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The clinical TNM staging system is currently used to evaluate the prognosis of head and neck squamous cell carcinoma (HNSCC).
The 5-year survival rate for patients with HNSCC is less than 50%, which is attributed to the lack of reliable prognostic
biomarkers. Ferroptosis-related genes (FRGs) regulate cancer initiation and progression. Therefore, we analyzed the correlation
between FRGs and the clinical outcomes of patients with HNSCC. A typical prognostic model of FRGs for HNSCC was
constructed using bioinformatics tools and data from public databases, including The Cancer Genome Atlas (TCGA), Gene
Expression Omnibus (GEO), and GeneCards. The model was generated based on the following six FRGs: ATG5, PRDX6,
OTUB1, FTH1, SOCS1, and MAP3K5. The accuracy of model prediction was analyzed systematically. The overall survival (OS)
of the high-risk group was significantly lower than that of the low-risk group. The AUC for 1-year, 3-year, and 5-year survival
were 0.645, 0.721, and 0.737, respectively, in the training set (TCGA cohort) and 0.726, 0.620, and 0.584, respectively, in the
validation set (GSE65858). The multivariate Cox regression analysis revealed that the risk score was an independent prognostic
factor for HNSCC. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that six
FRGs were enriched in the ferroptosis pathway. A novel FRG prognostic signature model was established for HNSCC. The
findings of this study reveal that FRGs are potential biomarkers for HNSCC.

1. Introduction

Head and neck carcinoma (HNC), which is one of the top 10
tumors, accounts for 3% of all cancer cases. Each year,
900,000 new HNC cases and 500,000 HNC-related deaths
are reported [1]. Head and neck squamous cell carcinoma
(HNSCC) is the most common histological subtype of head
and neck tumors [2]. Risk factors for HNSCC include smok-
ing, drinking, and human papillomavirus (HPV) infection
[3]. The current method for confirming the diagnosis of
HNSCC remains pathologic histological examination [4].
Due to lack of indicators for early diagnosis, HNSCC is
not easily detected and diagnosed, and approximately 60%
of patients with HNSCC are at an advanced stage by the time
they receive treatment [5]. The main treatment methods for

focal or locally limited HNSCC are resection, radiotherapy,
and systemic therapy [4]. Currently, the clinical TNM stag-
ing system is used to evaluate HNSCC prognosis. However,
the predictive effect is not satisfactory, and the survival rate
of patients with HNSCC is less than 50% [6]. With the
advent of precision medicine, patients need personalized
treatment, and studies of drug treatments targeting bio-
markers have shown good results [7].

The genetic, biochemical, and morphological character-
istics of ferroptosis are classified under the category of
iron-dependent cell death and accumulation of superoxide
lipids [8]. Ferroptosis has both advantages and disadvan-
tages because it can promote tumor progression by upregu-
lating DNA replication or inhibit tumor progression by
enhancing cell death [9–11]. The induction of iron death
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has emerged as a promising therapeutic approach for trig-
gering cancer cell death, particularly in malignancies that
are resistant to conventional treatment [12, 13]. Few studies
have been conducted on iron-induced death in head and
neck cancers, and even fewer studies have suggested that fer-
roptosis is associated with HNSCC pathogenesis [14, 15].
Therefore, there is an urgent need to identify reliable bio-
markers of ferroptosis.

The tumor microenvironment (TME) plays an impor-
tant role in modern cancer treatment [16]. Tumor-
infiltrating immune cells (TICs) are indispensable compo-
nents of the TME [17]. In particular, the composition and
activity of TICs at the tumor site are considered prognostic
factors for many cancers [18]. The TME of HNSCC contains
an increased number of immune infiltrates. The clinical effi-
cacy of cancer immunotherapy against HNSCC has been
demonstrated recently [19]. Previous studies reported that
iron metabolism markedly influenced the TME and that
the iron requirements of cancer cells were higher than those
of nontumorous cells [20]. Therefore, the prognostic value of
FRG in HNSCC must be evaluated.

In this study, correlations between the expression pro-
files of FRGs and clinical outcomes in patients with HNSCC
were analyzed using clinical datasets curated in public data-
bases. The Cox regression analysis was performed to analyze
the prognostic value of six FRGs in HNSCC. Additionally,
the correlation between these six FRGs and the TME of
HNSCC was examined. The findings of this study reveal that
FRGs are potential biomarkers for HNSCC.

