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Abstract
Cattle body composition is difficult to model because several factors affect the composition

of the average daily gain (ADG) of growing animals. The objective of this study was to iden-

tify commercial single nucleotide polymorphism (SNP) panels that could improve the

predictability of days on feed (DOF) to reach a target United States Department of Agricul-

ture (USDA) grade given animal, diet, and environmental information under feedyard condi-

tions. The data for this study was comprised of crossbred heifers (n = 681) and steers (n =

836) from commercial feedyards. Eleven molecular breeding value (MBV) scores derived

from SNP panels of candidate gene polymorphisms and two-leptin gene SNP (UASMS2

and E2FB) were evaluated. The empty body fat (EBF) and the shrunk body weight (SBW)

at 28% EBF (AFSBW) were computed by the Cattle Value Discovery System (CVDS)

model using hip height (EBFHH and AFSBWHH) or carcass traits (EBFCT and AFSBWCT) of

the animals. The DOFHH was calculated when AFSBWHH and ADGHH were used and

DOFCT was calculated when AFSBWCT and ADGCT were used. The CVDS estimates dry

matter required (DMR) by individuals fed in groups when observed ADG and AFSBW are

provided. The AFSBWCT was assumed more accurate than the AFSBWHH because it was

computed using carcass traits. The difference between AFSBWCT and AFSBWHH, DOFCT

and DOFHH, and DMR and dry matter intake (DMI) were regressed on the MBV scores and

leptin gene SNP to explain the variation. Our results indicate quite a large range of correla-

tions among MBV scores and model input and output variables, but MBV ribeye area was

the most strongly correlated with the differences in DOF, AFSBW, and DMI by explaining 8,

13.2 and 6.5%, respectively, of the variation. This suggests that specific MBV scores might

explain additional variation of input and output variables used by nutritional models in pre-

dicting individual animal performance.
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Introduction
A recent survey of U.S. consumers regarding meat quality indicated a greater satisfaction and
preference for United States Department of Agriculture (USDA) Choice or Canadian AAA
graded meat versus lower quality grade meat (i.e., USDA Selected and Canada AA) [1], but typ-
ically about only 60% of the cattle in the United States grade USDA Choice or higher [2].
Nutrition and growth models can assist in the management of feedlot cattle by grouping ani-
mals that are likely to reach a common carcass composition when fed a diet for a given period.
This management strategy has the potential to decrease the heterogeneity of the carcasses
among animals within a pen and to assist in the decision making process of when to slaughter
animals, which typically leads to increased profitability. Several growth models are available
[3–9], but only two of them have been developed for this specific purpose [8, 9]. An evaluation
of four growth models indicated that they differ in the predictions of average daily gain
(ADG), dry matter intake (DMI), and body and carcass composition likely because the
assumptions and definitions used during their development were different among them [10].
The Cattle Value Discovery System (CVDS) [8] is an applied model that predicts the perfor-
mance and carcass composition of individual animals based on information regarding the ani-
mal, diet, and the environment as recommended by the National Research Council (NRC) [11]
and the Cornell Net Carbohydrate and Protein System [12]. Phenotypic and genetic evalua-
tions of the CVDS have resulted in high correlations (r> 0.80) between observed and predicted
DMI [13, 14] and feed-to-gain ratio (i.e., feed efficiency) [15, 16]. Despite these high correla-
tions under controlled conditions, several assumptions and inputs can affect the prediction
outcome, including mature size [17].

It is likely the determination of the body weight (BW) at a given body composition is one of
the most influential variables in accurately predicting animal requirements for growth and
body/carcass composition. Body composition is, however, mathematically difficult to predict
by nutrition models because several factors can affect the composition of the weight gain of
growing beef cattle. Hence, the information of genetic predisposition for growth and develop-
ment could be useful in improving the accuracy in determining the shrunk BW (SBW) at 28%
empty body fat (AFSBW) for individuals. The use of commercial single nucleotide polymor-
phism (SNP) panels to predict animal performance and carcass traits have yielded promising,
but yet yields variable, results [18–20]. It is possible that coefficients of complex model parame-
ters may contain unexplained genetic variation [21]; thus, unbiased coefficients could be
obtained if genetic variation is explicitly accounted for. Perhaps the combination of SNP with
nutrition models could improve the predictions of animal performance and provide more reli-
able tools to assess the profitability of cattle fed under feedlot conditions by meeting consumer
preferences. The objective of this study was to identify molecular breeding values (MBV)
obtained from commercial SNP panels that can be used to improve the CVDS prediction of
days on feed (DOF) to reach a target USDA grade and allocation of feed among individuals in
a pen given animal, diet, and environmental information under feedyard conditions.

