
Choice-selective sequences dominate in cortical relative to 
thalamic inputs to NAc to support reinforcement learning

Nathan F. Parker1,8,

Avinash Baidya3,6,8,

Julia Cox1,7,8,

Laura M. Haetzel1,

Anna Zhukovskaya1,

Malavika Murugan1,

Ben Engelhard1,

Mark S. Goldman3,4,5,*,

Ilana B. Witten1,2,9,*

1Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA

2Department of Psychology, Princeton University, Princeton, NJ 08544, USA

3Center for Neuroscience, University of California, Davis, Davis, CA 95616, USA

4Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 
95616, USA

5Department of Ophthalmology and Vision Science, University of California, Davis, Davis, CA 
95616, USA

6Department of Physics and Astronomy, University of California, Davis, Davis, CA 95616, USA

7Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 
60611, USA

8These authors contributed equally

9Lead contact

SUMMARY

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
*Correspondence: msgoldman@ucdavis.edu (M.S.G.), iwitten@princeton.edu (I.B.W.).
AUTHOR CONTRIBUTIONS
N.F.P., J.C., L.M.H., A.Z., and M.M. performed the experiments under the supervision of I.B.W.; N.F.P., A.B., J.C., and B.E. analyzed 
the behavioral and neural data; A.B. performed the modeling work under the supervision M.S.G.; N.F.P., A.B., J.C., M.S.G., and 
I.B.W. wrote the paper.

SUPPLEMENTAL INFORMATION
Supplemental information can be found online at https://doi.org/10.1016/j.celrep.2022.110756.

DECLARATION OF INTERESTS
The authors declare no competing interests.

HHS Public Access
Author manuscript
Cell Rep. Author manuscript; available in PMC 2022 June 23.

Published in final edited form as:
Cell Rep. 2022 May 17; 39(7): 110756. doi:10.1016/j.celrep.2022.110756.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by/4.0/


How are actions linked with subsequent outcomes to guide choices? The nucleus accumbens, 

which is implicated in this process, receives glutamatergic inputs from the prelimbic cortex and 

midline regions of the thalamus. However, little is known about whether and how representations 

differ across these input pathways. By comparing these inputs during a reinforcement learning 

task in mice, we discovered that prelimbic cortical inputs preferentially represent actions and 

choices, whereas midline thalamic inputs preferentially represent cues. Choice-selective activity 

in the prelimbic cortical inputs is organized in sequences that persist beyond the outcome. 

Through computational modeling, we demonstrate that these sequences can support the neural 

implementation of reinforcement-learning algorithms, in both a circuit model based on synaptic 

plasticity and one based on neural dynamics. Finally, we test and confirm a prediction of our 

circuit models by direct manipulation of nucleus accumbens input neurons.

Graphical Abstract

In brief

Learning to make proper choices requires associating outcomes with the actions that preceded 

them. Parker et al. record and optogenetically manipulate two input pathways to a key brain 

area associated with action-outcome learning, the nucleus accumbens. The results motivate two 

alternative models for the circuitry and mechanisms underlying reinforcement learning.
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INTRODUCTION

Multiple lines of experimental evidence implicate the nucleus accumbens (NAc, part of the 

ventral striatum) in reward-based learning and decision-making (Apicella et al., 1991; Cador 

et al., 1989; Carelli et al., 1993; Cox and Witten, 2019; Di Ciano et al., 2001; Everitt et 

al., 1991; Parkinson et al., 1999; Phillips et al., 1993, 1994; Robbins et al., 1989; Roitman 

et al., 2005; Setlow et al., 2003; Stuber et al., 2011; Taylor and Robbins, 1986). The NAc 

is a site of convergence of glutamatergic inputs from a variety of regions, including the 

prefrontal cortex and the midline thalamus, along with dense dopaminergic inputs from the 

midbrain (Brog et al., 1993; Do-Monte et al., 2017; Groenewegen et al., 1980; Hunnicutt et 

al., 2016; Otis et al., 2017; Phillipson and Griffiths, 1985; Poulin et al., 2018; Reed et al., 

2018; Swanson, 1982; Wright and Groenewegen, 1995; Zhu et al., 2016).

A central question in reinforcement learning is how actions and outcomes become associated 

with each other, even when they are separated in time (Asaad et al., 2017; Gersch et al., 

2014; Sutton, 1988; Wörgötter and Porr, 2005). A possible mechanism that could contribute 

to solving this problem of temporal credit assignment in the brain is that neural activity in 

the glutamatergic inputs to the NAc provides a neural memory trace of previous actions. 

However, whether glutamatergic inputs to the NAc indeed represent memories of previous 

actions is unclear. More broadly, what information is carried by glutamatergic inputs to the 

NAc during reinforcement learning, and whether different inputs provide overlapping or 

distinct streams of information, has not been examined systematically. To date, there have 

been relatively few recordings of cellular-resolution activity of glutamatergic inputs to the 

NAc during reinforcement learning or comparison of multiple inputs within the same task, 

nor examination of the timescale with which information is represented within and across 

trials. Furthermore, if glutamatergic inputs do indeed provide memories of previous actions, 

construction of a neurally plausible instantiation of an algorithm for credit assignment based 

on the measured signals remains to be demonstrated (for a review of biological instantiation 

of reinforcement learning algorithms, see Joel et al., 2002).

To address these gaps, we recorded from glutamatergic inputs to the NAc during a 

probabilistic reversal learning task and built circuit-based computational models to connect 

our data to prominent theories of reinforcement learning. In this task, dopamine neurons 

that project to the NAc encode reward prediction error (RPE), and inhibition of dopamine 

neurons substitutes for a negative RPE (Parker et al., 2016). To compare activity in major 

cortical and thalamic inputs to the NAc core, we combined a retrograde viral targeting 

strategy with cellular-resolution imaging to examine the inputs from prelimbic cortex 

(“PL-NAc,” part of the medial prefrontal cortex) and midline regions of the thalamus 

(“mTH-NAc”). We found that PL-NAc neurons preferentially encode actions and choices 

relative to mTH-NAc neurons, with choice-selective sequential activity that bridges the 

delay between choice and reward and that persists until the start of the subsequent trial. 

We demonstrate with computational modeling that these choice-selective sequences can 

support neural instantiations of reinforcement learning algorithms, either through dopamine-

dependent changes in synaptic weights onto NAc neurons (Fisher et al., 2017; Gerfen and 

Sur-meier, 2011; Reynolds and Wickens, 2002; Russo et al., 2010) or dopamine-dependent 

changes in neural dynamics (Wang et al., 2018). Finally, we test and confirm a prediction 
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of our models through direct optogenetic manipulation of PL-NAc neurons. Thus, by 

recording and manipulating glutamatergic inputs to the NAc and integrating these data 

with computational modeling, we provide specific proposals for how reinforcement learning 

could be implemented by neural circuitry.

RESULTS

Cellular-resolution imaging of glutamatergic inputs to the NAc during a probabilistic 
reversal learning task

Mice performed a probabilistic reversal learning task while inputs from thalamus or cortex 

were imaged (Figure 1A). A trial was initiated when the mouse entered a central nose poke, 

which prompted the presentation of a lever on either side after a variable delay of 0–1 s. 

Each lever had either a high (70%) or low (10%) reward probability, with the identity of the 

high- and low-probability levers reversing in an unsignaled manner after a variable number 

of trials (see STAR Methods for block-reversal probabilities). After a variable delay (0–1 

s), either a sound (positive conditioned stimulus [CS+]) was presented at the same time as 

a reward was delivered to a central reward port, or another sound (CS−) was presented that 

signaled the absence of reward.

As expected, mice switched the lever they were more likely to press following block 

reversals (Figures 1B and 1C). Similarly, mice were significantly more likely to return to 

the previously chosen lever (i.e., stay) following rewarded, as opposed to unrewarded, trials 

(Figure 1D), meaning that, as expected, mice were using previous choices and outcomes 

to guide behavior. A logistic regression to predict choice based on previous choices and 

outcomes indicated that mice relied on ~3 previous trials to guide their choices (Figure 1E; 

see STAR Methods for choice regression details).

To image activity of glutamatergic input neurons to the NAc during this behavior, we 

injected a retroAAV or CAV2 to express Cre-recombinase in the NAc as well as an AAV2/5 

to Cre-dependently express GCaMP6f in either the PL or mTH (Figure 1F). A gradient 

refractive index (GRIN) lens was implanted above either the PL or mTH (see Figure S1 for 

implant locations), and a head-mounted miniature microscope was used to image activity in 

these populations during behavior (Figures 1F and 1G, n = 278 neurons in PL-NAc from n 

= 7 mice, n = 256 neurons in mTH-NAc from n = 9 mice). Behavior between mice in the 

PL-NAc versus mTH-NAc cohorts was similar (Figure S2).

Actions are preferentially represented by PL-NAc neurons, while reward-predicting stimuli 
are preferentially represented by mTH-NAc neurons

Individual PL-NAc and mTH-NAc neurons displayed elevated activity when time-locked 

to specific behavioral events in the task (Figure 2A). Given the correlation between the 

timing of task events, as well as the temporal proximity of events relative to the time 

course of GCaMP6f, we built a linear encoding model to properly relate neural activity to 

each event (Engelhard et al., 2019; Krumin et al., 2018; Lovett-Barron et al., 2019; Musall 

et al., 2019; Park et al., 2014; Parker et al., 2016; Pinto and Dan, 2015; Sabatini, 2019; 

Steinmetz et al., 2019). In brief, time-lagged versions of each behavioral event (e.g., nose 
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poke, lever press) were used to predict the GCaMP6f fluorescence in each neuron using a 

linear regression. This allowed us to obtain “response kernels,” which related each event 

to the GCaMP6f fluorescence in each neuron, while removing the potentially confounding 

(linear) contributions of correlated task events (Figure 2B; see STAR Methods for details). 

To visualize the response kernels we plotted them as a heatmap, where each row was the 

response kernel for a particular neuron associated with each behavioral event. This heatmap 

was then ordered by the time of peak kernel value across all behavioral events. Visual 

observation revealed a clear difference between the PL-NAc and mTH-NAc populations: 

PL-NAc neurons were robustly modulated by the action events in our task (Figure 2C; 

kernel values associated with “nose poke,” “ipsilateral lever press,” “contralateral lever 

press,” and “reward consumption”) while mTH-NAc neurons appeared to be most strongly 

modulated by the stimulus events, specifically the positive reward auditory cue (Figure 2D, 

kernel values associated with “CS+”).

Examination of the GCaMP6f fluorescence time-locked to each behavioral event (rather 

than the encoding model-derived response kernels) revealed similar observations of action 

encoding in PL-NAc and CS+ encoding in mTH-NAc (Figures 2E and 2F). While this 

time-locked GCaMP6f heatmap displays neurons which appear to respond to multiple 

events (Figure 2E, see neurons approximately 70–170 that show elevated activity to “lever 

press,” “levers out,” and “nose poke”), this impression is likely a result of the temporal 

correlation between neighboring behavioral events, which our encoding model accounts for. 

To illustrate this, we applied our encoding model to a population of simulated neurons 

that responded only to the lever press events. We observed a similar multi-peak heatmap 

when simply time-locking the simulated GCaMP6f fluorescence, but this multi-peak effect 

is eliminated by the use of our encoding model, which recovers the true relationship between 

GCaMP6f fluorescence and behavior in the simulated data (Figure S3).

This encoding model was used to identify neurons in the PL-NAc and mTH-NAc 

populations that were significantly modulated by each event in our task (by comparing 

the encoding model with and without each task event, see STAR Methods). We found that a 

substantial fraction of both PL-NAc and mTH-NAc neurons were modulated by at least one 

task event (Figure 2G). Of these neurons that were selective to at least one task event, the 

selectivity for actions versus sensory stimuli differed between the two populations (Figure 

2H). In particular, more PL-NAc neurons were modulated by at least one action event (nose 

poke, ipsilateral lever press, contralateral lever press, and reward consumption). By contrast, 

a significantly larger fraction of mTH-NAc neurons were modulated by at least one stimulus 

cue (levers out, CS+, and CS−).

PL-NAc neurons preferentially encode choice relative to mTH-NAc neurons

This preferential representation of actions in PL-NAc relative to mTH-NAc suggests that 

lever choice (contralateral versus ipsilateral to the recording site) could also be preferentially 

encoded in PL-NAc. Indeed, a significantly larger fraction of neurons were choice-selective 

in PL-NAc compared with mTH-NAc (Figure 3A; significant choice selectivity was 

determined with a nested comparison of the encoding model with and without choice 
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information, see STAR Methods). A logistic regression population decoder supported this 

observation of preferential choice selectivity in PL-NAc relative to mTH-NAc (Figure 3B).

In contrast to the preferential representation of choice in PL-NAc compared with mTH-

NAc, a larger fraction of neurons in mTH-NAc encoded outcome (CS identity or reward 

consumption) compared with PL-NAc (Figure 3C). However, while outcome decoding 

accuracy in mTH-NAc was slightly higher relative to PL-NAc, this difference was not 

statistically significant (Figure 3D). These results suggest that, unlike the preferential 

choice representation observed in PL-NAc over mTH-NAc, outcome was more similarly 

represented between these two populations. This is presumably due to the fact that both CS+ 

and reward consumption responses contribute to outcome representation, and although more 

neurons encoded CS+ in mTH-NAc, the opposite was true for reward consumption (Figure 

2G). We found no obvious relationship between the strength of either choice or outcome 

decoding and recording location in either PL-NAc or mTH-NAc (Figure S4).

PL-NAc neurons display choice-selective sequences that persist into the next trial

We next examined the temporal organization of choice-selective activity in PL-NAc neurons. 

Across the population, choice-selective PL-NAc neurons displayed sequential activity with 

respect to the lever press that persisted for >4 s after the press (Figures 4A–4C; see 

Figure S5 for sequences without peak normalization). These sequences were visualized 

by time-locking the GCaMP6f fluorescence of choice-selective neurons with respect to the 

lever press, rather than with the encoding model from the earlier figures. The robustness 

of these sequences was confirmed using a cross-validation procedure in which the order 

of peak activity across the PL-NAc choice-selective population was first established using 

half of the trials (Figure 4B, “train”), after which the population heatmap was plotted using 

the same established ordering and activity from the other half of the trials (Figure 4C, 

“test”). To quantify the consistency of these sequences, we correlated the neurons’ time 

of peak activity in the “training” and “test” data and observed a strong correlation (Figure 

4D). Additionally, the ridge-to-background ratio, a metric used to confirm the presence 

of sequences (Akhlaghpour et al., 2016; Harvey et al., 2012; Kondo et al., 2017), was 

significantly higher when calculated using the PL-NAc choice-selective sequences compared 

with sequences generated using shuffled data (Figures S6A–S6C).