2. Materials and Methods

2.1. Data Acquisition. RNA sequence and clinical informa-
tion of 494 HNSCC cases were collected from TCGA data-
base using the R package “TCGAbiolinks.” A total of 44
normal samples and 8 samples with missing survival data
were excluded. A validation dataset (GSE65858) containing
information on 270 patients with HNSCC was downloaded
from the GEO website (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE65858) [21]. Four cases with missing
tumor site information were excluded from the analysis;
hence, only 266 patients with complete clinical data were
included in our study. The keyword “ferroptosis” was used
to identify 103 genes and download their data (S1) from
the GeneCards database (http://www.genecards.org/) [22].
Since all data in our study were collected from public online
databases, approval from the Ethics Committee or written
informed consent from contributors was not required.

2.2. Establishing the Prognostic Signature of FRGs. The 96
FRGs in HNSCC (S2) were identified from the intersection
of the 103 FRGs from the GeneCards database and all genes
from TCGA dataset, and the expression data of the 96 FRGs
were subsequently combined with clinical data from 494
HNSCC patients. The univariate Cox regression analysis
identified eight genes associated with survival of patients
with HNSCC. Meanwhile, the multivariate Cox regression
model identified six prognostic ferroptosis-related genes.
The genes associated with the risk of developing HNSCC

were determined based on hazard ratios (HRs) as follows:
HR > 1, risk-associated genes; HR < 1, protective genes. Six
FRGs were evaluated using a linear combination of the
Cox regression coefficients (β). The best model was chosen
based on the lowest Akaike information criterion (AIC)
value. The risk score for all patients was calculated using
Equation (1):

RiskScore = 〠
n

i=1
Coef ið Þ × x ið Þ, ð1Þ

where Coef ðiÞ represents the estimated coefficient of each
FRG and x ðiÞ represents the expression of each FRG.

2.3. Evaluation of the Prognostic Model. All patients in the
training cohort (TCGA cohort) were divided into high-risk
and low-risk groups based on the cut-off values of median
risk scores. Overall survival (OS) was evaluated using the
Kaplan-Meier survival curves and compared using the log-
rank test. The risk curve and scatter plot of the risk score
were generated using the R software package “pheatmap.”
Principal component analysis (PCA) was performed to visu-
alize sample distribution. The R package “timeROC” was
used to generate time-dependent receiver operating charac-
teristic (ROC) curves, and area under the curve (AUC) plots
were generated for the 1-year, 3-year, and 5-year survival
rates to assess the predictive performance of the risk scoring
model. Univariate and multivariate Cox regression analyses
were used to assess the applicability of the prognostic model
independent of other clinicopathological factors of patients
with HNSCC, including age, sex, grade, clinical stage, T-
stage, and risk score. N-stage and M-stage were not analyzed
because these data were missing for some of the patients. To
assess the net benefit to patients, we used the R package
“stdca.R” for decision curve analysis (DCA) and plotted
DCA curves for 1 year, 3 years, and 5 years. Finally, we val-
idated model accuracy using the validation cohort
(GSE65858).

2.4. Stratified Analyses of the Expression Levels of Six FRGs.
Differential expression of six ferroptosis-related genes was
analyzed between high-risk and low-risk groups from TCGA
cohort using the “ggpubr” R package. To explore the clinical
significance of these six ferroptosis-related genes, the
patients were stratified according to clinical parameters
(age, sex, grade, clinical stage, T-stage, N-stage, HPV-in situ
hybridization (ISH) results, and P16 status). Only significant
results are given in this study. The clinical values of sex and
M-stage are not shown.

2.5. Gene Ontology (GO) Terms, Kyoto Encyclopedia of
Genes and Genomes (KEGG) Pathways, and Protein-
Protein Interaction (PPI) Network. The six FRGs were
subjected to GO and KEGG enrichment analyses using
the R package “clusterProfiler” and “http://org.Hs.eg.db/”.
P values were adjusted with the “BH” method. The PPI net-
work was constructed using STRING version 11.0 (https://
string-db.org/) [23].
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2.6. CIBERSORT Analysis. CIBERSORT [24] was used to
calculate the relative proportions of 22 TICs in each HNSCC
sample. Spearman’s correlation analysis was used to analyze
the association between TICs and the six FRGs. Only signif-
icant (P < 0:001) results are shown.