Materials and Methods
A specific Animal Use Protocol was not obtained for this study because no animals were used.
We analyzed data provided by Decatur County Feedyard (Decatur, KS) and Merial/IGENITY
(Duluth, GA). A detailed description of data collection and processing was provided previously
[19]. The procedures for the Care and Use of Agricultural Animals in Research and Teaching
outlined by the Federation of Animal Science Societies [22] for live animals were observed by
them.
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Animal Database
The data for this study was collected in the spring of 2004. Table 1 lists the descriptive statistics of
the database for the crossbred heifers (n = 681) and steers (n = 836). Animals were managed
according to the commercial feedyard’s practices. Steers received a combination implant (initial
BW� 340 kg: Revalor S; initial BW>340 kg: Revalor IS). Heifers with initial BW< 286 kg
received Revalor 200 (Merck Animal Health, Whitehouse Station, NJ) while heifers with initial
BW> 286 kg were implanted with 200 mg of trenbolone acetate (Finaplix-H, Merck Animal
Health, Whitehouse Station, NJ). Animals were slaughtered in a commercial abattoir and carcass
traits were obtained, including hot carcass weight (HCW), USDA quality grade (QG) and yield
grade (YG), and ribeye area (REA). The REA was measured by an electronic image capture and
analysis system (VBG2000 Grading System, Vision-For-You Inc., Dakota Dunes, SD). The fat
thickness (FT; i.e., backfat) was determined using an ultrasound machine the week before slaughter.

Table 1. Descriptive statistics of the database for heifers and steers (N = 1,517).

Variables1 Heifers Steers

n Mean SD Range n Mean SD Range

Performance

Initial BW, kg 681 297 39.7 182 to 427 836 314 45.6 166 to 440

Hip height, cm 681 117 5.01 104 to 144 836 120 4.99 104 to 147

Final BW, kg 681 507 54.9 364 to 654 836 556 50.6 386 to 704

DOF, d 681 161 34.9 91 to 262 836 162 42.7 91 to 285

ADG, kg/d 681 1.36 0.312 0.514 to 2.23 836 1.57 0.414 0.662 to 3.04

Carcass traits

HCW, kg 681 326 33.8 206 to 430 836 356 34.1 248 to 441

Backfat, cm 681 1.25 0.46 0 to 2.90 836 1.14 0.40 0 to 2.41

REA, cm2 681 85.4 10.95 53.6 to 137 836 88.3 10.4 58.1 to 123

Marbling2 681 4.85 1.12 3 to 9 836 4.51 1 3 to 9

USDA YG 654 2.57 0.68 1 to 4 798 2.51 0.63 1 to 4

IGENITY MBV

CAB marbling 681 49.1 16.6 1.94 to 97.7 836 52.3 17.9 3.17 to 101.2

ADG 681 0.15 0.08 -0.11 to 0.37 836 0.15 0.08 -0.09 to 0.45

HCW 681 27.2 8.49 -16.1 to 48.6 836 26.3 9.01 -17.7 to 53.1

REA 681 -0.36 0.47 -2.01 to 0.83 836 -0.42 0.47 -1.55 to 0.87

50 SNP marbling 681 -30.4 21.9 -82.9 to 38.4 836 -25.6 22.7 -96.9 to 38.1

50 SNP REA 681 -0.56 0.67 -2.37 to 1.5 836 -0.62 0.65 -2.16 to 1.64

All Marbling 632 80.7 20.4 25.2 to 148 800 84.1 22.2 19.8 to 145

All REA 635 1.11 0.31 0.13 to 2.15 796 1.11 0.31 0.27 to 2.09

All ADG 634 0.38 0.10 0.04 to 0.64 799 0.40 0.10 0.04 to 0.69

All RFI 636 2.18 1.93 -4.29 to 8.53 804 2.25 1.80 -3.62 to 9.61

Bos taurus RFI 636 1.98 0.60 0.07 to 3.74 803 2.05 0.57 0.45 to 3.73

Leptin SNP Frequency (CC:CT:TT) P-value3 Frequency (CC:CT:TT) P-value3

E2FB 254:416:164 < 0.0001 233:333:113 < 0.0001

UASMS2 406:349:61 < 0.0001 313:282:70 < 0.0001

1 DOF = days on feed; REA = ribeye area; USDA YG = USDA Yield Grade; MBV = molecular breeding value; SNP = single nucleotide polymorphism.
2 Marbling scores for USDA quality grades Standard (2 = practically devoid or 3 = traces), Select (4 = slight), low Choice (5 = small), Choice (6 = modest),

high Choice (7 = Moderate), low Prime (8 = slightly abundant), and Prime (9 = moderately abundant).
3 P-value of χ2 test for frequency percent of 25:50:25 for CC, CT, and TT leptin genotypes, respectively.

doi:10.1371/journal.pone.0143483.t001
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Molecular Breeding Value Scores
The MBV scores used in the evaluation were derived from SNP panels of candidate gene poly-
morphisms. Routine screening programs were conducted in SNP discovery populations to iden-
tify SNP in physiological and candidate genes and QTL whose effects were expected to influence
growth and composition in feedlot cattle [23–25]. Identified SNP were then incorporated into
genotyping panels run on the SequenomMassArray (Sequenom, Inc, 3595 John Hopkins
Court, San Diego, CA, 92121; http://www.sequenom.com; accessed on September 6, 2015),
using DNA from animals with appropriate phenotypes, including raw phenotypes or estimated
breeding value (EBV). From the database of all SNP markers genotyped in the discovery popu-
lation, a univariate analysis was conducted to evaluate the association between the individual
markers and the trait, based on a regression of the number of copies of one of the alleles on the
trait. Those SNP that showed significant allele substitution effects for each of several key traits
were selected and included into a stepwise regression model that evaluates markers sequentially
in an additive model for each trait [26]. The SNP that were significant when considered simulta-
neously were included into the final model and the additive genetic effect for each marker was
summed to create the MBV scores [27]. Once the significant SNP were identified and the allele
substitution effects determined in a stepwise model, an independent validation population of
animals was genotyped andMBV scores generated to verify the predictive ability of the SNP
panel for each trait. The following MBV scores were investigated:MBVCABMRB is a panel of
approx. 90 SNP that is trained on the trait of marbling of Angus cattle (an elevated MBVCABMRB