In contrast, choice-selective sequential activity in the mTH-NAc population was 

significantly less consistent than in PL-NAc (Figures S7A–S7D). Additionally, while 

the ridge-to-background ratio of the sequences generated using mTH-NAc activity was 

significantly higher than that using shuffled data, this ratio was also significantly lower than 

that obtained from PL-NAc sequences (Figures S6D–S6F). The ridge-to-background ratio 

of both the PL-NAc and mTH-NAc sequences did not significantly change across either a 

block or recording session (Figures S8A–S8D).

A striking feature of these choice-selective sequences in PL-NAc was that they persisted 

for seconds after the choice, potentially providing a neural “bridge” between choice and 

outcome. To further quantify the timescale of choice encoding both within and across trials, 

we used activity from simultaneously imaged neurons at each time point in the trial to 

predict the mouse’s choice (with a decoder based on a logistic regression using random 
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combinations of ten simultaneously imaged neurons to predict choice). Choice on the 

current trial could be decoded above chance for ~7 s after the lever press, spanning the 

entire trial (including the time of reward delivery and consumption) as well as the beginning 

of the next trial (Figure 4E). Choice on the previous or subsequent trial was not represented 

as strongly as current-trial choice (Figure 4E; in all cases we corrected for cross-trial choice 

correlations with a weighted decoder, see STAR Methods) and choice from two trials back 

could not be decoded above chance at any time point (Figure S8E). We also examined the 

temporal extent of choice decoding in the mTH-NAc population (Figure S7E). Similar to 

PL-NAc, we observed that decoding persisted up to the start of the next trial. However, the 

peak decoding accuracy across all time points in the trial was lower in mTH-NAc (60% ± 

0.1%) than in PL-NAc (73% ± 0.2%).

Synaptic plasticity or neural dynamics models incorporating choice-selective sequences 
in PL-NAc neurons can reproduce behavioral and neural recordings

We next used computational modeling to explain how a biologically realistic circuit 

incorporating the observed choice-selective sequences in PL-NAc neurons could solve the 

probabilistic reversal task. We constructed two models of the observed trial-by-trial changes 

in choice probabilities, one based on synaptic plasticity and one based on slow neural 

dynamics. Each model sought to explain two features of our data: first, how choices made 

at an earlier time (around the time of the nose poke, when choice-selective activity appears, 

Figures 4B and 4C) could be reinforced by rewards that occur at a later time, and, second, 

how this reinforcement could persist across multiple trials as suggested by our choice 

regressions (Figure 1E).

Synaptic plasticity model—The synaptic plasticity model mathematically implemented 

a temporal difference (TD) reinforcement learning algorithm by combining the recorded 

choice-selective sequential activity of PL-NAc neurons with the known connectivity of 

downstream structures (Figures 5A and 5B). The goal of TD learning is to learn to predict 

the sum of future rewards, or “value” (Dayan and Niv, 2008; O’Doherty et al., 2003; Sutton 

and Barto, 1998; Tsitsiklis and Van Roy, 1997). When this sum of expected future rewards 

changes, such as when an unexpected reward is received or an unexpected predictor of 

reward is experienced, a TD RPE occurs and adjusts the weights of reward-predicting inputs 

to reduce this error. The error signal in the TD algorithm closely resembles the RPE signal 

observed in ventral tegmental area (VTA) dopamine neurons (Parker et al., 2016; Schultz, 

1998; Schultz et al., 1997), but how this signal is computed remains an open question.

In our model, the PL-NAc sequences (Figure 5C) enabled the calculation of the RPE 

in dopamine neurons which, in turn, reinforced those PL-NAc inputs that lead to better-

than-predicted rewards. In more detail, the model took as inputs experimental, single-

trial recordings of choice-selective, sequentially active PL neurons (Figure 5A, left; see 

STAR Methods). These inputs represented temporal basis functions fi(t) for computing the 

estimated value of making a left or right choice. These basis functions are weighted in 

the NAc by the strength wi of the PL-NAc synaptic connection and summed together to 

create a (sign-inverted) representation of the estimated value, at time t, of making a left 

choice, VL(t), or right choice, VR(t). To create the RPE observed in dopamine neurons 
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requires that the dopamine neuron population receive a fast, positive value signal V(t) 
and a delayed negative value signal V(t–Δ), as well as a direct reward signal r(t) (Figure 

5B). In Figure 5A, the summation of NAc inputs and sign inversion occurs in the ventral 

pallidum (VP) (Kimura et al., 1996; Oorschot, 1996), so that the fast value signal is due 

to direct VP to VTA dopamine input. The delayed negative value signal to the dopamine 

population is due to a slower, disynaptic pathway that converges first upon the VTA γ-

aminobutyric acid (GABA) neurons, so that these neurons encode a value signal as observed 

experimentally (Cohen et al., 2012). The temporal discounting factor γ is implemented 

through different strengths of the two pathways to the VTA dopamine neurons (Figure 

5B). Other mathematically equivalent circuit architectures, including those involving other 

structures such as the lateral habenula (Li et al., 2019), are given in Figure S9. Learning 

is achieved through dopamine-dependent modification of the PL-NAc synaptic strengths. 

We assume that PL-NAc neuronal activity leads to an exponentially decaying synaptic 

“eligibility trace” (Gerstner et al., 2018; Sutton and Barto, 1998). The correlation of this 

presynaptically driven eligibility trace with dopamine input then drives learning (Figure 5B). 

Altogether, this circuit architecture (as well as those shown in Figure S9) realizes a TD 

learning algorithm for generating value representations in the NAc, providing a substrate for 

the selection of proper choice based on previous trial outcomes.

The synaptic plasticity model was able to correctly perform the task and recapitulate the 

mice’s behavior. It achieved a comparable rate of reward (47.2% for the model, 47.6% 

for the mice) and exhibited similar alternation of choice following block reversals (Figures 

5D and 5E; compare with Figures 1B and 1C; choice was based upon a probabilistic 

readout, at the start of the sequence, of the difference between right and left values plus 

a stay-with-previous choice bias [STAR Methods]) and similarly higher stay probability 

following rewarded relative to unrewarded trials (Figure 5F; compare with Figure 1D).

Model neuron responses resembled those previously observed experimentally. The RPE 

signal within a trial showed characteristic positive response to rewarded outcomes and 

negative response to unrewarded outcomes (Figure 5G; compare with Figures S10A and 

S10B) and had similar dependence upon previous trial outcomes (Figure 5G, multiple linear 

regression similar to Bayer and Glimcher, 2005; Parker et al., 2016; Figures S10C and 

S10D). The VTA GABA interneuron had a sustained value signal, due to the converging 

input of the transient, sequential value signals from NAc/VP (Figure S11), replicating the 

sustained value signal in VTA GABA interneurons observed in monosynaptic inputs to VTA 

dopamine neurons (Cohen et al., 2012). Alternatively, the VP neurons shown in Figure 

5A could project to a second set of VP neurons that functionally take the place of the 

VTA GABA interneurons (Figures S9A, S9C, and S9F), leading to sustained positive value 

encoding VP neurons as observed in VTA-projecting VP neurons (Tian et al., 2016).

We next ran the same model using single-trial activity from choice-selective mTH-NAc 

neurons instead of PL-NAc (Figure 5H). In line with the less consistent sequential choice-

selective activity in mTH-NAc relative to PL-NAc (Figures 4 and S7), the correct value after 

a block switch was learned much more slowly within the NAc and VTA GABA neurons 

(Figures S11C and S11D), leading to correspondingly slow changes in choice probability 

(Figures 5I and 5J). As a result, choice probabilities were often out of sync with the current 
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block, leading to overall reward rate near chance levels (38.7% reward rate, chance rate 

of 40%). Stay probabilities were inappropriately high following unrewarded trials (Figure 

5K), reflecting reduced formation of an RPE and thus less negative modulation of dopamine 

signal at the time of expected reward (Figure 5L).

The choice-selective sequences in PL-NAc neurons were critical to model performance, as 

they allowed proper formation of an RPE at the time of reward receipt. This was verified 

by generating a control model that only included early-firing PL-NAc neurons (neurons 

active at the onset of the sequence when the model makes its choice) (Figure 5M). This 

“early-only control” model failed to quickly modulate lever value following block reversals 

(~10 trials to reverse following a block switch rather than ~3 trials for the full PL-NAc data; 

Figures 5N–5P). The inferior performance of this control model (model reward rate: 43.9%) 

reflected two factors. First, the early-only control model was unable to generate a well-timed 

RPE signal due to the absence of significant PL-NAc input activity at the time of reward. 

As a result, on unrewarded trials there was almost no negative reward-predictive dip in 

dopamine activity at the time of reward omission, unlike for the model with the full PL-NAc 

input activity (Figure 5Q). This lack of learning from unrewarded trials is evident in the 

stay probability plot (Figure 5P), which shows less modulation by unrewarded trials when 

controlling (by adjusting the model’s action-selection parameters) for the stay probability 

following rewarded trials. Second, unlike the sequential model, the RPE in the early-only 

control model could not propagate backward across successive trials, so single-trial learning 

(enabled by the eligibility trace) was the only mechanism available to bridge the gap in time 

between the firing of the early-firing decision neurons and an RPE occurring at the time of 

reward.

Neural dynamics model—The synaptic plasticity model described above requires fast, 

dopamine-mediated synaptic plasticity, on the timescale of a trial, to mediate behavior. 

Whether plasticity operates in the NAc on this timescale is unclear. We thus developed an 

alternative model (Figure 6A and STAR Methods) in which the across-trial updating of 

values and corresponding selection of actions is accomplished through the dynamics of a 

recurrent neural network rather than the dynamics of synaptic plasticity (Botvinick et al., 

2019, 2020; Doshi-Velez and Konidaris, 2016; Song et al., 2017; Wang et al., 2018). The 

initial learning of the neural network’s synaptic weights is based on a reinforcement learning 

algorithm, which models slow initial task acquisition, but during task performance synaptic 

weights remain fixed and the dopamine RPE serves only to alter neural dynamics.

Similar to the synaptic plasticity model, single-trial, experimentally recorded PL-NAc 

activity was input to a (now recurrent) neural network that modeled NAc and other 

associated brain regions (the “critic network”) to calculate value. RPE was calculated in the 

dopamine neurons from the value signal using the same circuit architecture as the synaptic 

plasticity model. However, rather than reweighting PL-NAc synapses on the timescale of 

trials, the RPE was input to a second recurrent neural network that modeled dorsomedial 

striatum (DMS) and other associated brain regions (the “actor network;” Atallah et al., 

2007; Lau and Glimcher, 2008; O’Doherty et al., 2004; Richard et al., 2016; Tsutsui 

et al., 2016). This actor network used the RPE input from the previous timestep, the 

action from the previous timestep, and a “temporal context” sequence that may arise from 
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hippocampus or other cortical or subcortical areas (Akhlaghpour et al., 2016; Howard and 

Eichenbaum, 2013; Leon and Shadlen, 2003) to generate a decision variable corresponding 

to the probability of selecting one of three choices (left, right, or nothing) at any time. 

Selection of the left or right choice then triggered the onset of the corresponding PL-NAc 

activity sequence.

The neural dynamics model appropriately modulated choice following a reversal in the 

identity of the high-probability lever (Figure 6B–6D) and generated RPE signals in VTA 

dopamine neurons that resemble previous experimental recordings (Figures 6E and S10). By 

contrast, when we replaced the choice-selective sequences to the NAc by choice-selective 

persistent activity, the model failed to train within the same number of training episodes 

(Figure 6F). This suggests that temporal structure in this input is beneficial for efficient task 

learning.

To reveal how the model appropriately modulates its choices, we analyzed the evolution 

of the actor network’s activity across trials (Figures 6G–6J). We found that the actor 

network’s activity at the time of decision was low-dimensional, with the first three principal 

components explaining ~94% of the variance. Given the symmetry in the block structure, 

the average RPE signal as a function of trial number is similar for the left and right blocks. 

However, the model should make opposite choices for left and right blocks, meaning that 

the actor network needs to respond oppositely to similar RPE inputs. Consistent with this, 

the decision variable for a given RPE was approximately opposite for left versus right 

blocks (Figure 6G). At a block reversal, for example from a left block to a right block, the 

network activity rapidly transitioned from the approximately steady-state representation of 

the left block (cluster of blue-purple points in Figure 6H) to the approximately steady-state 

representation of the right block (cluster of red-yellow points). Furthermore, the model 

learned to align the first principal component of activity along the direction of the network 

readout weights that determine the actor’s choice a(t) (Figure 6I). Thus, the actor learned to 

generate an explicit representation of the decision variable in the first principal component 

of its activity.

To solve the reversal learning task, the network needs to use its past history of choices 

and rewards to accumulate evidence for whether the current block is a left block or a right 

block. Rewarded left-side choices, or unrewarded right-side choices, represent evidence that 

the current block is a left block, while the converse represents evidence for a right block. 

In the synaptic plasticity model (Figure 5), new evidence (not accounted for by previous 

expectations) is accumulated in the PL-NAc synaptic weights as the product of the eligibility 

trace (which, due to the choice selectivity of the PL-NAc activity, represents the current 

choice) and the RPE. To analyze whether the actor network uses a similar accumulation 

of evidence to solve the task, we linearly regressed the first principal component of actor 

activity (PC1, which correlated strongly with the decision variable as described above) 

against the past history of choices and RPEs, which serve as inputs to the network, as well 

as the product of these (“choice × RPE”). PC1 most strongly depended upon the “choice × 

RPE” predictor, with coefficients that decayed on a timescale of approximately three trials, 

suggesting that the actor used a leaky accumulation of evidence over this timescale to solve 

the task (Figure 6J, blue trace). In addition, like the mice and the synaptic plasticity model, 
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the neural dynamics model tended to stay with its previous choices, as evident from the 

positive coefficients for the previous choice regressors in Figure 6J (green trace). Thus, both 

the synaptic plasticity model and the neural dynamics model follow the same principle of 

accumulating evidence across trials to perform fast reversal learning in addition to having a 

tendency to repeat their previous choices.

Stimulation of PL-NAc (but not mTH-NAc) neurons decreases the effect of previous trial 
outcomes on subsequent choice in both the models and the mice

We next generated experimentally testable predictions from our models by examining 

the effect of disruption of the PL-NAc inputs on behavioral performance. To do so, we 

simulated optogenetic-like neural stimulation of this projection by replacing the PL-NAc 

sequential activity in the model with constant, choice-independent activity across 70% of the 

population on a subset of trials (Figure 7A). For both models, this generated a decrease in 

the probability of staying with the previously chosen lever following rewarded trials and an 

increase following unrewarded trials relative to unstimulated trials (Figures 7B and 7D). In 

other words, the effect of previous outcome on choice was reduced when PL-NAc activity 

was disrupted. This effect persists for multiple trials, as revealed by a logistic regression of 

current-trial choice on the history of previous rewarded and unrewarded choices with and 

without stimulation (Figures 7C and 7E; note that the negative coefficients for unrewarded 

trials in the neural dynamics model reflect that, unlike the synaptic plasticity model, this 

model does not include an explicit stay-with-previous choice bias). This reduced effect of 

outcome on choice arises because the stimulation disrupts the calculation of value. In the 

synaptic plasticity model, the stimulation of both left- and right-preferring PL-NAc neurons 

has two effects: first, it disrupts the RPE calculation by the circuit; second, it leads to 

dopamine indiscriminately adjusting the synaptic weights (i.e., value) of both the right and 

left PL-NAc synapses following rewarded or unrewarded outcomes. These weight changes 

then persist for multiple trials, leading to decreased performance in subsequent trials. In the 

neural dynamics model, stimulation reduces behavioral performance on subsequent trials by 

disrupting the RPE signal that is transmitted to the actor, and this effect lasts for multiple 

trials because the actor network temporally accumulates RPE signals across multiple trials 

(Figure 6J). In both models, the choice behavior on the current trial is unaffected because 

choice is determined at the beginning of the trial, before the weights are updated (Figures 7B 

and 7D).

