Well-differentiated adenocarcinoma (including high-
grade intraepithelial dysplasia)

18

Moderated-differentiated adenocarcinoma 10

Poorly-differentiated adenocarcinoma 11

Mucinous adenocarcinoma 2

Poorly cohesive adenocarcinoma including signet
ring cell and other subtypes

9

WSI whole-slide pathological images.

Fig. 1 Study design. The 16 pathologists reviewed the same WSIs in the same sequence but with different modalities: with or without deep
learning assistance. The 16 pathologists were randomized into two assistance “orders.” Each rectangle indicates a set of WSIs; the color of the
rectangle indicates the modality, and the number in the rectangle indicates the number of WSIs. The pathologists reviewed 5 images (not part
of the test set) for familiarity and a total of 110 images for formal review.
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Fig. 2 Performance of pathologists with or without deep learning assistance. A The average AUC of pathologists with deep learning
assistance was larger than that of without (0.911 vs. 0.863, P= 0.003). B The sensitivity of the pathologists was improved with deep learning
assistance compared to those without assistance (90.63% vs. 82.75%, P= 0.010). There was no significant difference in specificity with or
without deep learning assistance (78.23% vs. 79.90%, P= 0.468). C The average review time per WSI was reduced with deep learning
assistance compared to without (22.68 s vs. 26.37 s, P= 0.033). The circles represent the value of each pathologist, the squares indicate the
average of pathologists in that modality, and the vertical lines of the box represent quartiles. AUC area under the receiver operating
characteristic curve; time of review per WSI is described as the mean ± SD (standard deviation).
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WSI review timing
To simulate the clinical workflow as much as possible, 16 pathologists were
instructed to evaluate 110 WSIs with a self-controlled pace. For each WSI,
the time from opening the WSI in the viewer to final diagnosis was
recorded by a background program. The pathologist could take a break
during the test, and that time was not counted.

Statistical analysis
Pathologists were requested to provide one of four different diagnoses to
each WSI (malignant/ possibly malignant/ possibly benign/ benign),
corresponding to a “suspicion score” from 1 to 4, which were used for
building the ROCs. We analyzed the average AUC based on the readers’
suspicion score as a statistically efficient approach to evaluate the cancer
and non-cancer performance metrics combined into a single measure-
ment. These analyses were performed according to the method of
Obuchowski & Rockette with Hillis adjustment to the degrees of freedom
with mixed-effects models. Models were generated with pathologists, WSIs
treated as random effects and the assistance modality and session (order 1
or order 2) treated as fixed effects. The trapezoidal/Wilcoxon method for
curve fitting and jackknifing for the covariance estimation were used in the
analysis. To compare the sensitivity and specificity between two sessions
(with and without deep learning assistance), a binary-version MRMC
analysis was implemented to yield a P-value. The average review time of
each WSI was calculated for each pathologist in each session, and the
paired t-test was used to yield the P-value for the difference between the
two sessions. All other statistical analyses were performed in the statistical
computing environment R 4.0 and SAS 9.4. No statistical adjustments were
made for multiple analyses.

RESULTS
Performance of pathologists with or without assistance
The pathologists marked each WSI as either malignant, possibly
malignant, possibly benign or benign (Supplementary Fig. S1). The
results were fitted into a ROC for each pathologist with or without
deep learning assistance (trapezoidal/Wilcoxon method). The
performance of the pathologists was evaluated by the ROC-AUC.
The average AUCs of the pathologists with and without deep
learning assistance were 0.911 and 0.863 (P= 0.003, 95%
confidence interval [CI]: 0.018–0.079) (Fig. 2A and Table 2), which
demonstrated that deep learning assistance indeed improved the
diagnostic performance of the pathologists. The AUC of each
pathologist with or without assistance was presented in Supple-
mentary Table S1.
According to the pathologist’s diagnosis, malignant and

possibly malignant were clustered as gastric cancer, and benign
and possibly benign were clustered as non-cancer. On the binary
classification level, the mean sensitivities of the pathologists
without and with deep learning assistance were 82.75% and
90.63% (P= 0.010, 95% CI: 2.09–13.66%). The mean specificities of
the pathologists without and with deep learning assistance were
79.90% and 78.23% (P= 0.468, 95% CI:−6.37–3.04%) (Fig. 2B). A
summary of the above results were shown in Table 2, and each
pathologist’s sensitivity and specificity were showed in Supple-
mentary Tables S2 and S3.
We further analyzed the change in accuracy for each WSI