is associated with increased marbling and backfat and reduced REA);MBVADG is an MBV that
was trained on the trait of ADG (an increased MBVADG value should be associated with
increased ADG);MBVHCW is an MBV that was trained on the trait of HCW (an increased
MBVHCW value should be associated with increased HCW);MBVREA is an alternate MBV for
REA (an increased MBVREA values should be associated with increased REA);MBV50SNPMRB is
an alternate SNP panel trained on the trait of marbling; unlike the MBVCABMRB, the
MBV50SNPMRB uses only 50 SNP (an increased MBV50SNPMRB values should be associated with
increased marbling);MBV50SNPREA is an alternate SNP panel trained on the trait of REA that
uses only 50 SNP (an increased MBV50SNPREA values should be associated with increased REA);
MBVAllMRB is an alternative marbling MBV that was built from a crossbred sire repository;
MBVAllREA is an alternative REAMBV that was built from a crossbred sire repository;MBVAl-

lADG is another ADGMBV that was built from a crossbred sire repository;MBVAllRFI is an
MBV for residual feed intake (RFI) designed for use across breeds, including Bos indicus-influ-
enced cattle; andMBVBTRFI is an MBV for RFI for Bos taurus cattle (Table 1).

The specific leptin gene SNP analysis for this database was described previously [19]. Briefly,
a hair was plucked from each animal for determination of two leptin SNP: UASMS2 [28] and
E2FB [29]. The hair samples were genotyped by IGENITY (Merial Ltd., Atlanta, GA) at a com-
mercial genotyping facility. The allelic frequencies of these SNP are shown in Table 1. The nine
possible genotype combinations of UASMS2 and E2FB SNP (CCCC, CCCT, CCTT, CTCC,
CTCT, CTTT, TTCC, TTCT and TTTT) were used to create a leptin SNP classificatory
variable.

Calculations
All simulations were done with CVDS version 1.0.32 using the exponential decay adjustment
for composition of the gain [8], and the monthly averages for temperature, relative humidity,
and wind speed for Oberlin, KS were used in predicting maintenance requirements of the ani-
mals. Specific ingredient information for the diet fed to the animals in this data base was not
available; therefore, it was assumed a constant value for diet metabolizable energy (ME) of 3.2
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Mcal/kg; which is consistent with reported ME values for this feedlot [30]. This diet ME con-
centration is also consistent with the average net energy for growth (NEg) of 1.5 Mcal/kg
reported by 29 nutritionists in a recent survey [31], who represent approx. 69% of the cattle on
feed in the United States. Previous CVDS simulations suggested a linear relationship, without
any interaction, between the adequacy of the CVDS in predicting animal DMI and different
concentration values for the diet ME [32]. Therefore, even if the diet ME of 3.2 Mcal/kg was
not correct, an over- or underprediction of the diet ME would modify the CVDS adequacy, but
the change would be relatively constant among different dietary ME values.

The empty body fat (EBF) and the AFSBW can be computed by the CVDS using either the
hip height (EBFHH) or carcass traits (EBFCT) of the animals. For projection purposes, hip
height (HH), BW, and body condition score (BCS) are generally the variables available when
the animals are sorted upon arriving at feedyards. Carcass traits [30] or ultrasound information
[33] could provide a better estimate of EBF, but they are not always available. Thus, AFSBW
predicted using carcass traits was compared with that predicted using HH. The AFSBW pre-
dicted with carcass traits (AFSBWCT) was assumed the dependent variable (Y) while the
AFSBW predicted with the HH (AFSBWHH) was the independent variable (X). The difference
between them (ΔAFSBW = AFSBWCT−AFSBWHH) was used to identify independent explana-
tory variables (i.e., MBV scores and leptin SNP), assuming that AFSBWCT would more accu-
rately represent the BW at 28% EBF.

Predicting AFSBW from hip height. Hip height was used to compute frame score by
using the equations published by the Beef Improvement Federation [34] for animals between
the ages of 5 and 21 mo, as shown in Eq (1) for bulls and Eq (2) for heifers. The AFSBWHH was
then computed from frame score using Eq (3). The data used to derive Eq (3) was based on
three frame size classifications of feeder cattle when they reached the USDA low Choice grade,
assumed to be at 28% EBF, that was originally available [35] and converted to equivalent SBW
[36]. Eq (3) is the result of the linear regression of equivalent SBW on frame score [36].