We tested these model predictions experimentally by performing an analogous optogenetic 

manipulation in mice (Figure 7F). In close agreement with our models, mice significantly 

decreased their stay probability following a rewarded trial that was paired with stimulation 

and significantly increased their stay probability following an unrewarded trial paired with 

stimulation (Figure 7G). Similar to the models, the effect of stimulation on the mouse’s 

choice persisted for multiple trials. Mice had a significant decrease in their stay probability 

following PL-NAc stimulation on rewarded choices one and two trials back (Figure 7H). 

Also similar to the model, stimulation on the current trial had no significant effect on choice 

following either rewarded or unrewarded trials (Figure 7G).
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In contrast to PL-NAc stimulation, but consistent with the relatively weak choice encoding 

in mTH-NAc compared with PL-NAc (Figures 3A and 3B) and weak trial-by-trial learning 

in our synaptic plasticity model (Figures 5H–5K), mTH-NAc stimulation (Figure 7I) had 

no significant effect on the mice’s stay probability on the subsequent trial following either 

rewarded or unrewarded stimulation trials (Figure 7J). Similarly, inclusion of mTH-NAc 

stimulation in our choice regression model revealed no significant effect of stimulation on 

rewarded or unrewarded choices (Figure 7K). Additionally, there was no effect on the mice’s 

stay probability for current-trial stimulation (Figure 7J).

For both PL-NAc and mTH-NAc stimulation, we observed an increase in the probability of 

mice abandoning the trials with stimulation compared with those trials without (p = 0.0006 

for PL-NAc and p = 0.032 for mTH-NAc, paired two-tailed t test comparing percentage 

of abandoned trials on stimulated versus non-stimulated trials; 12.2% ± 2.5% and 22.1% 

± 7.9% abandoned for PL-NAc and mTH-NAc stimulated trials, respectively; 0.9% ± 

0.2% and 6.4% ± 3.1% for PL-NAc and mTH-NAc non-stimulated trials, respectively). 

Relatedly, we also found an increase in the latency to initiate a trial following either PL-NAc 

or mTH-NAc stimulation (Figures S12A–S12C). Together, these results suggest that this 

manipulation had some influence on the mouse’s motivation to perform the task. However, 

unlike the stronger effect of PL-NAc versus mTH-NAc stimulation on subsequent choice 

behavior, this trial-abandonment effect was stronger for mTH-NAc than for PL-NAc.

To control for non-specific effects of optogenetic stimulation, we ran a control cohort of 

mice that received identical stimulation but did not express the opsin (Figures S12E and 

S12F). Stimulation had no significant effect on the mice’s choice behavior (Figures S12D, 

S12G, and S12H) or probability of abandoning trials on stimulation versus control trials (p 

= 0.38, paired two-tailed t test comparing percentage of abandoned trials on stimulated with 

non-stimulated trials; 0.4% ± 0.08% for stimulated trials, 0.4% ± 0.01% for non-stimulated 

trials).

DISCUSSION

This work provides both experimental and computational insights into how the NAc and 

associated regions could contribute to reinforcement learning. Experimentally, we found that 

mTH-NAc neurons were preferentially modulated by a reward-predictive cue while PL-NAc 

neurons more strongly encoded actions (e.g., nose poke, lever press). In addition, PL-NAc 

neurons display choice-selective sequential activity which persists for several seconds after 

the lever-press action, beyond the time the mice receive reward feedback. Computationally, 

we demonstrate that the choice-selective and sequential nature of PL-NAc activity can 

contribute to performance of a choice task by implementing a circuit-based version of 

reinforcement learning based on either synaptic plasticity or neural dynamics. Furthermore, 

PL-NAc perturbations affect future but not current choice in both the models and mice, 

consistent with perturbation of the critic, not the actor.

Relationship to previous neural recordings in the NAc and associated regions

To our knowledge, a direct comparison, at cellular resolution, of activity across multiple 

glutamatergic inputs to the NAc has not previously been conducted. The preferential 
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representations of actions relative to sensory stimuli in PL-NAc is somewhat surprising, 

given that previous studies have focused on sensory representations in this projection (Otis et 

al., 2017), and also given that the NAc is heavily implicated in Pavlovian conditioning (Day 

and Carelli, 2007; Day et al., 2006; Di Ciano et al., 2001; Parkinson et al., 1999; Roitman et 

al., 2005; Wan and Peoples, 2006).

On the other hand, there is extensive previous evidence of action correlates in prefrontal 

cortex (Cameron et al., 2019; Genovesio et al., 2006; Luk and Wallis, 2013; Siniscalchi 

et al., 2019; Sul et al., 2010), and NAc is implicated in operant conditioning in addition 

to Pavlovian conditioning (Atallah et al., 2007; Cardinal and Cheung, 2005; Collins et 

al., 2019; Hernandez et al., 2002; Kelley et al., 1997; Kim et al., 2009; Salamone et 

al., 1991). Our finding of sustained choice encoding in PL-NAc neurons is in agreement 

with previous work recording from medial prefrontal cortex neurons during a different 

reinforcement learning task (Maggi and Humphries, 2019; Maggi et al., 2018). Additionally, 

other papers have reported choice-selective sequences in other regions of cortex as well as 

in the hippocampus (Harvey et al., 2012; Pastalkova et al., 2008; Terada et al., 2017). In 

fact, given previous reports of choice-selective (or outcome-selective) sequences in multiple 

brain regions and species (Kawai et al., 2015; Kim et al., 2017; Long et al., 2010;Ölveczky 

et al., 2011; Picardo et al., 2016; Sakata et al., 2008), the relative absence of sequences in 

mTH-NAc neurons may be more surprising than the presence in PL-NAc.

Our observation of prolonged representation of the CS+ in mTH-NAc (Figures 2D and 2F) 

is in line with previous observations of pronounced and prolonged encoding of task-related 

stimuli in the primate thalamus during a Pavlovian conditioning task (Matsumoto et al., 

2001). Together with our data, this suggests that the thalamus is contributing information 

about task-relevant stimuli to the striatum, which could potentially serve to bridge the gap 

between a CS and unconditioned stimulus (US) in a Pavlovian trace conditioning task 

(Campus et al., 2019; Do-Monte et al., 2017; Otis et al., 2019; Zhu et al., 2018).

Implementation of reinforcement learning in models based on synaptic plasticity or neural 
dynamics

We presented two different classes of models that could solve the reversal learning task 

when provided with the choice-selective sequences observed in PL-NAc neurons as inputs. 

In our synaptic plasticity model, we show how these sequences may contribute to a neural 

implementation of TD learning by providing a temporal basis set that bridges the gap in time 

between actions and outcomes and enables the calculation of RPE in dopamine neurons. 

Other forms of neural dynamics, such as constant or slowly decaying persistent activity, 

can also maintain values across a delay period. However, creating a temporally precise RPE 

from such persistent activity is challenging if the persistent activity does not have sharp 

temporal features. Likewise, synaptic eligibility traces are another useful mechanism for 

bridging gaps in time, enabling earlier inputs to be reinforced by an RPE, but they do not 

provide the active input required to create the RPE itself.

A limitation of the synaptic plasticity model for producing the rapid reversals of behavior 

at block switches is that it requires a dopamine-dependent synaptic plasticity mechanism 

that operates on the timescale of trials (Figure 5). Whether dopamine-mediated synaptic 
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plasticity operates on such fast timescales is not clear. Furthermore, model-free TD 

learning cannot take advantage of additional task-structure information such as the reward 

probabilities within a block (Collins and Cockburn, 2020; Doll et al., 2012; but see Figure 

S14 for challenges in identifying this ability within tasks like ours). These observations 

motivated the neural dynamics model in which, following initial slow-timescale learning 

of synaptic weights, the plasticity was turned off and trial-by-trial modulation of behavior 

was mediated by dopamine-dependent neural dynamics instead of synaptic plasticity (Figure 

6; see related work by Botvinick et al., 2019, 2020; Doshi-Velez and Konidaris, 2016; 

Nagabandi et al., 2018; Song et al., 2017; Wang et al., 2018; Sæmundsson et al., 2018; Finn 

et al., 2017; Duan et al., 2016; Rakelly et al., 2019). Because the recurrent “critic” network 

dynamics can be trained to construct a temporally rich representation, the neural dynamics 

model has less need for precise temporal sequences in the PL-NAc inputs. However, we 

found that strictly eliminating the temporal structure of the PL-NAc input while preserving 

the choice selectivity made training of the network less efficient (Figure 6F), suggesting that 

having temporal structure in PL-NAc inputs facilitates the calculation of value.

Previous work in biological TD learning has used sequentially active neurons as the basis 

for learning in the context of sequential behaviors (Fee and Goldberg, 2011; Jin et al., 2009) 

and learning the timing of a CS-US relationship (Aggarwal et al., 2012; Carrillo-Reid et 

al., 2008; Gershman et al., 2014; Ponzi and Wickens, 2010). Likewise, our neural dynamics 

model was inspired by a previous meta-reinforcement learning model that was used to 

solve a reversal learning task (Wang et al., 2018). Here we extend these ideas in multiple 

important ways:

First, we link these theoretical ideas directly to data, by demonstrating that choice-selective 

sequential activity in the NAc is provided primarily by PL-NAc (as opposed to mTH-NAc) 

input neurons and that perturbation of the PL-NAc (but not mTH-NAc) projection disrupts 

action-outcome pairing consistent with model predictions. As such, our models provide a 

mechanistic explanation of a puzzling experimental finding: that optogenetic manipulation 

of PL-NAc neurons affects subsequent choices but not the choice on the stimulation trial 

itself, and that this stimulation creates oppositely directed effects following rewarded versus 

unrewarded trials.

Second, both of our models replicate numerous experimental findings in the circuitry 

downstream of PL-NAc. Each calculates an RPE signal in dopamine neurons (Bayer 

and Glimcher, 2005; Parker et al., 2016), generates conjunctive encoding of actions and 

outcomes (Kim et al., 2009, 2013), and calculates chosen value signals (Lau and Glimcher, 

2008). Additionally, both models generate encoding of value by GABA interneurons (Cohen 

et al., 2012; Tian et al., 2016), which produces the temporally delayed, sign-inverted signals 

required for the calculation of a temporally differenced RPE (Figure 5A; see Aggarwal et 

al., 2012; Carrillo-Reid et al., 2008; Doya, 2002; Hazy et al., 2010; Ito and Doya, 2015; Joel 

et al., 2002; Pan et al., 2005; Suri and Schultz, 1998, 1999). Consistent with our models, 

electrical stimulation of VP generates both immediate inhibition of dopamine neurons and 

delayed excitation (Chen et al., 2019). Conceptually, the proposed temporal differencing by 

the VTA GABA interneuron is attractive in that it could provide a generalizable mechanism 

for calculating RPE: it could extend to any pathway that projects to both the dopamine and 
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GABA neurons in the VTA (Beier et al., 2015) and that also receives a dopaminergic input 

that can modify synaptic weights.

Third, we showed that the fundamental operating principle of both models was similar: 

each temporally accumulates the correlation of previous choices with reward to determine 

the current-trial choice probability. In the synaptic plasticity model, this accumulation is 

done in the PL-NAc synaptic weights (Figure 5B). In the neural dynamics model, the 

accumulation is done in the low-dimensional neural dynamics of the actor network (Figure 

6J). Future experiments that exploit these differences will need to be designed and executed 

to determine whether the brain more closely resembles the synaptic plasticity or neural 

dynamics model.

Limitations of the study

A limitation of this study is that we could not artificially recapitulate sequential firing 

to directly test its role in constructing value representations. Additionally, any artificial 

stimulation can have off-target and unintended consequences. Thus, further work directly 

investigating the causal role of PL-NAc sequences in reinforcement learning is needed. 

Neither of our models account for the influence of glutamatergic inputs to NAc from regions 

other than prelimbic cortex and the medial thalamus. In addition, our neural dynamics 

model used long short-term memory (LSTM) units, which should not be interpreted as 

single neurons but might model computations performed by larger populations. Finally, 

single-photon imaging limits the ability to resolve single z planes during imaging and, thus, 

can make single neuron identification difficult. Future studies confirming our studies with 

other methods may helpful.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Ilana Witten (iwitten@princeton.edu).

Materials availability—This study did not generate unique reagents.

Data and code availability

• Microscopy data reported in this paper will be shared by the lead contact upon 

request. Behavioral and one-photon imaging data used in this paper will be 

shared by the lead contact upon request.

• Original code related to the synaptic plasticity and neural dynamics models 

(Figures 5 and 6) and the event encoding model (Figure 2) has been deposited 

at GitHub and is publicly available as of the date of publication. The URLs are 

listed in the key resources table. All other code used in this study is available 

from the lead contact upon request.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice—46 male C57BL/6J mice from The Jackson Laboratory (strain 000664) were used 

for these experiments. Prior to surgery, mice were group-housed with 3–5 mice/cage. All 

mice were >6 weeks of age prior to surgery and/or behavioral training. To prevent mice 

from damaging the implant of cagemates, all mice used in imaging experiments were 

singly housed post-surgery. All mice were kept on a 12-h on/12-h off light schedule. 

All experiments and surgeries were performed during the light off time. All experimental 

procedures and animal care was performed in accordance with the guidelines set forth by 

the National Institutes of Health and were approved by the Princeton University Institutional 

Animal Care and Use Committee.