2.7. Statistical Analysis. Data extraction, cleaning, and merg-
ing were performed using the R packages “tidyverse” and
“stringr.” The R package “Tableone” was used to tabulate
and analyze the baseline data. All Cox regressions were con-
ducted using the R “survival” package. Overall survival
between the subgroups was compared using the log-rank
test. Differential gene expression between different sub-
groups was analyzed using the Wilcoxon test. The R pack-
ages “ggplot2,” “forestplot,” “cowplot,” “survminer,”
“timeROC,” and “ggpubr” were used for visualization. All
statistical analyses and visualizations were performed using
the R software version 3.6.3 (https://www.r-project.org/).
Differences were considered significant at P < 0:05, unless oth-
erwise stated. All P values were calculated using two-sided
tests (∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001, ∗∗∗∗P < 0:0001).

3. Results

3.1. Study Design (Figure 1). A total of 494 patients with
HNSCC from TCGA cohort and 266 patients with HNSCC
from the GSE65858 dataset were included. Detailed clinical
information of the patients is summarized in Table 1.

3.2. Identification of Prognostic FRGs in TCGA Cohort. Based
on the expression levels of 96 FRGs, the univariate Cox
regression analysis revealed that eight FRGs were associated

with OS (Figure 2(a)). A prognostic model was constructed
for six FRGs based on the expression levels of eight FRGs
and the multivariate Cox regression analysis. The best prog-
nostic gene signature was selected based on the lowest AIC
value (Table 2). Among them, ATG5, PRDX6, OTUB1, and
FTH1 were classified as risk-associated genes (HR > 1),
whereas SOCS1 and MAP3K5 were classified as protective
genes (HR < 1) (Figure 2(b)). Kaplan-Meier survival curves
were plotted based on expression levels (high-expression
and low-expression) of six FRGs. The OS of patients with
HNSCC in the ATG5, PRDX6, OTUB1, and FTH1 high-
expression groups was lower than that of patients in the
low-expression groups (Figures 2(c)–2(f)). Conversely, the
OS of patients with HNSCC in the SOCS1 and MAP3K5
low-expression groups was lower than that of patients in
the high-expression groups (Figures 2(g) and 2(h)).

3.3. Evaluation of Prognostic Models. A prognostic model was
constructed to compute the hazard score for each HNSCC
patient in TCGA dataset using the following equation: risk
score = ½ð0:5019 × ATG5 expressionÞ + ð−0:2152 ×MAP3K5
expressionÞ + ð−0:2619 × SOCS1 expressionÞ + ð0:2577 ×OT
UB1 expressionÞ + ð0:1684 × FTH1 expressionÞ + ð0:2121 ×
PRDX6 expressionÞ�. Based on the median risk score (0.960),
all patients were divided into two groups: high-risk group
(n = 247) and low-risk group (n = 247). The Kaplan-Meier
survival curve showed that the OS of the high-risk group
was significantly lower than that of the low-risk group
(Figure 3(a)). The 1-year, 3-year, and 5-year OS rates of the
high-risk group were 74.60%, 40%, and 29.30%, respectively,
while those of the low-risk group were 89.10%, 71.90%, and
61.10%, respectively. PCA was performed to examine the
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Figure 1: Flow chart of the study plan. TCGA: The Cancer Genome Atlas; TICs: tumor-infiltrating immune cells; K-M: Kaplan-Meier;
ROC: receiving operating characteristic; PCA: principal coordinate analysis; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes
and Genomes; PPI: protein-protein interaction; HNSCC: head and neck squamous cell carcinoma, DCA: decision curve analysis.
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significant risk score distribution differences between the low-
risk and high-risk groups (Figure 3(c)). Figure 3(e) shows the
AUC values for the 1-year (0.645), 3-year (0.721), and 5-year
(0.737) survival rates. The horizontal ordinate axis of the risk
score curve and survival events were sorted according to the
risk score (Figure 3(g)). Patients with high-risk scores exhib-
ited decreased survival and increased death rates
(Figure 3(i)). The prognostic model was validated using the
GSE65858 cohort (n = 266). The OS of the high-risk group
(n = 133) was significantly lower than that of the low-risk
group (n = 133) (Figure 3(b)). The 1-year, 3-year, and 5-year
OS rates of the high-risk group were 78.95%, 54.33%, and
36.81%, respectively, while those of the low-risk groups were
92.5%, 72%, and 51.50%, respectively. PCA was performed
to demonstrate the significant risk score distribution differ-
ences between the low-risk and high-risk groups in the valida-
tion cohort (Figure 3(d)). Figure 3(f) shows the AUC values
for the 1-year (0.726), 3-year (0.62), and 5-year (0.584) sur-
vival rates. The horizontal ordinate axis of the risk score curve
and survival event data were sorted according to the risk
scores (Figure 3(h)). Patients with high-risk scores exhibited
decreased survival rates and increased mortality rates
(Figure 3(j)). The DCA results showed a benefit in 1-year, 3-
year, and 5-year survival for patients in this prediction model
(Figures 4(a)–4(c)).