between different assistance modalities. For cases with little
difficulty, deep learning had a limited effect on the accuracy

improvement, while for cases with uncertain diagnoses or small
malignant areas that could be easily missed, deep learning could
significantly improve the accuracy. Figure 3 shows three
representative examples in which the accuracy of pathologists
was significantly improved after deep learning assistance. As
shown in Fig. 3A, which was a gastric high-grade intraepithelial
neoplasia, 4 out of 16 pathologists diagnosed it as possibly
benign. After the deep learning algorithm highlighting suspected
malignant areas, the 4 pathologists changed their diagnosis to
possibly malignant (2 pathologists) or malignant (2 pathologists).
The accuracy of the case increased from 75% to 100%. As shown
in Fig. 3B, C, the small malignant area or scattered malignant
tumor cells could be easily missed. After the deep learning
algorithm flagged suspicious areas, prompting pathologists to
perform a scrutinized reassessment, the accuracies of these two
cases increased from 62.5% to 93.75% and 37.5% to 87.5%,
respectively.
In addition, we evaluated the correlation between deep

learning assistance and pathologists’ experiences. We found that
pathologists with less experience tended to obtain larger accuracy
improvement from deep learning assistance (Fig. 4).
To better understand their perspectives on the deep learning

system, we administered a questionnaire to survey the patholo-
gists. The results indicated that most pathologists had an
optimistic attitude and were willing to use the deep learning
system in their future workflow (Fig. 5).

WSI review efficiency
The average time of review per WSI for the 16 pathologists
without and with deep learning assistance was 26.37 ± 5.22 s
(second) and 22.68 ± 4.03 s (P= 0.033) (Fig. 2C). We further
evaluated the change in review time between different assistance
modalities for each pathologist. Deep learning assistance shor-
tened the review time of 12 out of 16 pathologists. The review
time saved per WSI varied from 1.2 s to 12.84 s among the 12
pathologists. The detailed results were provided in Supplementary
Table S4.

DISCUSSION
Studies have demonstrated that deep learning could achieve high
accuracy in different pathological diagnostic tasks19–22. It is
notable that deep learning with full automation with no human
pathologist backup is not the objective10,23,24, and even the best
algorithm needs to be integrated into existing clinical workflows
to improve patient care. Therefore, we designed a fully crossed
MRMC study to investigate the potential of deep learning
assistance for pathologists in interpreting digital slides of gastric
specimens. Our results demonstrated that deep learning assis-
tance indeed increased the accuracy and efficiency of pathologists
in identifying gastric cancer.
In regard to accuracy, we first evaluated the AUC of pathologists

with or without deep learning assistance and the results
demonstrated that deep learning assistance could improve
diagnostic accuracy. Then, we evaluated the sensitivity and
specificity between two modalities. Deep learning assistance

Table 2. Performance of pathologists with or without deep learning assistance.

Evaluation index With assistance Without assistance 95% CI P value

AUC 0.9112 0.8631 0.0176, 0.0786 0.003

Sensitivity 0.9063 0.8275 0.0209, 0.1366 0.010

Specificity 0.7823 0.7990 −0.0637, 0.0304 0.468

Time of review per WSI (mean ± SD, seconds) 22.68 ± 4.03 26.37 ± 5.22 – 0.033

AUC area under the receiver operating characteristic curve, SD standard deviation, 95% CI confidence interval.
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significantly improved the sensitivity of gastric cancer detection
but not specificity. The algorithm implemented in this assessment
study has achieved a sensitivity near 100% and a specificity of
80.6% on 3212 real-world WSIs17. Algorithm achieving a high
sensitivity is often at the cost of decreasing specificity25,26. This
may be the main reason that deep learning assistance did not
improve the specificity of pathologists. In the pathological
diagnosis of gastric WSIs, failing to diagnose (a false-negative
result) is more harmful than making a gastric cancer (a false-
positive result) when it was not. In the clinical workflow,
pathologists understand the implications of false positive and

false negative for patients, allowing them to optimize the
diagnostic operating point and generate different probability
heat-maps to fulfill clinical needs, sometimes even on a case-by-
case basis.
We further analyzed the change in accuracy for each WSI

between assistance modalities. For cases with uncertain diagnoses
or small malignant areas, deep learning could significantly
improve the diagnostic accuracy. These kinds of situations often
occur when pathologists read a slide in haste, such as overloaded
with work or the last slide of the day. Deep learning as an analog
to a second opinion from a fellow pathologist could not only
locate the malignant areas but also provide a malignant
probability for each pixel, alerting pathologists to re-scrutinize
the potential regions.
As indicated in Fig. 4, pathologists with less experience tend to

obtain larger accuracy improvement from deep learning assis-
tance. An implication of this is that pathologists with less
experience may have lower confidence in their initial diagnosis,