METHOD DETAILS

Probabilistic reversal learning task—Beginning three days prior to the first day of 

training, mice were placed on water restriction and given per diem water to maintain >80% 

original body weight throughout training. Mice performed the task in a 21 × 18 cm operant 

behavior box (MED associates, ENV-307W). A shaping protocol of three stages was used to 

enable training and discourage a bias from forming to the right or left lever. In all stages of 

training, the start of a trial was indicated by illumination of a central nose poke port. After 

completing a nose poke, the mouse was presented with both the right and left lever after 

a temporal delay drawn from a random distribution from 0 to 1s in 100ms intervals. The 

probability of reward of these two levers varied based on the stage of training (see below for 

details). After the mouse successfully pressed one of the two levers, both retracted and, after 

a temporal delay drawn from the same uniform distribution, the mice were presented with 

one of two auditory cues for 500ms indicating whether the mouse was rewarded (CS+, 5 

kHz pure tone) or not rewarded (CS−, white noise). Concurrent with the CS + presentation, 

the mouse was presented with 6μL of 10% sucrose reward in a dish located equidistantly 

between the two levers, just interior to the central nose poke. The start time of reward 

consumption was defined as the moment the mouse first made contact with the central 

reward port spout following the delivery of the reward. The end of the reward consumption 

period (i.e., reward exit) was defined as the first moment at which the mouse was disengaged 

from the reward port for >100ms. In all stages of training, trials were separated by a 2s 

intertrial interval, which began either at the end of CS on unrewarded trials or at the end of 

reward consumption on rewarded trials.

In the first stage of training (“100–100 debias”), during a two-hour session, mice could 

make a central nose poke and be presented with both the right and left levers, each with 

a 100% probability of reward. However, to ensure that mice did not form a bias during 

this stage, after five successive presses of either lever the mouse was required to press the 

opposite lever to receive a reward. In this case, a single successful switch to the opposite 

lever returned both levers to a rewarded state. Once a mouse received >100 rewards in a 

single session they were moved to the second stage (“100–0”) where only one of the two 

levers would result in a reward. The identity of the rewarded lever reversed after 10 rewarded 

trials plus a random number of trials drawn from the geometric distribution:
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P (k) = (1 − p)k − 1p (Equation 1)

where P(k) is the probability of a block reversal k trials into a block and p is the success 

probability of a reversal for each trial, which in our case was 0.4. After 3 successive 

days of receiving >100 total rewards, the mice were moved to the final stage of training 

(“70–10”), during which on any given trial pressing one lever had a 70% probability of 

leading to reward (high-probability lever) while pressing the opposite lever had only a 

10% reward probability (low-probability lever). The identity of the higher probability lever 

reversed using the same geometric distribution as the 100–0 training stage. On average, 

there were 23.23 ± 7.93 trials per block and 9.67 ± 3.66 blocks per session (mean +/− 

std. dev.). In this final stage, the mice were required to press either lever within 10s of 

their presentation; otherwise, the trial was considered an ‘abandoned trial’ and the levers 

retracted. All experimental data shown was collected while mice performed this final “70–

10” stage.

Cellular-resolution calcium imaging—To selectively image from neurons which 

project to the NAc, we utilized a combinatorial virus strategy to image cortical and thalamic 

neurons which send projections to the NAc. 16 mice (7 PL-NAc, 9 mTH-NAc) previously 

trained on the probabilistic reversal learning task were unilaterally injected with 500nL 

of a retrogradely transporting virus to express Cre-recombinase (CAV2-cre, IGMM vector 

core, France, injected at ~2.5 × 1012 parts/mL or retroAAV-EF1a-Cre-WPRE-hGHpA, PNI 

vector core, injected at ~6.0 × 1013) in either the right or left NAc core (1.2 mm A/P, 

+/− 1.0 mm M/L, −4.7 D/V) along with 600nL of a virus to express GCaMP6f in a 

Cre-dependent manner (AAV2/5-CAG-Flex -GCaMP6f-WPRE-SV40, UPenn vector core, 

injected at ~1.27 × 1013 parts/mL) in either the mTH (−0.3 & −0.8 A/P, +/− 0.4 M/L, 

−3.7 D/V) or PL (1.5 & 2.0 A/P, +/− 0.4 M/L, −2.5 D/V) of the same hemisphere. 154 of 

278 (55%, n = 5 mice) PL-NAc neurons and 95 out of 256 (37%, n = 5 mice) mTH-NAc 

neurons were labeled using the CAV2-Cre virus, the remainder were labeled using the 

retroAAV-Cre virus. In this same surgery, mice were implanted with a 500 μm diameter 

gradient refractive index (GRIN) lens (GLP-0561, Inscopix) in the same region as the 

GCaMP6f injection – either the PL (1.7 A/P, +/− 0.4 M/L, −2.35 D/V) or mTH (−0.5 A/P, 

+/− 0.3 M/L, −3.6 D/V). 2–3 weeks after this initial surgery, mice were implanted with a 

base plate attached to a miniature, head-mountable, one-photon microscope (nVISTA HD 

v2, Inscopix) above the top of the implanted lens at a distance which focused the field of 

view. All coordinates are relative to bregma using Paxinos and Franklin’s the Mouse Brain 
in Stereotaxic Coordinates, 2nd edition (Paxinos and Franklin, 2004). GRIN lens location 

was imaged using the Nanozoomer S60 Digital Slide Scanner (Hamamatsu) (location of 

implants shown in Figure S1). The subsequent image of the coronal section determined to 

be the center of the lens implant was then aligned to the Allen Brain Atlas (Allen Institute, 

brain-map.org) using the Wholebrain software package (wholebrainsoftware.org; Fürth et 

al., 2018).

Post-surgery, mice with visible calcium transients were then retrained on the task while 

habituating to carrying a dummy microscope attached to the implanted baseplate. After 

the mice acclimated to the dummy microscope, they performed the task while images of 
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the recording field of view were acquired at 10 Hz using the Mosaic acquisition software 

(Inscopix). To synchronize imaging data with behavioral events, pulses from the microscope 

and behavioral acquisition software were recorded using either a data acquisition card 

(USB-201, Measurement computing) or, when LED tracking (see below for details) was 

performed, an RZ5D BioAmp processor from Tucker-Davis Technologies. Acquired videos 

were then pre-processed using the Mosaic software and spatially downsampled by a factor 

of 4. Subsequent down-sampled videos then went through two rounds of motion-correction. 

First, rigid motion in the video was corrected using the translational motion correction 

algorithm based on (Thévenaz et al., 1998) included in the Mosaic software (Inscopix, 

motion correction parameters: translation only, reference image: the mean image, speed/

accuracy balance: 0.1, subtract spatial mean [r = 20 pixels], invert, and apply spatial mean 

[r = 5 pixels]). The video then went through multiple rounds of non-rigid motion correction 

using the NormCore motion correction algorithm (Pnevmatikakis and Giovannucci, 2017) 

NormCore parameters: gSig = 7, gSiz = 17, grid size and grid overlap ranged from 12–

36 and 8–16 pixels, respectively, based on the individual motion of each video. Videos 

underwent multiple (no greater than 3) iterations of NormCore until non-rigid motion was 

no longer visible). Following motion correction, the CNMFe algorithm (Zhou et al., 2018) 

was used to extract the fluorescence traces (referred to as ‘GCaMP6f’ throughout the text) 

as well as an estimated firing rate of each neuron (CNMFe parameters: spatial downsample 

factor = 1, temporal downsample = 1, Gaussian kernel width = 4, maximum neuron diameter 

= 20, tau decay = 1, tau rise = 0.1). Only those neurons with an estimated firing rate of 

four transients/minute or higher were considered ‘task-active’ and included in this paper 

– 278/330 (84%; each mouse contributed 49,57,67,12,6,27,60 neurons, respectively) of 

neurons recorded from PL-NAc passed this threshold while 256/328 (78%; each mouse 

contributed 17,28,20,46,47,40,13,13,32 neurons, respectively) passed in mTH-NAc. Across 

all figures, to normalize the neural activity across different neurons and between mice, we 

Z-scored each GCaMP6f recording trace using the mean and standard deviation calculated 

using the entire recording session.

Optogenetic stimulation of PL-NAc neurons—22 male C57BL/6J mice were 

bilaterally injected in either the PL (n = 14 mice, M–L ± 0.4, A–P 2.0 and D–V −2.5 

mm) or mTH (n = 8 mice, M–L ± 0.3, A–P −0.7 and D–V −3.6 mm) with 600nL AAV2/5-

CaMKIIa-hChR2-EYFP (UPenn vector core, injected 0.6 μL per hemisphere of titer of 9.6 × 

1013 pp per ml). Optical fibers (300 μm core diameter, 0.37 NA) delivering 1–3 mW of 447 

nm laser light (measured at the fiber tip) were implanted bilaterally above the NAc Core at a 

10° angle (M–L ± 1.1, A–P 1.4 and D–V −4.2 mm). An additional cohort of control mice (n 

= 8) were implanted with optical fibers in the NAc without injection of ChR2 and underwent 

the same stimulation protocol outlined below (Figures S12E–12H). Mice were anesthetized 

for implant surgeries with isoflurane (3–4% induction and 1–2% maintenance). Mice were 

given 5 days of recovery after the surgical procedure before behavioral testing.

During behavioral sessions, 5 ms pulses of 1–3 mW, 447 nm blue light was delivered at 20 

Hz on a randomly selected 10% of trials beginning when the mouse entered the central nose 

poke. Light stimulation on unrewarded trials ended 1s after the end of the CS− presentation. 

On rewarded trials, light administration ended either 1s after CS + presentation (‘cohort 
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1’) or at the end of reward consumption, as measured by the mouse not engaging the 

reward port for 100ms (‘cohort 2’). See Figure S13 for a schematic of stimulation times 

as well as the behavior of the two cohorts. Mice alternated between sessions with and 

without stimulation – sessions without stimulation were excluded from analysis. Anatomical 

targeting was confirmed as successful in all mice through histology after the experiment, and 

therefore no mice were excluded from this dataset.

To quantify the effect of laser stimulation on latency times shown in Figures S12A–12D, 

we ran a mixed effects linear model using the fitglme package in MATLAB. In this model, 

the median latency to initiate a trial of a mouse, defined as the time between illumination 

of the central nose poke (i.e., trial start) and the mouse initiating a trial via nose poke, 

was predicted using i) opsin identity (PL-NAc CaMKII-ChR2, mTH-NAc CaMKII-ChR2 

or no-opsin controls), ii) laser stimulation on the current trial, iii) laser stimulation on the 

previous trial, iv) the interaction between opsin identity and laser stimulation on the current 

trial and v) the interaction between opsin and laser stimulation on the previous trial. To 

account for individual variation between mice, a random effect of mouse ID was included.

QUANTIFICATION AND STATISTICAL ANALYSIS

Logistic choice regression—For the logistic choice regressions shown in Figures 1E 

and S2A, we modeled the choice of the mouse on trial i based on lever choice and reward 

outcome information from the previous n trials using the following logistic regression 

model:

log C(i)
1 − C(i) = β0 + ∑

j = 1

n
βj

RR(i − j) + ∑
j = 1

n
βj

UU(i − j) + error (Equation 2)

where C(i) is the probability of choosing the right lever on trial i, and R(i-j) and U(i-j) are 

the choice of the mouse j trials back from the ith trial for either rewarded or unrewarded 

trials, respectively. R(i-j) was defined as +1 when the jth trial back was both rewarded and 

a right press, −1 when the jth trial back was rewarded and a left press and 0 when it was 

unrewarded. Similarly, U(i-j) was defined as +1 when the jth trial back was both unrewarded 

and a right press, −1 when the jth trial back was unrewarded and a left press and 0 when 

it was rewarded. The calculated regression coefficients, βj
R and βj

U, reflect the strength 

of the relationship between the identity of the chosen lever on a previously rewarded or 

unrewarded trial, respectively, and the lever chosen on the current trial.

To examine the effect of optogenetic stimulation from multiple trials back on the mouse’s 

choice (Figure 7C, 7E, 7H, 7K; S12H and S13C and S13D), we expanded our behavioral 

logistic regression model to include the identity of those trials with optical stimulation, as 

well as the interaction between rewarded and unrewarded choice predictors and stimulation:
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log C(i)
1 − C(i) = β0 + ∑

j = 1

n
βj

RR(i − j) + ∑
j = 1

n
βj

UU(i − j) + …

∑
j = 1

n
βj

LRL(i − j)R(i − j) + ∑
j = 1

n
βj

LUL(i − j)U(i − j) + ∑
j = 1

n
βj

LL(i − j)

+ error

(Equation 3)

where L(i) represents optical stimulation on the ith trial (1 for optical stimulation, 0 for 

control trials), βj
L represents the coefficient corresponding to the effect of stimulation 

on choice j trials back, and βj
LR and βj

LU represent the coefficients corresponding to 

the interaction between rewarded choice × optical stimulation and unrewarded choice × 

stimulation, respectively.

To visualize the relative influence of stimulation on the mice’s choices compared with 

unstimulated trials, in Figures 7C, 7E, 7H, 7K, S12H, S13C, and S13D, the solid blue 

trace represents the sum of the rewarded choice coefficients (represented by the black trace) 

and rewarded choice × stimulation coefficients (βj
R + βj

LR). Similarly, the dashed blue trace 

represents the sum of the unrewarded choice coefficients (gray trace) and unrewarded choice 

× stimulation coefficients (βj
U + βj

LU). For all choice regressions, the coefficients for each 

mouse were fit using the glmfit function in MATLAB and error bars represent mean ± SEM 

across mice.

Encoding model to generate response kernels for behavioral events—To 

determine the response of each neuron attributable to each of the events in our task, we used 

a multiple linear encoding model with lasso regularization to generate a response kernel for 

each behavioral event (example kernels shown in Figure 2B). In this model, the dependent 

variable was the GCaMP6f trace of each neuron recorded during a behavioral session and 

the independent variables were the times of each behavioral event (‘nose poke’, ‘levers out’, 

‘ipsilateral lever press’, ‘contralateral lever press’, ‘CS+’, ‘CS−’ and ‘reward consumption) 

convolved with a 25 degrees of freedom spline basis set that spanned −2 to 6s before and 

after the time of action events (‘nose poke’, ‘ipsilateral press’, ‘contralateral press’ and 

‘reward consumption’) and 0 to 8s from stimulus events (‘levers out’, ‘CS+’ and ‘CS−’). To 

generate this kernel, we used the following linear regression with lasso regularization using 

the lasso function in MATLAB:

min
β0, βjk

∑
t = 1

T
F (t) − ∑

k = 1

K
∑
j = 1

Nsp
βjkXjk(t) − β0

2

+ λ ∑
k = 1

K
∑
j = 1

Nsp
βjk (Equation 4)

where F(t) is the Z-scored GCaMP6f fluorescence of a given neuron at time t, T is the 

total time of recording, K is the total number of behavioral events used in the model, 

Nsp is the degrees of freedom for the spline basis set (25 in all cases, splines generated 

using the FDAfuns MATLAB package), βjk is the regression coefficient for the jth spline 

basis function and kth behavioral event, β0 is the intercept term and λ is the lasso penalty 

coefficient. The value of lambda was chosen for each neuron that minimized the mean 
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squared error of the model, as determined by 5-fold cross validation. The predictors in our 

model, Xjk, were generated by convolving the behavioral events with a spline basis set, to 

enable temporally delayed versions of the events to predict neural activity:

Xjk(t) = ∑
i = 1

N = 81
Sj(i)ek(t − i) (Equation 5)

where Sj(i) is the jth spline basis function at time point i with a length of 81 time bins (time 

window of −2 to 6s for action events or 0 to 8s for stimulus events sampled at 10 Hz) and ek 

is a binary vector of length T representing the time of each behavioral event k (1 at each time 

point where a behavioral event was recorded using the MED associates and TDT software, 0 

at all other timepoints).