3.4. Risk Score Is an Independent Prognostic Factor. In TCGA
cohort (training set), the univariate Cox regression analysis
revealed that age (P = 6:639e − 04), tumor stage
(P = 1:737e − 04), T-stage (P = 5:838e − 04), and risk score
(P = 3:633e − 08) were significantly correlated with OS
(Figure 5(a)), while the multivariate Cox regression analysis
revealed that age (P = 8:802e − 04), tumor stage
(P = 8:303e − 03), and risk score (P = 2:611e − 07) were sig-
nificantly correlated with OS (Figure 5(e)). As shown in
Figure 5(c), the AUC for the risk score (0.647) was higher
than that for age (0.577), gender (0.499), tumor grade
(0.547), tumor stage (0.556), and T-stage (0.551). The uni-
variate Cox analysis of the GSE65858 cohort (validation
set) revealed that age (P = 1:562e − 02), tumor stage

Table 1: Baseline clinical characteristics of patients with HNSCC in
TCGA and GSE65858 cohorts.

Clinical
characteristics

TCGA GSE65858
Total (n = 494) % Total (n = 266) %

Age

<65 306 61.9 180 67.7

≥65 188 38.1 86 32.3

Gender

Female 132 26.7 45 16.9

Male 362 73.3 221 83.1

Grade

G1 61 12.3 — —

G2 294 59.5 — —

G3 118 23.9 — —

G4 2 0.4 — —

GX 16 3.2 — —

Unknown 3 0.6 — —

Stage

I 24 4.9 18 6.8

II 72 14.6 37 13.9

III 78 15.8 36 13.5

IV 256 51.8 175 65.8

Unknown 64 13.0 — —

T-stage

T0 1 0.2 — —

T1 44 8.9 35 13.2

T2 131 26.5 80 30.1

T3 95 19.2 56 21.1

T4 169 34.2 95 35.7

TX 32 6.5 — —

Unknown 22 4.5 — —

N-stage

N0 168 34.0 93 35.0

N1 65 13.2 31 11.7

N2 162 32.8 130 48.9

N3 7 1.4 12 4.5

NX 68 13.8 — —

Unknown 24 4.9 — —

M-stage

M0 181 36.6 259 97.4

M1 1 0.2 7 2.6

MX 61 12.3 — —

Unknown 251 50.8 — —

HPV status

HPV16 — — 60 22.6

Other HPV — — 13 4.9

Negative — — 192 72.2

Unknown — — 1 0.4

HPV16

DNA(+) RNA(+) — — 35 13.2

DNA(+) RNA(-) — — 19 7.1

Table 1: Continued.