FSBull ¼ �11:548þ 0:1920� HH � 0:0289� Ageþ 0:00001947� Age2þ
0:00001315� HH � Age

ð1Þ

FSFemale ¼ �11:7086þ 0:1859� HH � 0:0239� Ageþ 0:0000146� Age2þ
0:00002988� HH � Age

ð2Þ

AFSBWHH ¼
40� FSBull þ 440

33:4� FSSteer þ 366:6

26:7� FSFemale þ 293:2

ð3Þ

8><
>:

Where FS is frame score, 1 to 9 scale; HH is hip height, cm; Age is age when HH was deter-
mined, d; and AFSBW is adjusted final shrunk BW at 28% empty body fat. Age was assumed
12 mo.

Predicting EBF and AFSBW from carcass traits. The EBF was computed either using Eq
(4) when REA was available [30] or Eq (5) when REA was not available [8]. The empty BW
(EBW) associated with the calculated EBF was computed with Eq (6) [37], which had the best
fit in predicting EBW from HCW [8]. Then, AFSBWCT was computed using the 14.26 kg/%
EBF relationship [30] as shown in Eq (7). The 0.891 is the conversion factor between EBW and
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SBW [11].

EBF ¼ 17:76207þ 4:68142� FT þ 0:01945� HCWþ
0:81855�MS� 0:06754� REA

ð4Þ

EBF ¼ 14:08796þ 4:7135� FT þ 0:01316� HCW þ 0:90855�MS ð5Þ

EBW ¼ 1:316� HCW þ 32:39 ð6Þ

AFSBWCT ¼ EBW þ 14:26� ð28� EBFÞ
0:891

ð7Þ

Where EBF is empty body fat, %; FT is fat thickness, cm; HCW is hot carcass weight, kg; MS is
marbling score (2 = practically devoid, 3 = traces, 4 = slight, 5 = small, 6 = modest, 7 = Moder-
ate, 8 = slightly abundant, and 9 = moderately abundant); REA is ribeye area, cm2; EBW is
empty body weight, kg; and AFSBW is adjusted final shrunk body weight at 28% empty body
fat, kg.

Predicting ADG. The animal characteristics, carcass traits, and diet and environment
information were inputted into the CVDS model to predict DMI and ADG as described previ-
ously [8]. The ADG predicted when using the AFSBWHH (ADGHH) and AFSBWCT (ADGCT)
were used to compute ΔADGHH (observed ADGminus ADGHH) and ΔADGCT (observed
ADGminus ADGCT). The ΔADGHH and ΔADGCT were regressed on other independent vari-
ables (i.e., MBV scores and leptin SNP) in order to identify possible explanatory variables.

Predicting expected DOF. Similarly, the DOFHH was calculated when AFSBWHH and
ADGHH were used and DOFCT was calculated when AFSBWCT and ADGCT were used as
described previously [8]. However, because the accuracy of the DOFHH or DOFCT depends on
the accurate prediction of several variables, including DMI, ADG, and AFSBW, an expected
DOF (eDOF; Eq (8)) was computed using the observed ADG and assuming that AFSBWCT

was the unbiased estimate of the BW at 28% EBF of the animals. Hence, eDOF eliminated the
uncertainties in DMI and ADG, but assumed that EBF could be estimated from carcass traits
more accurately than HH. Then, ΔDOFCT and ΔDOFHH were calculated as the difference
between eDOF and the respective DOF, and they were regressed on possible explanatory vari-
ables (i.e., MBV scores and leptin SNP).

eDOF ¼ ðAFSBWCT � iSBWÞ
oADG

ð8Þ

Where eDOF is expected days on feed, d; AFSBWCT is the BW at 28% empty body fat, kg;
iSBW is initial shrunk BW, kg; and oADG is the observed ADG (shrunk weight basis), kg/d.

Predicting dry matter required. Given the animal characteristics, diet, and environment
information the CVDS can estimate DM required (DMR) by individuals fed in groups based
on observed ADG and AFSBW using a backward calculation technique [8]. A high correlation
(r = 0.86) between observed DMI and DMR has been reported [30]. When the CVDS was used
to allocate the feed fed to each pen in a commercial feedlot data base containing 12,105 steers
and heifers [30], the total observed dry matter consumed was predicted with a bias of less than
1%. Therefore, because individual DMI was not available for this dataset, we assumed the cal-
culated DMR would be a good approximation for the observed DMI. The DMR was computed
using the dynamic growth model of the CVDS and AFSBWCT. A preliminary analysis indi-
cated a high correlation (r = 0.988) between estimated DMI using either AFSBWCT or
AFSBWHH, thus the ΔDMI was computed as the difference between DMR and DMI predicted
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using the AFSBWHH. The ΔDMI was then regressed on explanatory variables (i.e., MBV scores
and leptin SNP). For comparative purposes, an alternative empirical equation [38] was used to
predict DMI. This alternative equation uses animal’s end BW and net energy of the diet avail-
able for maintenance (assumed 2.2 Mcal/kg).