Using the regression coefficients, βjk, generated from the above model, we then calculated a 

‘response kernel’ for each behavioral event:

kernelk(t) = ∑
j = 1

Nsp
βjkSj(t) (Equation 6)

This kernel represents the (linear) response of a neuron to each behavioral event, while 

accounting for the linear component of the response of this neuron to the other events in the 

task.

Quantification of neural modulation to behavioral events—To identify neurons 

that were significantly modulated by each of the behavioral events in our task (fractions 

shown in Figures 2G and 2H), we used the encoding model described above, but without the 

lasso regularization:

F (t) = β0 + ∑
k = 1

K
∑
j = 1

Nsp
βjkXjk(t) (Equation 7)

As above, F(t) is the Z-scored GCaMP6f fluorescence of a given neuron at time t, K is 

the total number of behavioral events used in the model, Nsp is the degrees of freedom for 

the spline basis set (25 in all cases), βjk is the regression coefficient for the jth spline basis 

function and kth behavioral event and β0 is the intercept term. To determine the relative 

contribution of each behavioral event when predicting the activity of a neuron, we compared 

the full version of this model to a reduced model with the X and β terms associated with 

the behavioral event in question excluded. For each behavioral event, we first generated 

an F-statistic by comparing the fit of a full model containing all event predictors with that 

of a reduced model that lacks the predictors associated with the event in question. We 

then calculated this same statistic on 500 instances of shuffled data, where shuffling was 

performed by circularly shifting the GCaMP6f fluorescence by a random integer. We then 

compared the F-statistic from the real data to the shuffled distribution to determine whether 

the removal of an event as a predictor compromised the model significantly more than 
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expected by chance. If the resulting p-value was less than the significance threshold of p = 

0.01, after accounting for multiple comparison testing of each of the behavioral events by 

Bonferroni correction, then the event was considered significantly encoded by that neuron.

To determine whether a neuron was significantly selective to the choice or outcome of a 

trial (‘choice-selective’ and ‘outcome-selective’, fractions of neurons from each population 

shown in Figures 3A and 3C), we utilized a nested model comparison test similar to that 

used to determine significant modulation of behavioral events above, where the full model 

used the following behavioral events as predictors: ‘nose poke’, ‘levers out’, ‘all lever press’, 

‘ipsilateral lever press’, ‘all CS’, ‘CS+’ and ‘reward consumption’. For choice-selectivity, an 

F-statistic was computed for a reduced model lacking the ‘ipsilateral lever press’ predictors 

and significance was determined by comparing this value with a null distribution generated 

using shuffled data as described above. For outcome-selectivity, the reduced model used 

to test for significance lacked the predictors associated with both the ‘CS+’ and ‘reward 

consumption’ events.

By separating the lever press and outcome-related events into predictors that were either 

blind to the choice or outcome of the trial (‘all lever press’ and ‘all CS’, respectively) 

and those which included choice or outcome information (‘ipsilateral lever press’ or ‘CS+’ 

and ‘reward consumption’, respectively) we were able to determine whether the model was 

significantly impacted by the removal of either choice or outcome information. Therefore, 

neurons with significant encoding of the ‘ipsilateral lever press’ event (using the same 

p-value threshold determined by the shuffled distribution of F-statistics) were considered 

choice-selective, while those with significant encoding of the ‘CS+/reward consumption’ 

events were considered outcome-selective.

Neural decoders

Choice decoder: In Figure 3B, we quantified how well simultaneously imaged populations 

of 1–10 PL-NAc or mTH-NAc neurons could be used to decode choice using a logistic 

regression:

log C(i)
1 − C(i) = β0 + ∑

j = 1

n
βjXj(i) + ε (Equation 8)

where C(i) is the probability the mouse made an ipsilateral choice on trial i, β0 is the offset 

term, n is the number of neurons (between 1 and 10), βj is the regression weight for each 

neuron, Xj(i) is the mean z-scored GCaMP6f fluorescence from −2s to 6s around the lever 

press on trial i and ε is the error term.

Given that the mice’s choices were correlated across neighboring trials, we weighted 

the logistic regression based on the frequency of each trial type combination. This was 

to ensure that choice decoding of a given trial was a reflection of the identity of the 

lever press on the current trial as opposed to that of the previous or future trial. Thus, 

we classified each trial as one of eight ‘press sequence types’ based on the following 

‘previous-current-future’ press sequences: ipsi-ipsi-ipsi, ipsi-ipsi-contra, ipsi-contra-contra, 

ipsi-contra-ipsi, contra-contra-contra, contra-contra-ipsi, contra-ipsi-ipsi, contra-ipsi-contra. 
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We then used this classification to equalize the effects of press-sequence type on our decoder 

by generating weights corresponding to the inverse of the frequency of the press sequence 

type of that trial. These weights were then used as an input to the fitglm function in 

MATLAB, which was used to fit a weighted version of the logistic regression model above 

(Equation 8).

Decoder performance was evaluated with 5-fold cross-validation by calculating the 

proportion of correctly classified held-out trials. Predicted ipsilateral press probabilities 

greater than or equal to 0.5 were decoded as an ipsilateral choice and values less than 

0.5 were decoded as a contralateral choice. This was repeated with 100 combinations of 

randomly selected, simultaneously imaged neurons from each mouse. Reported decoding 

accuracy is the average accuracy across the 100 runs and 5 combinations of train-test data 

for each mouse. Note that only 6/7 mice in the PL-NAc cohort were used in the decoder 

analyses as one mouse had fewer than 10 simultaneously imaged neurons.

Outcome decoder: For the outcome decoder in Figure 3D, we used the same weighted 

logistic regression used for choice decoding, except the dependent variable was the outcome 

of the trial (+1 for a reward, 0 for no reward) and the predictors were the average GCaMP6f 

fluorescence during the intertrial interval (ITI) of each trial. The ITI was defined as the 

time between CS presentation and either 1s before the next trial’s nose poke or 8s after the 

CS, whichever occurred first. This was used in order to avoid including any neural activity 

attributable to the next trial’s nose poke in our analysis.

To correct for outcome correlations between neighboring trials, we performed a similar 

weighting of predictors as performed in the choice decoder above using the following 

eight outcome sequence types: ‘reward-reward- reward’, ‘reward-reward- unreward’, 

‘reward-unreward- unreward’, ‘reward-unreward- reward’, ‘unreward-unreward- unreward’, 

‘unreward-unreward- reward’, ‘unreward-reward- reward’, ‘unreward-reward- unreward.’

Time course choice decoder: To determine how well activity from PL-NAc and mTH-NAc 

neurons was able to predict the mouse’s choice as a function of time throughout the 

trial (Figures 4E, S7E, and S8E), we trained separate logistic regressions on 500ms bins 

throughout the trial, using the GCaMP6f fluorescence of 10 simultaneously imaged neurons.

Because of the variability in task timing imposed by the jitter and variability of the mice’s 

actions, we linearly interpolated the GCaMP6f fluorescence trace of each trial to a uniform 

length, tadjusted, relative to behavioral events in our task. Specifically, for each trial, T, we 

divided time into the following four epochs: (i) 2s before nose poke, (ii) time from the nose 

poke to the lever press, (iii) time from the lever press to the nose poke of the subsequent 

trial, T+1 and (iv) the 3s following the next trial nosepoke. For epochs ii and iii, tadjusted was 

determined by interpolating the GCaMP6f fluorescence trace from each trial to a uniform 

length defined as the median time between the flanking events across all trials. Thus, tadjusted 

within each epoch for each trial, T, was defined as:
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Tadjusted(t) ≡

t,

2 + t − tnp
T

tlpT − tnp
T epii,

tnp
T − 2 ≤ t < tnp

T

tnp
T ≤ t < tlpT

2 + epii + t − tnp
T

tnp
T + 1 − tlpT

epiii,
tlpT ≤ t < tnp

T + 1

tnp
T + 1 ≤ t < tnp

T + 1 + 3
t,

(Equation 9)

where tnpT , and tlpT  are the times of the nose poke and lever press on the current trial, tnpT + 1 is 

the time of the nose poke of the subsequent trial epii, and epiii are the median times across 

trials of epoch ii and iii.

The resulting time-adjusted GCaMP6f traces were divided into 500ms bins. For each bin, 

we fit the weighted logistic regression described above to predict choice on the current, 

previous or future trial from the activity of 10 simultaneously imaged neurons. Predictors 

were weighted based on press sequence type as described above. Decoding accuracy was 

assessed as described above using 100 combinations of 10 randomly selected neurons and 

5-fold cross-validation. To determine if decoding was significantly above chance, which is 

0.5, for each time point we performed a two-tailed, one-sample t test.

Statistics—All t-tests reported in the results and as specified in each figure legend were 

performed using either the ttest or ttest2 function in MATLAB. In all cases, t-tests were 

two-tailed. In cases where multiple comparisons were performed, we applied a Bonferroni 

correction to determine the significance threshold. Two-proportion Z-tests (used to compare 

fractions of significantly modulated/selective neurons, Figures 2H, 3A and 3C) and Fisher’s 

Z (used to compare correlation coefficients, Figures 4D and S7D) were performed using 

Vassarstats.net. Asterisks indicating significance thresholds are referenced in respective 

figure legends.

For all t-tests in this paper, data distributions were assumed to be normal, but this was not 

formally tested. No statistical methods were used to predetermine sample sizes, but our 

sample sizes were similar to those generally employed in the field.

Synaptic plasticity model—To computationally model how the brain could solve the 

reversal learning task using fast dopamine-mediated synaptic plasticity, we generated a 

biological instantiation of the TD algorithm for reinforcement learning (Sutton and Barto, 

1998) by combining the recorded PL-NAc activity with known circuit connectivity in 

the NAc and associated regions (Hunnicutt et al., 2016; Kalivas et al., 1993; Otis et 

al., 2017; Watabe-Uchida et al., 2012). The goal of the model is to solve the “temporal 

credit assignment problem” by learning the value of each choice at the onset of the choice-

selective PL-NAc sequence, when we assume the mouse makes its decision and which is 

well before the time of reward.
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Synaptic plasticity model description

The value function: Our implementation of the TD algorithm seeks to learn an estimate, 

at any given time, of the total discounted sum of expected future rewards, known as the 

value function V(t). To do this, we assume that the value function over time is decomposed 

into a weighted sum of temporal basis functions fi
R(t) and fi

L(t) (Sutton and Barto, 1998) 

corresponding to the right-choice and left-choice preferring neurons:

V R(t) = ∑
i = 1

nR
wiR(t)fi

R(t)

V L(t) = ∑
i = 1

nL
wiL(t)fi

L(t)
(Equation 10)

with the total value being given by the sum over both the left and right neurons as

V (t) = V R(t) + V L(t) (Equation 11)

Here, VR(t) and VL(t) are the components of the value functions encoded by the right- and 

left-preferring neurons respectively, nR and nL are the number of right- and left-preferring 

choice-selective neurons respectively, and wi
R, L are the weights between the ith PL neuron 

and the NAc, which multiply the corresponding basis functions. Thus, each term in VR(t) or 

VL(t) above corresponds to the activity of one of the striatal neurons in the model (Figure 

5A). Note that, in our model, the total value V(t) sums the values associated with the left 

and right actions and is thus not associated with a particular action. At any given time on 

a given trial, the choice-selective activity inherent to the recorded PL-NAc neurons results 

predominantly in activation of the sequence corresponding to the chosen lever compared to 

the unchosen lever (see Figure 5C), so that a single sequence, corresponding to the chosen 

action, gets reinforced.

The reward prediction error (RPE): TD learning updates the value function iteratively 

by computing errors in the predicted value function and using these to update the weights 

wi. The RPE at each moment of time is calculated from the change in the estimated value 

function over a time step of size dt as follows

RPE = δ(t)dt = r(t)dt + e
−dt

τ V (t) − V (t − dt) (Equation 12)

where δ(t) is the reward prediction error per unit time. Here, the first two terms represent 

the estimated value at time t, which equals the sum of the total reward received at time t 
and the (discounted) expectation of rewards, i.e., value at all times into the future. This is 

compared to the previous time step’s estimated value V(t-dt). The coefficient e
−dt

τ  represents 

the temporal discounting of rewards incurred over the time step dt. Here τ denotes the 

timescale of temporal discounting and was chosen to be 0.7s.
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To translate this continuous time representation of RPE signals to our biological circuit 

model, we assume that the RPE δ(t) is carried by dopamine neurons (Montague et al., 1996; 

Schultz et al., 1997). These dopamine neurons receive three inputs corresponding to the 

three terms on the right side of the above equation: a reward signal originating from outside 

the VTA, a discounted estimate of the value function V(t) that, in Figure 5A, represents 

input from the striatum via the ventral pallidum (Chen et al., 2019; Tian et al., 2016) and an 

oppositely signed, delayed copy of the value function V(t-Δ) that converges upon the VTA 

interneurons (Cohen et al., 2012).

Because the analytical formulation of TD learning in continuous time is defined in terms of 

the infinitesimal time step dt, but a realistic circuit implementation needs to be characterized 

by a finite delay time for the disynaptic pathway through the VTA interneurons, we rewrite 

the above equation approximately for small, but finite delay Δ as:

δ(t)dt = r(t)dt + γV (t) − V (t − Δ)
Δ dt (Equation 13)

where we have defined γ = e− Δ
τ  as the discount factor corresponding to one interneuron time 

delay and, in all simulations, we chose a delay time Δ = 0.01s. Note that the discount factor 

is biologically implemented in different strengths of the weights of the VP inputs to the 

GABA interneuron and dopaminergic neuron in the VTA.

The proposed circuit architecture of Figure 5A can be rearranged into several other, 

mathematically equivalent architectures (Figure S9). These architectures are not mutually 

exclusive, so other more complicated architectures could be generated by superpositions of 

these architectures.

The eligibility trace: The RPE at each time step δ(t) was used to update the weights of the 

recently activated synapses, where the “eligibility” Ei(t) of a synapse for updating depends 

upon an exponentially weighted average of its recent past activity (Gerstner et al., 2018; 

Sutton and Barto, 1998):

Ei(t) = ∫
−∞

t

e
s − t

τe fi(s)ds (Equation 14)

which can be rewritten as

dEi(t)
dt = − Ei(t)

τe
+ fi(t) (Equation 15)

or, in the limit dt<<1,

Ei(t) ≈ e− dt
τeEi(t − dt) + fi(t)dt (Equation 16)

where τe defines the time constant of the decay of the eligibility trace, which was chosen to 

be 0.8s consistent with (Gerstner et al., 2018; Yagishita et al., 2014).
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Weight updates: The weight of each PL-NAc synapse, wi, is updated according to the 

product of its eligibility Ei(t) and the RPE rate δ(t) at that time using the following update 

rule (Gerstner et al., 2018; Sutton and Barto, 1998):

dW i(t)
dt = αδ(t)Ei(t)

wi(t) = max 0, wi(t)
(Equation 17)

where α = 0.009(spikes/s)−1 was the learning rate. Note that the units of α derive from 

the units of weight being value(spikes/s)−1. The PL-NAc weights used in the model are 

thresholded to be non-negative so that the weights obey Dale’s principle.