Clinical
characteristics

TCGA GSE65858
Total (n = 494) % Total (n = 266) %

DNA(-) — — 192 72.2

Unknown — — 20 7.5

P16

Negative 72 14.6 — —

Positive 30 6.1 — —

Unknown 392 79.4 — —

HPV-ISH result

Negative 64 13.0 — —

Positive 19 3.8 — —

Unknown 411 83.2 — —

HNSCC: head and neck squamous cell carcinoma; HPV: human
papillomavirus; TCGA: The Cancer Genome Atlas; ISH: in situ
hybridization.
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(P = 1:658e − 03), T-stage (P = 1:187e − 04), and risk score
(P = 2:251e − 07) were significantly correlated with OS
(Figure 5(b)). Meanwhile, the multivariate Cox analysis
revealed that tumor stage (P = 2:396e − 02) and risk score
(P = 2:340e − 07) were significantly associated with OS
(Figure 5(f)). As shown in Figure 5(d), the AUC for the risk
score (0.726) was higher than that for age (0.586), sex
(0.534), tumor stage (0.619), T-stage (0.620), and N-stage
(0.620). These results suggest that FRGs are independent
prognostic factors for HNSCC.

3.5. Stratified Analysis of Six FRGs Based on Clinical
Characteristics. The six FRGs were differentially expressed
between the high-risk and low-risk groups. The expression
of ATG5, PRDX6, OTUB1, and FTH1 was upregulated in
the high-risk group (Figures 6(a), 6(b), 6(d), and 6(e)),
whereas that of SOCS1 and MAP3K5 was downregulated in
the high-risk group (Figures 6(c) and 6(f)). The correlations
between the six FRGs and clinical parameters such as age,
P16 status, HPV-ISH result, tumor grade, TNM stage, and

N-stage were analyzed. The expression levels of PRDX6 in
patients aged ≥ 65 years were higher than those in patients
aged < 65 years (Figure 7(a)). Compared with those in the
P16-positive group, the expression levels of SOCS1 and
PRDX6 were upregulated in the P16-negative groups
(Figure 7(b)). Additionally, the expression levels of SOCS1
and ATG5 in the HPV-ISH-positive group were higher than
those in the HPV-ISH-negative group (Figure 7(c)). The
expression level of ATG5 varied between G1 and G3 grades,
while that of FTH1 varied between G1 and G2 grades, as well
as between G1 and G3 grades. OTUB1 was differentially
expressed between G1 and G4 grades, whereas PRDX6 was
differentially expressed between G1 and G3 grades. The
expression level of SOCS1 varied between G1 and G2 grades,
as well as between G1 and G3 grades (Figure 7(d)). The
expression level of SOCS1 in stage III tumors was higher
than in stage I tumors (Figure 7(e)). The expression level
of ATG5 varied between N0 and N1 stages, as well as
between N0 and N2 stages. FTH1 and MAP3K5 were differ-
entially expressed between N0 and N2 stages (Figure 7(f)).
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Figure 2: Construction of ferroptosis-associated signature gene model. (a) Forest map of eight ferroptosis-associated genes correlated with
the survival of patients with HNSCC was obtained using the univariate Cox regression analysis. (b) Forest maps of six ferroptosis-related
genes (FRGs) were generated using the multivariate Cox regression analysis. (c–h) Kaplan-Meier survival curves of the high-expression
and low-expression groups of six FRGs.
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3.6. GO, KEGG, and PPI Analyses. The top two GO results
for biological processes were negative regulation of histone
modification and negative regulation of chromatin organiza-

tion. The top two GO results for cellular components were
autophagosomes, transferase complex, and transferring
phosphorus-containing groups. The top two GO results for
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Figure 3: Validation of the prognostic model. (a, b) The Kaplan-Meier survival analysis of the high-risk and low-risk groups in The Cancer
Genome Atlas (TCGA) and GSE65858 datasets. (c, d) Principal component analysis of the high-score and low-score groups in TCGA and
GSE65858 datasets. (e, f) The area under the curve values for the 1-year, 3-year, and 5-year survival rates of TCGA and GSE65858 datasets.
(g, h) The risk score distribution curve of high-risk and low-risk groups in TCGA and GSE65858 datasets. (i, j) Scatter plot indicating the
association between survival time and risk score in TCGA and GSE65858 datasets.

Table 2: Akaike information criterion (AIC) of the models.