Statistical Analyses
All statistical analyses were conducted with SAS (SAS Inst., Cary, NC). The PROCMEANS
and PROC FREQ were used to obtain the descriptive statistics and the χ2 test. The PROC
CORR was used to obtain pairwise Pearson correlation statistics. The PROC REG was used to
perform the regression analysis with the STEPWISE selection option to select the most impor-
tant independent variables to explain the variation of the dependent variables; interactions and
quadratic forms of the independent variables were also investigated. The PROCMIXED was
used to evaluate classificatory variables (sex and leptin SNP) using the REML convergence
method.

Adequacy and Cross-Validation Analyses
Adequacy evaluation. The adequacy of the equations was evaluated independently to

assess precision and accuracy of the predictions using several statistical inferences and mea-
sures [39], including the mean square error of prediction (MSEP), the root of MSEP (RMSEP),
the MSEP decompositions into mean bias, systematic bias, and random errors [40], the concor-
dance correlation coefficient (CCC) and accuracy (Cb) statistics [41], and the equation preci-
sion was assessed via the coefficient of determination (r2). Further considerations on model
adequacy evaluation have been discussed [42]. Statistical analyses for adequacy were performed
with R 3.2 ([43]; http://www.r-project.org; accessed on September 6, 2015) and the Model Eval-
uation System ([39]; http://nutritionmodels.com/mes.html; accessed on September 6, 2015).

Cross validation. The cross-validation technique [44] was used to assess the adequacy of
equations with 1,000 random simulations. For each simulation, the database was randomly
split into two subsets (k = 2): one subset was the training database to develop the equations
(n = 750) and the other subset was the testing database to evaluate the predictions (n = 749).
Equations were only fitted to the first subset (k = 1) and the adequacy statistics were calculated
using the other subset (k = 2). These equations had the same variables of the selected equations.
The cross-validation analysis was based on the cv.glm function of the “boot” package [45]
using the general linear model (i.e., ordinary least-squares regression) of R version 3.2 [43].
Adequacy statistics described above were averaged based on the sample size of the kth subset.
Only one weighted average of the adequacy statistics was reported for each simulation. Finally,
the 2.5% and 97.5% quartiles for CCC, Cb, r2, and the decomposition of MSEP were reported.

Results and Discussion
The SNP frequency of CC, CT, and TT for leptin genotypes was different from the expected
frequency of 25, 50, and 25%, respectively (P< 0.0001; Table 1) compared to reported fre-
quency [46]. The C allele was predominant over the T allele, but the ratio of C:T was different
between the E2FB and UASMS2 SNP (Table 1). For steers, the C allele was 1.24 and 2.46 times
more common than the T allele for E2FB and UASMS2 SNP, respectively. Similarly, for heifers
the C allele was 1.43 and 2.15 times more common than the T allele for E2FB and UASMS2
SNP, respectively. The ratio of C:T tended to be 1.98 and 1.50 times greater for the UASMS2
SNP compared to the E2FB SNP for steers and heifers, respectively (Table 1). This finding is in
agreement with previously reported values [28] in which the C allele was much more common
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than the T allele for the UASMS2 SNP. The T allele is usually associated with fatter carcasses
while the C allele yields leaner carcasses [29].

Table 2 reflects the Pearson correlation coefficients between MBV variables and model
input and output variables. The MBVREA was the variable with more significant correlations; it
was highly correlated with FT, REA, and predicted EBF, DMI, and AFSBWCT. As expected, the
MBVCABMRB was correlated with FT, marbling score, and predicted EBF. The MBVBTRFI had
more significant correlations with input and output variables than the MBVAllRFI. Significant
correlations between marbling MBV and marbling scores or intramuscular fat have been
reported [20], suggesting that MBV scores can reliably be used to identify differences in carcass
traits they were originally intended for. Thus, the correlations between MBVREA and model
input and output variables are expected to hold across different scenarios of production.

Predicting days on feed
There was a moderate Pearson correlation (r = 0.73) between eDOF and DOFCT, but a low Pear-
son correlation (r = 0.44) between eDOF and DOFHH. There was an interaction (P< 0.001)

Table 2. Correlationmatrix betweenmolecular breeding value (MBV) scores and selectedmodel input and output variables1.

Items HH fBW HCW FT MRB REA EBFC DOF DMIC DMIHH DMRC DMRHH AFSBWHH AFSBWC

N 1517 1517 1517 1517 1517 1517 1499 1517 1499 1499 1499 1499 1517 1499

MBV

CAB MRB -0.060 0.109 0.011 0.261 0.213 -0.177 0.326 0.016 -0.106 0.066 0.069 0.038 0.029 -0.203

0.019 <0.0001 0.6762 <0.0001 <0.0001 <0.0001 <0.0001 0.5382 <0.0001 0.0104 0.0071 0.1446 0.2659 <0.0001

ADG -0.031 0.069 0.032 0.060 0.046 -0.069 0.095 0.056 -0.009 0.014 0.011 0.006 -0.005 -0.035

0.225 0.0072 0.2114 0.0187 0.0744 0.0072 0.0002 0.029 0.7243 0.5885 0.6642 0.8192 0.8341 0.1722

HCW 0.072 0.162 0.158 -0.068 0.063 0.144 -0.024 0.152 0.171 0.063 -0.043 -0.018 0.001 0.151

0.0053 <0.0001 <0.0001 0.0077 0.0141 <0.0001 0.3496 <0.0001 <0.0001 0.0144 0.0994 0.4941 0.9706 <0.0001