Action selection: In the model, the decision to go left or right is determined by “probing” 

the relative values of the left versus right actions just prior to the start of the choice-

selective sequence. To implement this, we assumed that the choice was readout in a 

noisy, probabilistic manner from the activity of the cluster of neurons that responded at 

the time choice-selectivity robustly appeared, when we assume the decision is made. This 

corresponded to the first 17 neurons in each (left or right) PL population prior to the start of 

the sequential activity. This was accomplished by providing a 50 ms long, noisy probe input 

to each of these PL neurons and reading out the summed activity of the left and the summed 

activity of the right striatal populations. The difference between these summed activities was 

then put through a softmax function (given below) to produce the probabilistic decision.

To describe this decision process quantitatively, we define the probability of making a 

leftward or rightward choice in terms of underlying decision variables dleft and dright 

corresponding to the summed activity of the first 17 striatal neurons in each population:

dleft = Et ∑
i = 1

17
wi

leftni
left(t)

drigℎt = Et ∑
i = 1

17
wi

rigℎtni
rigℎt(t)

(Equation 18)

where Et[ . ] denotes time-averaging over the 50 ms probe period and ni
left(t) and ni

rigℎt(t)

denote the non-negative stochastic probe input, was chosen independently for each neuron 

and each time step from a normal distribution (truncated at zero to enforce non-negativity) 

with mean prior to truncation equal to 0.05s−1 (5% of peak activity) and a standard deviation 

of 0.0025/ dts−1. Note that the weights wi
left/rigℎt used here correspond to the weights from 

the end of the previous trial, which we assume are the same as the weights at the beginning 

of the next trial. The probability of choosing the left or the right lever for a given trial n 
is modeled as a softmax function of these decision variables plus a “stay with the previous 

choice” term that models the tendency of mice in our study to return to the previously 

chosen lever irrespective of reward (Figure 1D), given by the softmax distribution
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Prob(left) = exp βvaluedleft + βstayIleft
exp βvalue dleft + βstayIleft + exp βvaluedrigℎt + βstayIrigℎt

Prob(rigℎt)
= exp βvaluedrigℎt + βstayIrigℎt

exp βvalue dleft + βstayIleft + exp βvaluedrigℎt + βstayIrigℎt

(Equation 19)

where Ileft/right is 1 if that action (i.e., left or right) was chosen on the previous and 0 

otherwise, and βvalue = 7000 and βstay = 0:15 are free parameters that define the width of the 

softmax distribution and the relative weighting of the value-driven versus stay contributions 

to the choice.

Synaptic plasticity model implementation

Block structure for the model: Block reversals were determined using the same criteria 

as in the probabilistic reversal learning task performed by the mice – the identity of the 

rewarded lever reversed after 10 rewarded trials plus a random number of trials drawn 

from the geometric distribution given by Equation 1. The model used p = 0.4 as in the 

reversal learning experiments. Given the variation in performance across the models that 

use PL-NAc, mTH-NAc or early-only activity as input (see Figure 5), the average block 

length for each model varied as well (because block reversals depended upon the number 

of rewarded trials). The average block length for the single-trial PL-NAc model, single-trial 

mTH-NAc model and early-only control were 23.0 ± 7.6, 28.1 ± 8.8 and 25.1 ± 6.3 trials 

(mean +/− std. dev.), respectively. The PL-NAc model produced a similar block length as 

that of behaving mice (23.2 ± 7.9 trials, mean +/− std. dev.). Because a block reversal in our 

task is dependent on the mice receiving a set number of rewards, the choices just prior to a 

block reversal are more likely to align with the identity of the block and result in reward (see 

Figure 5E, 5J, and 5O). Thus, the increase in choice probability observed on trials close to 

the block reversal is an artifact of this reversal rule and not reflective of the model learning 

choice values.

PL-NAc inputs to the neural circuit model: To generate the temporal basis functions 

fi(t) (example activity shown in Figure 5C), we used the choice-selective sequential activity 

recorded from the PL-NAc neurons shown in Figures 4B and 4C. Spiking activity was 

inferred from calcium fluorescence using the CNMFe algorithm (Zhou et al., 2018) and 

choice-selectivity was determined using the nested comparison model used to generate 

Figure 3A (see “Quantification of neural modulation to behavioral events” above for details). 

Model firing rates were generated by Z-scoring the inferred spiking activity of each choice-

selective PL-NAc neuron. The resulting model firing rates were interpolated using the 

interp function from Python’s numpy package to match the time step, dt = 0.01s, and 

smoothed using a Gaussian kernel with zero mean and a standard deviation of 0.2s using the 

Gaussian_filter1d function from the ndimage module in Python’s SciPy package.

To generate a large population of model input neurons on each trial, we created a population 

of 368 choice-selective “pseudoneurons” on each trial. This was done as follows: for 

each simulated trial, we created 4 copies (pseudoneurons) of each of the 92 recorded 

choice-selective PL-NAc neurons using that neuron’s inferred spiking activity from 4 
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different randomly selected trials. The pool of experimentally recorded trials from which 

pseudoneuron activities were chosen was balanced to have equal numbers of stay and switch 

trials. This was done because the choices of the mice were strongly positively correlated 

from trial to trial (i.e., had more stay than switch trials), which (if left uncorrected) 

potentially could lead to biases in model performance if activity late in a trial was reflective 

of choice on the next, rather than the present trial. To avoid choice bias in the model, we 

combined the activity of left- and right-choice-preferring recorded neurons when creating 

the pool of pseudoneurons. We then randomly selected 184 left-choice-preferring and 

184 right-choice-preferring model neurons from this pool of pseudoneurons. An identical 

procedure, using the 92 most choice-selective mTH-NAc neurons, was followed to create the 

model mTH-NAc neurons. The identity of these 92 neurons was determined by ranking each 

neuron’s choice-selectivity using the p value calculated to determine choice-selectivity (see 

“Quantification of neural modulation to behavioral events” above for details).

To generate the early-only control activity (example activity shown in Figure 5M), similar 

to the PL-NAc activity, we created a population of 368 pseudoneurons on each trial that 

were divided into 184 left-choice-preferring and 184 right-choice-preferring pseudoneurons. 

However, in this case, we only used the early-firing neurons (neurons active at the onset 

of the sequence) of the PL-NAc population to create the pseudoneurons. Thus, for this 

control simulation, all neurons contribute to the decision as they are all active at the onset 

of the sequence when the model makes its choice. More specifically, to create a pool of 

pseudoneurons, we created multiple copies of each of the first 17 neurons of the left-choice-

preferring and right-choice-preferring PL-NAc population, where each copy corresponds to 

the activity of the neuron on a different randomly selected trial. We then randomly selected 

184 left-choice-preferring and 184 right-choice-preferring model neurons from this pool of 

pseudoneurons. We used a smaller learning rate α = 0:003 (spikes/s)−1 in this case in order 

to prevent the PL-NAc synaptic weights from exhibiting unstable growth. We also adjust 

βvalue = 1000 in order to match the stay probability following rewarded trials to that of the 

model with recorded PL-NAc input (Figure 5P).

To mimic the PL-NAc activity during the optogenetic stimulation of PL-NAc neurons 

(Figures 7B and 7C), we set fi
R, L(t) equal to 0.2 for a randomly selected 70% of PL 

neurons, at all times t, from the time of the simulated nosepoke to 2s after the reward 

presentation. These ‘stimulation trials’ occurred on a random 10% of trials. 70% of PL 

neurons were activated to mimic the incomplete penetrance of ChR2 viral expression.

Reward input to the neural circuit model.: The reward input r(t) to the dopamine neurons 

was modeled by a truncated Gaussian temporal profile centered at the time of the peak 

reward:

r(t) = R(i) 1
2πσr2

e− t − μr 2

2σr2 (Equation 20)

where R(i) is 1 if trial i was rewarded and 0 otherwise, μr is the time of peak reward and σr 

defines the width of the Gaussian (0.3s in all cases, width chosen to approximate distribution 

Parker et al. Page 29

Cell Rep. Author manuscript; available in PMC 2022 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of dopamine activity in response to reward stimuli observed in previous studies such as 

Matsumoto and Hikosaka, 2009 and Schultz et al., 1997). For each trial, a value of μr was 

randomly drawn from a uniform distribution spanning 0.2–1.2s from the time of the lever 

press. This distribution was chosen to reflect the 1s jitter between lever press and reward 

used in our behavioral task (see Methods above) as well as the observed delay between 

reward presentation and peak dopamine release in a variety of studies (Cohen et al., 2012; 

Matsumoto and Hikosaka, 2009; Parker et al., 2016; Saunders et al., 2018). To ensure that no 

residual reward response occurred before the time of the lever press, r(t) was set to 0 for any 

time t that was 0.2s before the time of the peak reward, μr.

Initial weights: The performance of the model does not depend on the choice of the initial 

weights as the model learns the correct weights by the end of the first block irrespective of 

the chosen initial weights. We chose the initial weights to be zero.

Weight and eligibility update implementation: We assumed that the weight and eligibility 

trace updates start at the time of the simulated nose poke. The nose poke time, relative to 

the time of the lever press, varies due to a variable delay between the nose poke and the 

lever presentation as well as variation in time between lever presentation and lever press. 

To account for this, the weight and eligibility trace updates are initiated at time t = tstart, 

where tstart was drawn from a Gaussian distribution with a mean at −2.5s, and a variance 

of 0.2s, which was approximately both the time of the nose poke and the time at which 

choice-selective sequences initiated in the experimental recordings. The eligibility trace is 

reset to zero at the beginning of each trial. We stopped updating the weights at the end of the 

trial, defined as 3s after the time of lever press. The eligibility traces were updated according 

to Equation 16. The weights were updated by integrating Equation 17 with a first-order 

forward Euler routine. In all simulations, we used a simulation time step dt = 0.01s.

Neural dynamics model—To computationally model how the brain could solve the 

reversal learning task without fast dopamine-mediated synaptic plasticity, we used an actor-

critic network based on the meta-RL framework introduced by Wang et al. (2018). The 

model actor and critic networks are recurrent neural networks of Long Short-Term Memory 

(LSTM) units whose weights are learned slowly during the training phase of the task. The 

weights are then frozen during the testing phase so that fast reversal learning occurs only 

through the activation dynamics of the recurrent actor-critic network. Like the synaptic 

plasticity model, we input recorded PL-NAc activity to a value-generating “critic” network 

(conceived of as NAc, VP, and associated cortical regions) to generate appropriate reward 

prediction error signals in dopamine neurons. Unlike the synaptic plasticity model, the 

reward prediction error signals in this model are sent to an explicit actor network (conceived 

of as DMS and associated cortical regions), where they act as an input to help generate 

appropriate action signals based on reward history.

Neural dynamics model description

LSTM: The model comprises two separate fully connected, gated recurrent neural networks 

of LSTM units, one each for the actor and critic network. An LSTM unit works by keeping 

track of a “long-term memory” state (“memory state” c(t), also known as cell state) and a 
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“short-term memory” state (“output state” h(t), also known as hidden state) at all times. To 

regulate the information to be kept or discarded in the memory and output states, LSTMs use 

three types of gates: the input gate i(t) regulates what information is input to the network, 

the forget gate φ(t) regulates what information to forget from the previous memory state, and 

the output gate o(t) (not to be confused with the output state h(t) regulates the output of the 

network. More precisely, the dynamics of an LSTM is defined by the following equations:

φ(t) = σ W φx(t) + Uφh(t − Δt) + bφ
i(t) = σ W ix(t) + Uih(t − Δt) + bi
o(t) = σ W ox(t) + Uoh(t − Δt) + bo
c(t) = φ(t) ⊙ c(t − Δt) + i(t) ⊙ tanh W cx(t) + Uch(t − Δt) + bc
h(t) = o(t) ⊙ tanh(c(t))

(Equation 21)

where x(t) is the vector of external inputs to the LSTM network at time step t, Wq and Uq are 

the weight matrices of the input and recurrent connections, respectively, where the subscript 

q denotes the state or gate being updated, bq are the bias vectors, ⊙ denotes element-wise 

multiplication and σ denotes the softmax function.

Critic network: As in the synaptic plasticity model, the goal of the critic is to learn the 

value (discounted sum of future rewards) of a given choice at any time in a trial. The learned 

value signal can then be used to generate the RPE signals that are sent to the actor. The critic 

is modeled as a network of LSTM units that linearly project through trainable weights to a 

value readout neuron that represents the estimated value V(t) at time step t. The critic takes 

as input the reward received r(t) and the experimentally recorded PL-NAc choice-selective 

sequential input fi(t). The PL-NAc input provides the critic with a representation of the 

chosen side on the current trial as well as the time during the trial. This allows the critic to 

output an appropriately timed value signal (and consequently an appropriately timed RPE 

signal) corresponding to the chosen side. The reward input acts as a feedback signal to the 

critic that provides information about the correctness of the chosen action.

To map the critic to a biological neural circuit, we hypothesize that NAc, together with VP 

and associated cortical areas, form the critic recurrent neural network (Figure 6A; Atallah et 

al., 2007; Lau and Glimcher, 2008; O’Doherty et al., 2004; Richard et al., 2016; Tsutsui et 

al., 2016). The choice-selective sequential input fi(t) to the critic is provided by the recorded 

choice-selective sequential activity in PL-NAc neurons (Figure 6A).

The reward prediction error (RPE): As in the synaptic plasticity model (Figure 5A), the 

RPE δ(t) is computed in the VTA DA neurons based on the value signal from the critic 

network (Figure 6A).

δ(t) = r(t) + γV (t) − V (t − Δt) (Equation 22)

Unlike the synaptic plasticity model, the RPE signal is conveyed by the VTA dopamine 

neurons to the actor network. Note that the delay of the negative value signal equals one 

time step Δt = 0.1s in this model, rather than the smaller delay Δ = 0.01s for the synaptic 
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plasticity model. This is because the neural dynamics model used a larger time step for 

simulations due to limitations in computational power.

Actor network: In contrast to the synaptic plasticity model, in which actions were directly 

readout from the activity of the value neurons early in the trial, we consider an explicit 

actor network that generates actions. The actor is modeled as a network of LSTM units 

that compute the policy, i.e., the probability of choosing an action a(t) at time step t 
given the current state of the network. The policy is represented by three policy readout 

neurons, corresponding to choosing left, right or ‘do nothing’, whose activities are given 

by a (trainable) linear readout of the activities of the actor LSTM units. The actor receives 

three inputs: (i) an efference copy of the action taken at the previous time step a(t–Δt), (ii) a 

‘temporal context’ input x(t), encoded as a vector of all 0s except for a value of 1 in the entry 

corresponding to the current time point t, that provides the actor with a representation of the 

time within the trial, and (iii) the reward prediction error at the current time step δ(t).