Model Prognostic signature combination AIC

1 ATG5 + PRDX6 + RIPK1 + OTUB1 + FTH1 + SLC3A2 + SOCS1 + MAP3K5 2289.81

2 ATG5 + PRDX6 + RIPK1 + OTUB1 + FTH1 + SOCS1 + MAP3K5 2287.82

3 ATG5 + PRDX6 + OTUB1 + FTH1 + SOCS1 + MAP3K5 2285.87
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molecular functions were ubiquitin protein ligase binding
and ubiquitin-like protein ligase binding (Figure 8(a)). The
KEGG analysis revealed that ferroptosis was the most signif-
icantly enriched pathway (Figure 8(c)). The PPI network
revealed correlations betweenMAP3K5, SOCS1, and PRDX6.
FTH1, OTUB1, and ATG5 did not form part of the network
(Figure 8(b)).

3.7. Correlation between Ferroptosis and TIC Infiltration in
TCGA Cohort. To investigate the correlation between fer-
roptosis and TIC infiltration, the “CIBERSORT” algorithm
was used to analyze the relative proportion of immune cells
in the top 22 HNSCC samples (Figure 9(a)). The association
between the 22 TIC proportions and ferroptosis was repre-

sented using a heatmap (Figure 9(b)). A scatter plot showing
the association between the expression of FRGs and the pro-
portion of 22 TICs in HNSCC samples revealed a positive
association between ATG5 and resting CD4 memory T cells
(Figure 10(a)). Additionally, resting dendritic cells, M1 mac-
rophages, activated natural killer cells, and activated CD4
memory T cells were negatively correlated with FTH1,
whereas macrophage M0 was positively correlated with
FTH1 (Figures 10(b)–10(f)). Naive B cells and resting mast
cells were positively correlated with MAP3K5 expression
(Figures 10(g) and 10(h)). Furthermore, naive B cells, acti-
vated CD4 memory T cells, and CD8 T cells were positively
correlated with SOCS1, whereas resting dendritic cells were
negatively correlated with SOCS1 (Figures 10(i)–10(l)).
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Figure 4: The decision curve analysis (DCA) results showed a benefit in 1-year (a), 3-year (b), and 5-year (c) survival for patients in this
prediction model.

7Disease Markers



4. Discussion

The incidence of HNSCC is increasing worldwide [1]. The 5-
year survival rate of patients with HNSCC is less than 50%
[6], which is attributed to lack of reliable prognostic bio-
markers [25]. Recent studies have established a correlation
between molecular markers such as autophagy genes,
immune genes, autophagy-associated long noncoding RNAs
(lncRNAs), and immune-related lncRNAs, and HNSCC
prognosis [26–29], which may aid in determining clinical
outcomes.

As ferroptosis is reportedly involved in both cancer
progression and cancer suppression [30], it can be a novel

therapeutic target for tumors. As such, prognostic
ferroptosis-related signature genes have been established
for various tumors, including hepatocellular carcinoma
[31], glioma [32], uveal melanoma [33], and clear cell renal
cancer [34]. Low concentrations of PTX and RSL3 synergis-
tically suppress hypopharyngeal squamous carcinoma by
inducing ferroptosis [15]. SLC7A11 is a biomarker and ther-
apeutic target for HPV-positive HNSCC [14]. Additionally,
ferroptosis enhances the clinical growth-inhibitory efficacy
of PDT against oral tongue squamous cell carcinoma [35].
Previous studies have mainly focused on HNSCC pathogen-
esis, as well as on the effects of drugs and surgical treatment
of HNSCC. However, the correlation between ferroptosis
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Figure 5: Independent prognostic factor analysis. Results of the univariate Cox regression analysis to determine the association between
overall survival rate and clinical characteristics in The Cancer Genome Atlas (TCGA) cohort (a) and GSE65858 datasets (b). The
receiving operating characteristic curve was generated based on the risk score and clinical characteristics of TCGA (c) and GSE65858 (d)
datasets. Results of the multivariate Cox regression analyses to determine the association between overall survival rate and clinical
characteristics in TCGA (e) and GSE65858 (f) datasets.
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and HNSCC prognosis has not previously been examined.
This study demonstrated that FRGs are prognostic markers
of HNSCC. In addition to the internal validation of TCGA
dataset, this study validated the prognostic value of FRGs
using the GSE65858 dataset. The findings of this study indi-
cate that FRGs can predict the OS of patients with HNSCC.