REA 0.173 0.065 0.138 -0.335 -0.135 0.370 -0.365 0.199 0.258 0.029 -0.132 -0.085 0.047 0.353

<0.0001 0.012 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.2637 <0.0001 0.0009 0.0688 <0.0001

50 SNP MRB -0.062 0.112 0.020 0.217 0.189 -0.148 0.270 0.009 -0.084 0.066 0.088 0.061 0.041 -0.159

0.0163 <0.0001 0.444 <0.0001 <0.0001 <0.0001 <0.0001 0.7312 0.0011 0.0112 0.0007 0.0183 0.1142 <0.0001

50 SNP REA 0.097 0.004 0.038 -0.152 -0.129 0.130 -0.180 0.061 0.090 -0.010 -0.036 -0.018 0.022 0.151

0.0002 0.8848 0.1341 <0.0001 <0.0001 <0.0001 <0.0001 0.0173 0.0005 0.7118 0.1631 0.4923 0.392 <0.0001

All MRB 0.013 0.163 0.079 0.145 0.129 -0.041 0.189 0.135 0.006 0.097 0.010 -0.005 0.061 -0.060

0.6228 <0.0001 0.0029 <0.0001 <0.0001 0.1182 <0.0001 <0.0001 0.8246 0.0003 0.6937 0.8466 0.02 0.023

All REA 0.066 0.100 0.101 -0.120 -0.071 0.159 -0.129 0.127 0.152 0.053 -0.046 -0.023 0.034 0.168

0.0124 0.0001 0.0001 <0.0001 0.0069 <0.0001 <0.0001 <0.0001 <0.0001 0.0471 0.0828 0.3841 0.195 <0.0001

All ADG -0.102 0.007 -0.044 0.199 0.121 -0.144 0.219 0.024 -0.132 0.012 0.009 -0.021 0.009 -0.180

0.0001 0.7788 0.0927 <0.0001 <0.0001 <0.0001 <0.0001 0.3554 <0.0001 0.6499 0.7305 0.4242 0.7298 <0.0001

All RFI 0.091 0.067 0.099 -0.056 -0.047 0.106 -0.071 0.025 0.122 0.071 0.007 0.016 0.062 0.126

0.0005 0.0111 0.0002 0.0337 0.0738 <0.0001 0.0076 0.347 <0.0001 0.007 0.8018 0.5373 0.0181 <0.0001

Bos taurus
RFI

-0.036 0.083 0.016 0.215 0.153 -0.094 0.245 0.111 -0.098 0.029 -0.009 -0.033 0.020 -0.149

0.1674 0.0016 0.5398 <0.0001 <0.0001 0.0004 <0.0001 <0.0001 0.0002 0.2808 0.7219 0.2171 0.4384 <0.0001

1 For a given MBV, the first row indicates the Pearson correlation coefficient and the second row indicates the probability of H0: r = 0. HH = hip height;

fBW = final (slaughter) BW, FT = fat thickness, MRB = marbling score, REA = ribeye area, EBFC = predicted empty body fat using carcass traits,

DOF = days on feed, DMIC = predicted DMI using carcass traits, DMIHH = predicted DMI using hip height information, AFSBW = predicted adjusted final

shrunk BW at 28% empty body fat using carcass traits (AFSBWCT) or hip height (AFSBWHH), RFI = residual feed intake.

doi:10.1371/journal.pone.0143483.t002
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between sex and DOFHH or DOFCT. Although the impact of MBV variables was not uniform
between heifers and steers for ΔDOFHH and ΔDOFCT, MBVREA andMBVmarbling scores were
able to explain at least an additional 8% of the variation of ΔDOFHH and ΔDOFCT. Alone, the
DOFHH and DOFCT explained 13.6 and 50.4% of the eDOF variation, respectively; andMBVREA

explained an additional 15.6 and 8.6% of the eDOF variation, respectively. Because DOF can be
affected by ADG and AFSBW, as shown in Eq (8), it is possible that the inclusion of some MBV
in the CVDS model as adjustment factors may increase its accuracy in predicting DOF. The ini-
tial SBW is a measured value; therefore, its measurement error is of little interest for this analy-
sis. The main limitation of evaluating the relationship between ADG andMBV is that ADG
depends on the predictions of DMI and the model inaccuracies might be related to its prediction
of DMI rather than ADG per se, or a combination of both.

The stepwise regression of ΔADGHH or ΔADGCT on MBV and leptin genotypes yielded
inconsistent relationships with little explanatory capacity, suggesting that either the CVDS
model was not able to accurately predict ADG or there is little effect of the evaluated MBV and
leptin genotype on ADG. The lack of correlation between ADG and MBV is consistent with
previously reported values [20]. It seems that the MBV and leptin genotypes may influence the
composition of the gain [47], not the ADG per se. In that sense, the partial efficiency of use of
ME to NEg (i.e., kg) determined from gain composition might be of greater interest in the
future because it can be influenced by the bioenergetics status of the animal [8, 48]. In fact, dif-
ferent leptin genotypes significantly altered the parameters of a power function for FT growth
[19]. Therefore, given our current analysis, the effect of the evaluated MBV and leptin geno-
types on DOF could only be attributed to AFSBW.