To map the actor to a biological neural circuit, we hypothesize that the DMS and associated 

cortical areas form the actor recurrent neural network (Figure 6A; Atallah et al., 2007; 

O’Doherty et al., 2004; Seo et al., 2012; Tai et al., 2012). The temporal sequence input ξ(t) 
to the actor is assumed to originate in the hippocampus or other cortical areas (Figure 6A; 

Hahnloser et al., 2002; Howard and Eichenbaum, 2013; Kozhevnikov and Fee, 2007; Zhou 

et al., 2020).

Training algorithm: To train the recurrent weights of the network, which are then held 

fixed during task performance, we implement the Advantage Actor-Critic algorithm (Mnih 

et al., 2016) on a slightly modified version of the reversal learning task (see “Block structure 

for training” section below). In brief, the weights of the neural network are updated via 

gradient descent and backpropagation through time. The loss function for the critic network, 

ℒcritic, defines the error in the estimated value function. The synaptic weight parameters θv 

of the critic network are updated through gradient descent on the critic loss function ℒcritic:

Δθv = − α∇ℒcritic

∇ℒcritic = − βvδt st; θv
∂V
∂θv

(Equation 23)

where α is the learning rate, st is the state at time step t, V denotes the value function and βv 

is the scaling factor of the critic loss term. δt(st;θv) is the k-step return temporal difference 

error (not to be confused with the RPE input to the actor defined in Equation 22) defined as 

follows:

δt st; θv = Rt − V st; θv

where Rt is the discounted k-step bootstrapped return at time t

Rt = ∑
i = 0

k − 1
rt + i ∏

j = 0

i
γt + j + V st + k; θv ∏

j = 0

k
γt + j
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where rt is the reward received at time step t, γt is the discount factor at time step t (defined 

below), and k is the number of time steps until the end of an episode.

The loss function for the actor network, ℒactor, is given by a weighted sum of two terms: 

a policy gradient loss term, which enables the actor network to learn a policy π(at|st) 

that approximately maximizes the estimated sum of future rewards V(st), and an entropy 

regularization term that maximizes the entropy of the policy π to encourage the actor 

network to explore by avoiding premature convergence to suboptimal policies. The gradient 

of the actor loss function ℒactor with respect to the synaptic weight parameters of the actor 

network, θ, is given by.

Δθ = − α∇ℒactor

∇ℒactor = − ∂logπ at ∣ st; θ
∂θ δt st; θv − βe

∂H st; θ
∂θ

(Equation 24)

where at is the action at time step t, π is the policy, βe is the scaling factor of the entropy 

regularization term and H(st;θ) is the entropy of the policy π

H st; θ = − ∑
a ∈ A

π a ∣ st; θ log π a ∣ st; θ

where A denotes the space of all possible actions.

Neural dynamics model implementation

LSTM: Both the actor and critic LSTM networks consisted of 128 units each and were 

implemented using TensorFlow’s Keras API. The weight matrices Uq were initialized using 

Keras’s ‘glorot_uniform’ initializer, the weight matrices Wq were initialized using Keras’s 

‘orthogonal’ initializer and the biases bq were initialized to 0. The output and memory states 

for both LSTM networks were initialized to zero at the beginning of each training or testing 

episode.

PL-NAc inputs to the critic: Input to the critic was identical to the smoothed, single-trial 

input used for the synaptic plasticity model described above, except i) activity was not 

interpolated because each time step in this model was equivalent to the sampling rate of the 

collected data (10 Hz), and ii) we chose to input only the activity from 2s before to 2s after 

the lever press (as compared to 3s after the lever press for the synaptic plasticity model) 

in order to reduce the computational complexity of the training process. To reduce episode 

length, and therefore training time, we also excluded those neurons whose peak activity 

occurred more than 2s after the lever press, reducing the final number of ‘pseudoneurons’ 

used as input to 306 (compared with 368 for the synaptic plasticity model).

Optogenetic-like stimulation of the PL-NAc population (Figures 7D and 7E) was performed 

in a similar manner to the synaptic plasticity model, with activity set to 0.15 for a randomly 

selected 70% of neurons for the duration of the trial.
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Trial structure: Each trial was 4s long starting at 2s before lever press and ending at 2s 

after lever press. At any given time, the model has three different choices: choose left, 

choose right or do nothing. Similar to the synaptic plasticity model, the model makes its 

decision to choose left or right at the start of a trial, which then leads to the start of the 

corresponding choice-selective sequential activity. However, unlike the synaptic plasticity 

model, the model can also choose ‘do nothing’ at the first time step, in which case an 

activity pattern of all zeros is input to the critic for the rest of the trial. For all other time 

steps, the correct response for the model is to ‘do nothing’. Choosing ‘do nothing’ on 

the first time step or choosing something other than ‘do nothing’ on the subsequent time 

steps results in a reward r(t) of −1 at that time. If a left or right choice is made on the 

first time step, then the current trial is rewarded based on the reward probabilities of the 

current block (Figure 1A) and the reward input r(t) to the critic is modeled by a truncated 

Gaussian temporal profile centered at the time of the peak reward (Equation 20) with the 

same parameters as in the synaptic plasticity model.

Block structure for training: We used a slightly modified version of the reversal learning 

task performed by the mice in which the block reversal probabilities were altered in order 

to make the block reversals unpredictable. This was done to discourage the model from 

learning the expected times of block reversals based on the number of rewarded trials in a 

block and to instead mimic the results of our behavioral regressions (Figure 1E) suggesting 

that the mice use only the previous ~4 trials to make a choice. To make the block reversals 

unpredictable, the identity of the high-probability lever reversed after a random number of 

trials drawn from a geometric distribution (Equation 1) with p = 0.9.

Training: Each training episode was chosen to be 15 trials long and the model was trained 

for 62,000 episodes. For this model, we used a time step Δt = 0.1s. The values of the training 

hyperparameters were as follows: the scaling factor of the critic loss term βv = 0.05, the 

scaling factor of the entropy regularization term βe = 0.05, the learning rate α = 0.01s−1(α 
= 0.001 per time step), and the timescale of temporal discounting within a trial τ = 2.5s, 

leading to a discount factor γ = e− Δt
τ = 0.96 for all times except for the last time step of a 

trial when the discount factor was 0 to denote the end of a trial. The network’s weights and 

biases were trained using the RMSprop gradient descent optimization algorithm (Hinton et 

al., 2012) and backpropagation through time, which involved unrolling the LSTM network 

over an episode (630 time steps).

Block structure for testing: Block reversal probabilities for the testing phase were the 

same as in the probabilistic reversal learning task performed by the mice. The average block 

length for the PL-NAc neural dynamics model was 19.3 ± 5.0 trials (mean+/−std. dev.).

Testing: The model’s performance (Figures 6B–6J) was evaluated in a testing phase during 

which all network weights were held fixed so that reversal learning was accomplished solely 

through the neural dynamics of the LSTM networks. The network weights used in the 

testing phase were the weights learned at the end of the training phase. A testing episode 

was chosen to be 1500 trials long and the model was run for 120 episodes.
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Actor network analysis: For Figures 6G–6J, we tested the model’s performance on a 

slightly modified version of the reversal learning task in which, after training, block 

lengths were fixed at 30 trials. This facilitated the calculation and interpretation of the 

block-averaged activity on a given trial of a block. Dimensionality reduction of the actor 

network activity (Figure 6H) was performed using the PCA function from the decomposition 

module in Python’s scikit-learn package.

Replacing sequential input to the critic with persistent input: In Figure 6F, we analyzed 

how model performance changed when the temporal structure provided by the choice-

selective sequential inputs to the critic were replaced during training by persistent choice-

selective input. The persistent choice-selective input was generated by setting the activity of 

all the left-choice selective neurons to 1 and all the right-choice selective neurons to 0 for all 

time points on left-choice trials and vice versa on right-choice trials.

Cross-trial analysis of RPE in dopamine neurons—To generate the regression 

coefficients in Figures 5G, 5L, 5Q, 6E, S10C, and S10D, we performed a linear regression 

analysis adapted from (Bayer and Glimcher, 2005), which uses the mouse’s reward outcome 

history from the current and previous 5 trials to predict the average dopamine response to 

reward feedback on a given trial, i:

D(i) = β0 + ∑
j = 0

5
βjR(i − j) + error (Equation 25)

where D(i) is the average dopamine activity from 0.2 to 1.2s following breward feedback on 

trial i, R(i − j) is the reward outcome j trials back from trial i (1 if j trials back is rewarded 

and 0 if unrewarded) and βj are the calculated regression coefficients that represent the effect 

of reward outcome j trials back on the strength of the average dopamine activity, D(i). For 

the regression coefficients generated from recorded dopamine activity (Figures S10C and 

S10D) we used the Z-scored GCaMP6f fluorescence from VTA-NAc terminal recordings 

of 11 mice performing the same probabilistic reversal learning task described in this paper 

(for details see Parker et al., 2016). The regression coefficients for the experimental data 

as well as the synaptic plasticity and neural dynamics model simulations were fit using the 

LinearRegression function from the linear_model module in Python’s scikit-learn package.

Simulation of model-free versus model-based task performance

Overview: In order to identify possible RPE signatures that distinguish ideal observer 

(“model-based”) versus Q-learning (“model-free”) behavior in this task (Figure S14), we 

simulated choices using the two models. Based on the dopaminergic signature of block 

reversal inference reported in (Bromberg-Martin et al., 2010), we first confirmed that 

our ideal observer and Q-learning models gave rise to distinct dopamine signatures when 

performing the task used in (Bromberg-Martin et al., 2010). In that task, reward probabilities 

were 100% and 0% for the “high probability” and “low probability” choices, respectively, 

and the reward probabilities reversed with a 5% probability on each trial. Next, we applied 

the same framework to our task, to determine if we could observe similar distinctions 

between the models. In this case, the reward probabilities were 70% and 10%, as in the task 
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studied in this paper, and blocks reversed with a 5% probability on each trial, which resulted 

in block lengths comparable to those observed in our experiments.

Ideal observer model: The ideal observer model was provided with knowledge of the 

reward probabilities associated with each block and the probability of block reversal on each 

trial. The 5% block reversal probability on each trial can be written in terms of the block 

state transition probabilities as

T ij = P s(t) = sj ∣ s(t − 1) = si = 0.95 0.05
0.05 0.95 (Equation 26)

where Tij is defined as the transition probability between block state si on trial t and block 

state sj on trial t+1. Here, ‘block state’ refers to whether the current block has a higher 

probability of left or right choices being rewarded. The reward probabilities for each block 

were as follows

Rik = P r(t) = 1 ∣ s(t) = si, c(t) = ck =

=

1.0 0.0
0.0 1.0 , Bromberg − Martin Task

0.7 0.1
0.1 0.7 , Our Task

(Equation 27)

where Rik is defined as the probability of reward for block state si and choice ck.

On each trial, the ideal observer model selects the choice with the highest expectation of 

reward based on its belief about the current block state given the choice and reward history. 

The expectation of reward ρl(t+1) for choice l on trial t + 1, given the entire reward history 

r(1:t) and choice history c(1:t) up until trial t is given by

ρl(t + 1) = ∑
i = 1

2
RilP s(t + 1) = si ∣ r(1: t), c(1: t)

= ∑
i = 1

2
∑
j = 1

2
RilP s(t + 1) = si ∣ s(t) = sj P s(t) = sj ∣ r(1: t), c(1: t)

= ∑
i = 1

2
∑
j = 1

2
RilTjiP s(t) = sj ∣ r(1: t), c(1: t)

(Equation 28)

where l can be either 1 (left choice) or 2 (right choice) and P s(t) = sj|r(1 : t); c : (1 : t)) is 

the probability of being block state sj on trial t given the entire reward and choice history up 

to and including trial t. Equation 28 tells us that estimating the block state probability P s(t) 
= sj|r(1 : t); c : (1 : t)) will provide us with an estimate of the expected reward for a given 

choice on trial t+1 as Ril and Tji are already known. Using Bayes’ theorem, we can estimate 

the block state probability as

P s(t) = sj ∣ r(1: t), c(1: t)

= P r(t) ∣ r(1: t − 1), c(1: t), s(t) = sj P s(t) = sj ∣ r(1: t − 1), c(1: t)
∑k = 1

2 P r(t) ∣ r(1: t − 1), c(1: t), s(t) = sk P s(t) = sk ∣ r(1: t − 1), c(1: t)
(Equation 29)
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The first term in the numerator of the right-hand side of Equation 29, P(r(t)(1 : t − 1),c(1 : 

t),s(t) = sj), is the probability of receiving reward r(t)(1 if rewarded and 0 if unrewarded) on 

trial t given the current choice c(t) = ck, the block state sj, and the reward r(1:t-1) and the 

choice history c(1:t-1) up to trial t-1. Because the past history of rewards and choices does 

not affect the reward probability once the block state is known, this can be rewritten as

P r(t) ∣ r(1: t − 1), c(1: t), s(t) = sj = P r(t) ∣ c(t) = ck, s(t) = sj
= Rjk

r(t) 1 − Rjk
1 − r(t) (Equation 30)

The second term in the numerator of the right-hand side of Equation 29, P(s(t) = sj|r(1 : t − 

1),c(1 : t)) is the probability that the current block state is sj given the reward choice history. 

This can be rewritten as

P s(t) = sj ∣ r(1: t − 1), c(1: t)
= P s(t) = sj ∣ r(1: t − 1), c(1: t − 1)

= ∑
m = 1

2
P s(t) = sj ∣ s(t − 1) = sm P s(t − 1) = sm ∣ r(1: t − 1), c(1: t − 1)

= ∑
m = 1

2
TmjP s(t − 1) = sm ∣ r(1: t − 1), c(1: t − 1)

(Equation 31)

In the second line above, the dependence on c(t) has been removed because the choice on 

the current trial, in the absence of reward information on the current trial, does not provide 

any additional information about the current state beyond that provided by the past reward 

and choice history. Combining Equations 29–31, the block state probability on the current 

trial t can be written in terms of the known reward probabilities, known state transition 

probabilities and the previous block state probability as

P s(t) = sj ∣ r(1: t), c(1: t)

=
∑m = 1

2 Rjk
r(t) 1 − Rjk

1 − r(t)TmjP s(t − 1) = sm ∣ r(1: t − 1), c(1: t − 1)
∑l = 1

2 ∑m = 1
2 Rlk

(t) 1 − Rlk
1 − r(t)TmlP s(t − 1) = sm ∣ r(1: t − 1), c(1: t − 1)

(Equation 32)

The above equation allows us to estimate the current trial block state probability P(s(t) = 

sj|r(1 : t), c(1 : t)) recursively, since it can be expressed in terms of the previous trial block 

state probability P(s(t − 1) = sm|r(1 : t − 1)), c(1 : t − 1)) and other known constant terms. 