Several studies have also suggested a close correlation
between ferroptosis and tumor immunotherapy. Ferroptosis
plays a critical role in the efficacy of tumor immunotherapy

[36]. In cancer immunotherapy, CD8(+) T cells exert antitu-
mor effects by promoting tumor ferroptosis [37]. Additionally,
a chemically programmed vaccine targeting ferroptosis and
immunity has been developed [38]. Thus, the ferroptosis path-
way is a potential therapeutic target for tumors. However, fur-
ther studies are needed to examine the role of ferroptosis in the
immune environment of cancer. In this study, TCGA dataset
was analyzed using the CIBERSORT algorithm to demon-
strate the correlation between 22 TICs and FRGs.
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Figure 6: Differential expression of six ferroptosis-related signature genes. (a–f) The expression levels of OTUB1, PRDX6,MAP3K5, ATG5,
FTH1, and SOCS1 in the high-risk score and low-risk score groups.
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Six ferroptosis-related signature genes were subjected to
GO and KEGG analyses, and a PPI network was con-
structed. The correlation between these genes and 22 TICs
in HNSCC was examined. SOCS1 has been identified as an
immune-related prognostic protective gene for HNSCC
[39]. One study in an Indian population suggested that
SOCS1 may mediate immunosuppression in HPV-positive
tumors [40]. Treatment with resveratrol suppressed HNSCC
proliferation through SOCS1 [41], suggesting that SOCS1 is
a potential therapeutic target for HNSCC. This is in agree-
ment with the findings of the present investigation, which
demonstrated that the expression of SOCS1 was upregulated
in HPV-positive patients in both the P16-positive and HPV-
ISH-positive groups in TCGA cohort. The expression of
SOCS1 was positively correlated with the proportion of
naive B cells, activated CD4 T cells, and CD8 T cells. In con-
trast, the expression of SOCS1 was negatively correlated with
the proportion of resting dendritic cells. These findings dem-
onstrate the role of SOCS1 in HNSCC.

ATG5 has previously been reported to be associated
with autophagy. Recent studies have reported that ATG5
regulates the migration, invasion, and apoptosis of
HNSCC through autophagy [42, 43]. Additionally, ATG5
determines the sensitivity of HNSCC to radiotherapy and
chemotherapy [44–47]. The expression of ATG5 was
upregulated in the HPV-positive group, indicating that it
regulates radiotherapy sensitivity of HPV-positive tumors.
GO analysis revealed that ATG5 was enriched in cellular
components containing autophagosomes. The expression
of ATG5 was upregulated in advanced-grade and N-stage
tumors.

Radiotherapy exerts growth-inhibitory effects against
HNSCC by promoting redox sensitivity through MAP3K5
[48, 49]. The expression of MAP3K5 was downregulated in

advanced N-stage tumors, which is consistent with the
downregulated expression of MAP3K5 in the high-risk score
group and increased survival rate in the MAP3K5 high-
expression group. MAP3K5 was positively correlated with
the proportion of naive B cells and resting mast cells.

PRDX6 suppresses apoptosis in HNSCC by exerting
antioxidant effects [50]. The expression of PRDX6 was
upregulated in the high-risk score group. Additionally, the
PRDX6 high-expression group exhibited decreased OS.
Furthermore, PRDX6 expression was upregulated in the
subgroup with poor histopathological differentiation. These
results suggest that PRDX6 is an oncogenic factor in
HNSCC.

The correlation between HNSCC, OTUB1, and FTH1
has not previously been reported. OTUB1 is involved in
ubiquitination in breast cancer [51]. GO enrichment analysis
of six FRGs revealed that the terms biological processes and
molecular functions also include ubiquitin-related mecha-
nisms. Survival analysis revealed that the OTUB1 high-
expression group exhibited low OS and that the expression
of OTUB1 was upregulated in the high-risk score group.
The results of this study suggest that OTUB1 is a risk factor
for HNSCC, although further experimental studies are
needed.