Predicting AFSBW
The Pearson correlation between AFSBWCT and AFSBWHH was 0.48 (n = 670; P< 0.001) for
heifers and 0.34 (n = 829; P< 0.001) for steers. For heifers and steers together, AFSBWHH

explained about 28% of the AFSBWCT variation. A STEPWISE regression between ΔAFSBW
and MBV scores indicated that MBVREA could explain an additional 13.2% (P< 0.0001) of the
variation in the AFSBWCT. Eq (9) (n = 1499, root of mean square error (RMSE) = 51.3 kg, r2 =
0.39) shows an interaction between sex and AFSBWHH, suggesting Eqs (1)–(3) may not be ade-
quately accounting for the effects of sex on frame size and equivalent BW. It also suggested that
MBVREA was important in predicting AFSBWCT and regardless of the sex, it would increase
the average AFSBWHH prediction by 44.5 kg. Assuming the ADG of 1.57 and 1.36 kg/d for
steers and heifers, respectively observed in this study (Table 1), animals with greater MBVREA

(leaner) would need approximately an additional 30 d to reach the USDA low Choice grade.
There was a tendency for an interaction between sex and MBV50SNPMRB (P = 0.0922). The
cross-validation analysis of 1,000 simulations confirmed a low precision of Eq (9), but high
accuracy (Cb) (Table 3). The simulation also indicated the 95% quartile interval for the coeffi-
cient of MBVREA to be within 38.6 to 50.2 kg.

AFSBWCT ¼ ð312:8� 175:9� aÞ þ ð0:5354þ 0:392� aÞ � AFSBWHH þ 44:5�MBVREA ð9Þ

Where AFSBW is adjusted final shrunk BW at 28% empty body fat predicted using carcass
traits (AFSBWCT) or hip height (AFSBWHH), kg; MBVREA is molecular breeding value for
ribeye area; and a is an indicator variable for sex (0 = steers or 1 = heifers).

As expected [47], there was an effect (P< 0.001) of leptin genotypes on ΔAFSBW, but it
became insignificant when combined with MBVREA. In fact, leptin genotypes (P< 0.001) and
sex (P = 0.011) affected MBVREA in which steers had a lower MBVREA value than heifers
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(-0.494 and -0.434, respectively; P< 0.001) and the leptin genotype CCCC had the greatest
MBVREA value (-0.1331) compared to the other leptin genotypes. This was expected because
both leptin SNP are part of the panel that makes up the MBVREA; they are mutually exclusive
in the sense that when one is used the other one should not be included to avoid collinearity.
Hence, because of the association between MBVREA and leptin genotypes only MBVREA was
retained in Eq (9).

Eq (10) (n = 1499, RMSE = 49 kg, r2 = 0.45) uses HH and initial BW associated with
MBVREA and the MBVCABMRB. There was a slight decrease in the error of the prediction and
an increase in the precision compared to Eq (9). Some variation, which can be accounted for in
the marbling panel, is not accounted for by the REA panel, so the inclusion of these MBV
simultaneously suggested that both might be significant, although the sign of the effect is oppo-
site. The range of MBVCABMRB in this dataset was essentially 100 points, so the difference
between the best and the worst would vary AFSBW by 25 kg.

AFSBWCT ¼ ð�1184:7þ 15758� aÞ þ ð34:292� 270:98� aÞ � HH�
ð2:155þ 53:347� aÞ � iSBW þ ð0:00888þ 0:9126� aÞ � HH � iSBW�
ð0:165� 1:152� aÞ � HH2 þ ð0:00009� 0:00387� aÞ � HH2 � iSBW�
0:257�MBVCABMRB þ 39:04�MBVREA

ð10Þ

Where AFSBWCT is the adjusted final shrunk body weight at 28% empty body fat using carcass
traits, kg; HH is hip height, cm; iSBW is initial shrunk body weight, kg; MBVCABMRB and
MBVREA are the molecular breeding value for marbling for Angus cattle and REA, respectively;
and a is an indicator variable for sex (0 = steers or 1 = heifers).

The cross-validation of Eq (10) (Table 3) suggested a slight improvement in the adequacy
statistics, but most of the errors, as expected, were random errors due to the large variation and
incomplete correlation of the variables. The simulations also indicated that coefficient for

Table 3. Adequacy statistics from the cross-validation simulations (n = 1,000) for selected equations.

Items1 Quartiles Equations, units

(9), kg (10), kg (11), kg/d

Mean bias — -0.041 0.053 0

R2 2.5% 0.38 0.41 0.26

97.5% 0.39 0.44 0.28

CCC 2.5% 0.554 0.596 0.42

97.5% 0.564 0.613 0.43

Accuracy (Cb) 2.5% 0.894 0.919 0.82

97.5% 0.905 0.933 0.83

Square root of MSEP — 51.5 49.82 1.11

MSEP decomposition

Mean bias, % 2.5% 0.001 0.001 0.001

97.5% 1.43 1.26 1.36

Systematic bias, % 2.5% 0.002 0.021 0.002

97.5% 1.458 1.41 1.53

Random variation, % 2.5% 97.9 98.0 97.8

97.5% 99.9 99.9 99.9

1 MSEP = mean square error of prediction and CCC = concordance correlation coefficient.

doi:10.1371/journal.pone.0143483.t003
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MBVCABMRB and MBVREA were likely to vary (95% quartile interval) from -0.457 to -0.057
and 31.9 to 46.2, respectively.