Fig. 3 Three representative examples showing accuracy improve-
ment after deep learning assistance. In each example, the top two
cells (low power view and zoomed area of the green rectangle)
represent WSIs without assistance, while the bottom represent the
same WSI with assistance. A The gold standard diagnosis of the case
is high-grade intraepithelial neoplasia. Four of 16 pathologists were
uncertain about the case and misdiagnosed it as possibly benign.
After deep learning flagging the suspicious areas, the accuracy of
the pathologists increased from 75% to 100%. B Due to the very
small proportion of signet ring cell carcinoma in the WSI,
pathologists may miss malignant areas. After deep learning flagging
suspicious areas, the accuracy increased from 62.5% to 93.75%.
C The scattered signet ring cells (red arrow) are mixed with
lymphocytes and histiocytes, making diagnosis difficult. After using
deep learning assistance, the accuracy increased from 37.5% to
87.5%. The colored scale bar (top) indicates the probability for each
pixel to be malignant.

Fig. 4 Correlation between deep learning assistance and pathol-
ogists’ experiences. Pathologists with less experience tend to
obtain larger accuracy improvement from deep learning assistance
(the red line representing fitting curve and the shaded area
representing 95% confidence intervals).
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therefore, be more likely to revise the initial diagnosis if it was not
in agreement with the prediction of the deep learning algorithm.
Although deep learning assistance significantly improved the

average sensitivity of the pathologists, it was still below the ROC of
the algorithm, as shown in Fig. 2B. The result implied that the
combination of pathologists and deep learning algorithm did not
necessarily exceed the algorithm alone. This is mainly because we
provided the pathologists only with the heat-map, not a specific
slide-level probability, which generates the ROC. Pathologists may
selectively believe the predicted malignancy (heat-map) based on
their own experience. Although inter- and intra-observer experi-
ence variability exists in the pathological diagnosis27,28, our results
demonstrate that deep learning assistance leads to more reliable
and consistent diagnoses, which may result in better treatment
decisions.
In addition to accuracy improvement, deep learning assistance

also had a time-saving benefit. Although the average review time
per WSI was only reduced by <4 s, the cumulative effect may be
more notable given the large number of slides in clinical practice.
In addition, the 110 WSIs assessed by pathologists were all
biopsies, while surgical specimens would greatly prolong pathol-
ogists’ review time but not that of the deep learning algorithm.
We hypothesize that this time benefit for surgical specimens may
be more pronounced. Although 12 out of 16 pathologists spent
less reviewing time with deep learning assistance than without,
there were 4 pathologists whose review time was prolonged. They
generally reflected that the heat-map distracted them from the
pathological diagnosing process (Fig. 5). Previous studies have
shown that the efficiency gains with deep learning will improve
with increased digital pathology experience29,30. It is possible that
pathologists would spend less time once they get accustomed to
the viewer interface of the deep learning system. The time
efficiency benefit decreases the workload of pathologists and
allows them to spend more time on difficult cases.
There are also several limitations in our study, mainly stemming

from the assessment study being performed as a simulation process
rather than an actual pathological workflow. The test dataset that
the pathologists evaluated with or without deep learning assistance
was enriched with cases of gastric cancer, which was not directly
comparable to the mixed cases encountered during clinical practice.

In our study, each pathologist was given one WSI per case to make
the diagnosis. In a real clinical setting, pathologists could access
additional slides, additional IHC staining or clinical data to make a
final diagnosis. Differences in the inherent difficulty of the
assessment set will directly affect the diagnostic performance of
pathologists with or without assistance. The algorithm used in this
study only detects malignant from benign, without the ability to
identify the pathological subtype of gastric cancer, which is related
to clinical management and prognosis. Our future research will focus
on the establishment of pathological subtype classification, making
the system more clinically applicable.
In summary, our study demonstrates that the combination of

deep learning and human pathologists has the potential to
improve accuracy and efficiency in gastric cancer diagnosis. This
research is a useful attempt to understand how deep learning
improves pathologists’ diagnosis. Therefore, it further boosts the
pathologists' acceptance of this new technique.
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