The National Center for Biotechnology Information
database classifies FTH1 as a pseudogene. However, the role
of FTH1 in tumor development has recently been reported.
FTH1 functions as a neoplastic suppressor in non-small cell
lung cancer [52], breast cancer [53], and ovarian cancer [54].
However, FTH1 functions as a tumor suppressor in metasta-
tic melanoma [55]. In this study, FTH1 was identified as a
risk factor for HNSCC. The OS of the FTH1 high-
expression group was low. Additionally, the expression of
FTH1 was upregulated in the high-risk score group.
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Figure 7: Expression levels of six ferroptosis-related signature genes based on the age (a), P16 status (b), human papillomavirus-in situ
hybridization result (c), tumor grade (d), tumor stage (e), and T-stage (f) of patients in The Cancer Genome Atlas (TCGA) cohort.
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This study had some limitations. This was a retrospec-
tive study and established gene signatures based on data
from public databases. Thus, the gene signature requires
further validation in prospective studies and multicenter

clinical trials. Additionally, the mechanisms underlying the
association between ferroptosis-related genes and tumor
immunity in HNSCC remain poorly understood and war-
rant further investigation.

B cell naive

100%

80%

60%

40%Re
lat

iv
e p

er
ce

na
ge

20%

0%

B cell memory
Plasma cells
T cells CD8
T cells CD4 naive
T cells CD4 memory resting
T cells CD4 memory activated
T cells follicular helper

T cells regulatory (Tregs)
T cells gamma delta
NK cells resting
NK cells activated
Monocytes
Macrophages M0
Macrophages M1

Macrophages M2
Dendritic cells resting

Mast cells resting
Mast cells activated
Eosinophils
Neutrophils

Dendritic cells activated

(a)

Macrophages M0
T cells CD4 memory resting
NK cells resting
Mast cells activated
Neutrophils
Eosinophils
Dendritic cells activated
B cells memory
T cells CD4 naive
Macrophages M1
T cells CD8
T cells CD4 memory activated
T cells follicular helper
T cells regulatory (Tregs)
Plasma cells

T cells gamma delta
Monocytes
Dendritic cells resting
Macrophages M2

Mast cells resting
NK cells activated

B cells naive

M
ac

ro
ph

ag
es

 M
0

T 
ce

lls
 C

D
4 

m
em

or
y 

re
sti

ng

N
K 

ce
lls

 re
st

in
g

M
as

t c
el

ls 
ac

tiv
at

ed

N
eu

tro
ph

ils

Eo
sin

op
hi

ls

D
en

dr
iti

c c
el

ls 
ac

tiv
at

ed

B 
ce

lls
 m

em
or

y

T 
ce

lls
 C

D
4 

na
iv

e
M

ac
ro

ph
ag

es
 M

1

T 
ce

lls
 C

D
8

T 
ce

lls
 C

D
4 

m
em

or
y 

ac
tiv

at
ed

T 
ce

lls
 fo

lli
cu

la
r h

elp
er

T 
ce

lls
 re

gu
lat

or
y 

(T
re

gs
)

Pl
as

m
a c

el
ls

T 
ce

lls
 g

am
m

a d
elt

a
M

on
oc

yt
es

D
en

dr
iti

c c
el

ls 
re

st
in

g

M
ac

ro
ph

ag
es

 M
2

M
as

t c
el

ls 
re

sti
ng

N
K 

ce
lls

 ac
tiv

at
ed

B 
ce

lls
 n

ai
ve

1

0.8

0.6

0.4

0.2

–0.2

–0.4

0

(b)

Figure 9: CIBERSORT analysis of The Cancer Genome Atlas (TCGA) cohort. (a) Histogram of relative proportions of 22 tumor immune
cells (TICs). (b) Correlation among 22 tumor immune cells (TICs).

13Disease Markers



5. Conclusions

This study identified and validated a clinical prognostic
model based on six FRGs, which served as independent
prognostic factors for patients with HNSCC. These genes
may also serve as potential prognostic biomarkers for
HNSCC.
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Figure 10: Association between the distribution of tumor immune cells and expression of ferroptosis-related genes (FRGs) in head neck
squamous cell carcinoma. (a) ATG5 was positively associated with the proportion of CD4 resting memory T cells. (c) FTH1 was
positively associated with the proportion of M0 macrophages. (b, d–f) FTH1 was negatively correlated with the proportion of resting
dendritic cells, M1 macrophages, activated natural killer cells, and activated CD4 memory T cells. (g, h) MAP3K5 was positively
associated with the proportion of naive B cells and resting mast cells. (i–l) SOCS1 was positively correlated with the proportion of naive
B cells, activated CD4 memory T cells, and CD8 T cells but negatively correlated with the proportion of resting dendritic cells.
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