Predicting dry matter required
There was no significant correlation between DMR and MBV for RFI (P> 0.21). This was
expected based on previous analysis [49] of which no phenotypic correlation between RFI and
DMR during the growing and finishing phases of beef cattle was observed. Because mean BW
and ADG usually does not explain all the variation in DMI, we would expect a phenotypic cor-
relation between observed DMI and RFI (0.42< r< 0.74; [15, 50]). Some [51] have suggested
that nutritional models cannot satisfactorily determine individual DMI and RFI of group-fed
cattle. Others [16] have indicated strong correlations (r> 0.89) between RFI and predicted
intake difference (PID = observed DMI—DMR), suggesting that PID would be more capable
to identify animals with low DMI and slow ADG as inefficient compared to RFI. This lack of
correlation between DMR and MBV RFI suggest that no additional variation of DMR can be
explained by the MBV RFI, although one would expect some correlation between PID and RFI
(0.58< r< 0.78; [49]). For steers, DMR explained 24% of DMI variation. Nonetheless,
MBVREA was able to explain an additional 6.5% of the ΔDMI variation as shown by the correla-
tion between MBVREA and DMR (Table 2). As shown in Eq (11) (n = 1499, RMSE = 1.11, r2 =
0.28), as MBVREA increased one unit, DMR tended to decrease by 0.6 kg/d. The result of the
cross-validation simulation of Eq (11) is shown in Table 3. Despite the low precision, a high
accuracy can be obtained and most of the variation in the MSEP is due to incomplete co-varia-
tion. Based on the cross-validation, the impact of the MBVREA is likely to range from -0.74 to
-0.49 kg/d.

DMR ¼ ð�3:41þ 6:93� aÞ þ ð1:48� 1:054� aÞ � pDMI � 0:606�MBVREA ð11Þ
Where DMR is dry matter required, kg/d; pDMI is predicted DMI, kg/d; and MBVREA is the
molecular breeding value for REA, and a is an indicator variable for sex (0 = steers or
1 = heifers).

Some relationship between DMR and MBV is expected due to moderate heritability
reported for DMR computed with either carcass traits (0.35) or carcass ultrasound (0.32) infor-
mation [52], and the high genetic correlation between DMR and DMI (greater than 0.98 [52]
and greater than 0.79 [53]).

Because individual DMI is rarely available under feedlot conditions, DMR using AFSBWCT

was assumed as its best predictor. An alternative equation to estimate DMI [38] was used
instead of the NRC’s empirical equation [8]. The correlation between estimated DMI using two
empirical equations ([8] and [38]) was moderate (r = 0.582), but MBVREA was still significant
in explaining variation in DMR, as shown in Eq (12) (n = 1499, RMSE = 1.17, r2 = 0.20). As
MBVREA increased one unit, DMR tended to decrease by 0.45 kg/d. This results is similar to
that obtained with Eq (11).

DMR ¼ ð0:71þ 3:01� aÞ þ ð0:959� 0:453� aÞ � pDMIEnd BW � 0:45�MBVREA ð12Þ
Where DMR is dry matter required, kg/d; pDMIEnd BW is predicted DMI, kg/d; and MBVREA is
the molecular breeding value for REA, and a is an indicator variable for sex (0 = steers or
1 = heifers).

An analysis [54] indicated that MBV evaluated in breeds that were not included in the train-
ing set had genetic correlations around zero, suggesting that MBV may have limited prediction
accuracy for different breeds. The diversity of animals fed in feedlots may have improved the
effectiveness of MBV scores obtained in this study, suggesting that MBV obtained for specific
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breeds may further improve the predictability of animal performance by nutrition models
when distinct genetic groups are taken into account. The centerpiece of the CVDS growth
model is that USDA low Choice is achieved when animals reach 28.6% EBF [30]. Though this
EBF endpoint may change [33], depending on sex and breed type, scarce information is avail-
able in the literature. The present analysis can be tailored to accommodate different EBF
endpoints.

In conclusion, our analysis indicates that it is possible (and desirable) to incorporate geno-
mic information into mathematical nutrition models to enhance their predictability by
accounting for individual makeup (i.e., genetic) differences. This incorporation, however, may
require profound modifications of nutrition models to accommodate new concepts, such as
genome wide associated studies [21, 55], to remove genetic/genomic effects that are embedded
in current growth model coefficients, and to separate intrinsic interrelationship among cur-
rently accounted for variables. Building upon the advancements in genomics and nutrition
modeling, adding genomic information to nutrition models (e.g., growth models) is critical to
enhance the characterization of the animal and its biological fingerprint in order to produce
high quality meat in a more sustainable way.
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