This combined with the known reward and block transition probabilities allows the model to 

select the optimal choice according to Equation 28.

Q-learning model: To simulate trial-by-trial, model-free performance of the tasks, we used 

a Q-learning model in which the value of the chosen action is updated on each trial as 

follows:
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Qrigℎt(t + 1) =
Qrigℎt(t) + α r(t) − Qrigℎt(t) , if c(t) = rigℎt
Qrigℎt(t), if c(t) = left

Qleft(t + 1) =
Qleft(t), if c(t) = rigℎt
Qleft(t) + α r(t) − Qleft(t) , if c(t) = left

(Equation 33)

where Qright is the value for the right choice and Qleft is the value for the left choice. t is the 

current trial and α is the learning rate, which was set to 0.612 per trial. r(t) is the outcome 

of trial t (1 for reward, 0 for no reward). Q-values for each choice were initialized to 0. The 

outcome r(t) was determined based on the reward probability for choice c(t) given the block. 

Choice was simulated using a softmax equation such that the probability of choosing right or 

left is given by,

p(c(t) = rigℎt) = exp βvalueQrigℎt(t) + βstayIrigℎt(t)
exp βvalueQrigℎt(t) + βstayIrigℎt(t) + exp βvalueQleft(t) + βstayIleft(t)

p(c(t) = left)
= exp βvalueQleft(t) + βstayIleft(t)

exp βvalueQrigℎt(t) + βstayIrigℎt(t) + exp βvalueQleft(t) + βstayIleft(t)

(Equation 34)

Where βvalue is the inverse temperature parameter, which was set to 0.99. βstay is a 

parameter accounting for how likely mice were to repeat their previous choice, which was 

set to 0.95. Ileft/right is 1 if that action (i.e., left or right) was chosen on the previous trial 

and 0 otherwise. Parameters for the Q-learning model were fit in (Lee et al., 2019) to the 

behavior of mice in which dopamine neuron activity was recorded in Parker et al. (2016).

Comparison of RPE at block reversals: RPE for both the ideal-observer model and the 

Q-learning model (Figure S14) was defined as the difference between the experienced 

reward r(t) and the expected reward for the chosen action (ρchosen(t) for the ideal-observer 

model or Qchosen(t) for the Q-learning model) as follows:

RPEIdeal Observer = r(t) − ρcℎosen(t)
RPEQ − learning = r(t) − Qchosen(t) (Equation 35)

To identify RPE signatures of model free versus model based performance of the two tasks, 

we compared the RPE from the ideal-observer model and the Q-learning model on trials 

around block reversals. Specifically, we compared the RPE from the two models on the first 

trial of a block with the RPE on the second trial of a block when the choice on trial 1 was 

different from the choice on trial 2. This means that any changes in RPE from trial 1 to trial 

2 were inferred because the new action-outcome relationship for the choice made on trial 2 

had not been explicitly experienced in the new block.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Parker et al. Page 38

Cell Rep. Author manuscript; available in PMC 2022 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ACKNOWLEDGMENTS

This work was supported by grants from NIH R01 DA047869 (I.B.W.), U19 NS104648 (M.S.G., I.B.W.), F32 
MH112320 (J.C.), ARO W911NF1710554 (I.B.W.), Brain Research Foundation (I.B.W.), Simons Collaboration on 
Global Brain (M.S.G., I.B.W.), and the New York Stem Cell Foundation (I.B.W.). I.B.W. is an NYSCF—Robertson 
Investigator.

REFERENCES

Aggarwal M, Hyland BI, and Wickens JR (2012). Neural control of dopamine neurotransmission: 
implications for reinforcement learning. Eur. J. Neurosci 35, 1115–1123. [PubMed: 22487041] 

Akhlaghpour H, Wiskerke J, Choi JY, Taliaferro JP, Au J, and Witten IB (2016). Dissociated sequential 
activity and stimulus encoding in the dorsomedial striatum during spatial working memory. Elife 5, 
e19507. [PubMed: 27636864] 

Apicella P, Ljungberg T, Scarnati E, and Schultz W (1991). Responses to reward in monkey dorsal and 
ventral striatum. Exp. Brain Res 85, 491–500. [PubMed: 1915708] 

Asaad WF, Lauro PM, Perge JA, and Eskandar EN (2017). Prefrontal neurons encode a solution to the 
credit-assignment problem. J. Neurosci 37, 6995–7007. [PubMed: 28634307] 

Atallah HE, Lopez-Paniagua D, Rudy JW, and O’Reilly RC (2007). Separate neural substrates for skill 
learning and performance in the ventral and dorsal striatum. Nat. Neurosci 10, 126–131. [PubMed: 
17187065] 

Bayer HM, and Glimcher PW (2005). Midbrain dopamine neurons encode a quantitative reward 
prediction error signal. Neuron 47, 129–141. [PubMed: 15996553] 

Beier KT, Steinberg EE, DeLoach KE, Xie S, Miyamichi K, Schwarz L, Gao XJ, Kremer EJ, Malenka 
RC, and Luo L (2015). Circuit architecture of VTA dopamine neurons revealed by systematic 
input-output mapping. Cell 162, 622–634. [PubMed: 26232228] 

Botvinick M, Ritter S, Wang JX, Kurth-Nelson Z, Blundell C, and Hassabis D (2019). Reinforcement 
learning, fast and slow. Trends Cogn. Sci 23, 408–422. [PubMed: 31003893] 

Botvinick M, Wang JX, Dabney W, Miller KJ, and Kurth-Nelson Z (2020). Deep reinforcement 
learning and its neuroscientific implications. Neuron 107, 603–616. [PubMed: 32663439] 

Brog JS, Salyapongse A, Deutch AY, and Zahm DS (1993). The patterns of afferent innervation of the 
core and shell in the “accumbens” part of the rat ventral striatum: immunohistochemical detection 
of retrogradely transported fluoro-gold. J. Comp. Neurol 338, 255–278. [PubMed: 8308171] 

Bromberg-Martin ES, Matsumoto M, Hong S, and Hikosaka O (2010). A pallidus-habenula-dopamine 
pathway signals inferred stimulus values. J. Neurophysiol 104, 1068–1076. [PubMed: 20538770] 

Cador M, Robbins TW, and Everitt BJ (1989). Involvement of the amygdala in stimulus-reward 
associations: interaction with the ventral striatum. Neuroscience 30, 77–86. [PubMed: 2664556] 

Cameron CM, Murugan M, Choi JY, Engel EA, and Witten IB (2019). Increased cocaine motivation 
is associated with degraded spatial and temporal representations in IL-NAc neurons. Neuron 103, 
80–91.e7. [PubMed: 31101395] 

Campus P, Covelo IR, Kim Y, Parsegian A, Kuhn BN, Lopez SA, Neumaier JF, Ferguson SM, Solberg 
Woods LC, Sarter M, et al. (2019). The paraventricular thalamus is a critical mediator of top-down 
control of cue-motivated behavior in rats. Elife 8, e49041. [PubMed: 31502538] 

Cardinal RN, and Cheung THC (2005). Nucleus accumbens core lesions retard instrumental learning 
and performance with delayed reinforcement in the rat. BMC. Neurosci 6, 9. [PubMed: 15691387] 

Carelli RM, King VC, Hampson RE, and Deadwyler SA (1993). Firing patterns of nucleus accumbens 
neurons during cocaine self-administration in rats. Brain. Res 626, 14–22. [PubMed: 8281424] 

Carrillo-Reid L, Tecuapetla F, Tapia D, Hernández-Cruz A, Galarraga E, Drucker-Colin R, and Bargas 
J (2008). Encoding network states by striatal cell assemblies. J. Neurophysiol 99, 1435–1450. 
[PubMed: 18184883] 

Chen R, Puzerey PA, Roeser AC, Riccelli TE, Podury A, Maher K, Farhang AR, and Goldberg 
JH (2019). Songbird ventral pallidum sends diverse performance error signals to dopaminergic 
midbrain. Neuron 103, 266–276.e4. [PubMed: 31153647] 

Parker et al. Page 39

Cell Rep. Author manuscript; available in PMC 2022 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Cohen JY, Haesler S, Vong L, Lowell BB, and Uchida N (2012). Neuron-type-specific signals for 
reward and punishment in the ventral tegmental area. Nature 482, 85–88. [PubMed: 22258508] 

Collins AGE, and Cockburn J (2020). Beyond dichotomies in reinforcement learning. Nat. Rev. 
Neurosci 21, 576–586. [PubMed: 32873936] 

Collins AL, Aitken TJ, Huang I-W, Shieh C, Greenfield VY, Monbouquette HG, Ostlund SB, and 
Wassum KM (2019). Nucleus accumbens cholinergic interneurons oppose cue-motivated behavior. 
Biol. Psychiatry 86, 388–396. [PubMed: 30955842] 

Cox J, and Witten IB (2019). Striatal circuits for reward learning and decision-making. Nat. Rev. 
Neurosci 20, 482–494. [PubMed: 31171839] 

Day JJ, and Carelli RM (2007). The nucleus accumbens and Pavlovian reward learning. Neuroscientist 
13, 148–159. [PubMed: 17404375] 

Day JJ, Wheeler RA, Roitman MF, and Carelli RM (2006). Nucleus accumbens neurons encode 
Pavlovian approach behaviors: evidence from an autoshaping paradigm. Eur. J. Neurosci 23, 
1341–1351. [PubMed: 16553795] 

Dayan P, and Niv Y (2008). Reinforcement learning: the good, the bad and the ugly. Curr. Opin. 
Neurobiol 18, 185–196. [PubMed: 18708140] 

Di Ciano P, Cardinal RN, Cowell RA, Little SJ, and Everitt BJ (2001). Differential involvement 
of NMDA, AMPA/kainate, and dopamine receptors in the nucleus accumbens core in the 
acquisition and performance of pavlovian approach behavior. J. Neurosci 21, 9471–9477. 
[PubMed: 11717381] 

Doll BB, Simon DA, and Daw ND (2012). The ubiquity of model-based reinforcement learning. Curr. 
Opin. Neurobiol 22, 1075–1081. [PubMed: 22959354] 

Do-Monte FH, Minier-Toribio A, Quiñones-Laracuente K, Medina-Colón EM, and Quirk GJ (2017). 
Thalamic regulation of sucrose seeking during unexpected reward omission. Neuron 94, 388–
400.e4. [PubMed: 28426970] 

Doshi-Velez F, and Konidaris G (2016). Hidden parameter markov decision processes: a 
semiparametric regression approach for discovering latent task parametrizations. IJCAI 2016, 
1432–1440. [PubMed: 28603402] 

Doya K (2002). Metalearning and neuromodulation. Neural. Netw 15, 495–506. [PubMed: 12371507] 

Duan Y, Schulman J, Chen X, Bartlett PL, Sutskeve I, and Abbeel P (2016). RL^2: Fast 
reinforcement learning via slow reinforcement learning. Preprint at arXiv, 1611.02779. 10.48550/
arXiv.1611.02779.

Engelhard B, Finkelstein J, Cox J, Fleming W, Jang HJ, Ornelas S, Koay SA, Thiberge SY, Daw 
ND, Tank DW, et al. (2019). Specialized coding of sensory, motor and cognitive variables in VTA 
dopamine neurons. Nature 570, 509–513. [PubMed: 31142844] 

Everitt BJ, Morris KA, O’Brien A, and Robbins TW (1991). The basolateral amygdala-ventral 
striatal system and conditioned place preference: further evidence of limbic-striatal interactions 
underlying reward-related processes. Neuroscience 42, 1–18. [PubMed: 1830641] 

Fee MS, and Goldberg JH (2011). A hypothesis for basal ganglia-dependent reinforcement learning in 
the songbird. Neuroscience 198, 152–170. [PubMed: 22015923] 

Finn C, Abbeel P, and Levine S (2017). RL^2: model-agnostic meta-learning for fast adaptation of 
deep networks. Preprint at arXiv, 1703.03400. 10.48550/arXiv.1703.03400.

Fisher SD, Robertson PB, Black MJ, Redgrave P, Sagar MA, Abraham WC, and Reynolds JNJ (2017). 
Reinforcement determines the timing dependence of corticostriatal synaptic plasticity in vivo. Nat. 
Commun 8, 334. [PubMed: 28839128] 

Fürth D, Vaissière T, Tzortzi O, Xuan Y, Märtin A, Lazaridis I, Spigolon G, Fisone G, Tomer R, 
Deisseroth K, et al. (2018). An interactive framework for whole-brain maps at cellular resolution. 
Nat. Neurosci 21, 139–149. [PubMed: 29203898] 

Genovesio A, Brasted PJ, and Wise SP (2006). Representation of future and previous spatial goals by 
separate neural populations in prefrontal cortex. J. Neurosci 26, 7305–7316. [PubMed: 16822988] 

Gerfen CR, and Surmeier DJ (2011). Modulation of striatal projection systems by dopamine. Annu. 
Rev. Neurosci 34, 441–466. [PubMed: 21469956] 

Gersch TM, Foley NC, Eisenberg I, and Gottlieb J (2014). Neural correlates of temporal credit 
assignment in the parietal lobe. PLoS One 9, e88725. [PubMed: 24523935] 

Parker et al. Page 40

Cell Rep. Author manuscript; available in PMC 2022 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Gershman SJ, Moustafa AA, and Ludvig EA (2014). Time representation in reinforcement learning 
models of the basal ganglia. Front. Comput. Neurosci 7, 194. [PubMed: 24409138] 

Gerstner W, Lehmann M, Liakoni V, Corneil D, and Brea J (2018). Eligibility traces and plasticity 
on behavioral time scales: experimental support of NeoHebbian three-factor learning rules. Front. 
Neural Circuits 12, 53. [PubMed: 30108488] 

Groenewegen HJ, Becker NE, and Lohman AH (1980). Subcortical afferents of the nucleus 
accumbens septi in the cat, studied with retrograde axonal transport of horseradish peroxidase 
and bisbenzimid. Neuroscience 5, 1903–1916. [PubMed: 6159559] 

Hahnloser RHR, Kozhevnikov AA, and Fee MS (2002). An ultra-sparse code underliesthe generation 
of neural sequences in a songbird. Nature 419, 65–70. [PubMed: 12214232] 

Harvey CD, Coen P, and Tank DW (2012). Choice-specific sequences in parietal cortex during a 
virtual-navigation decision task. Nature 484, 62–68. [PubMed: 22419153] 

Hazy TE, Frank MJ, and O’Reilly RC (2010). Neural mechanisms of acquired phasic dopamine 
responses in learning. Neurosci. Biobehav. Rev 34, 701–720. [PubMed: 19944716] 

Hernandez PJ, Sadeghian K, and Kelley AE (2002). Early consolidation of instrumental learning 
requires protein synthesis in the nucleus accumbens. Nat. Neurosci 5, 1327–1331. [PubMed: 
12426572] 

Hinton G, Srivastava N, and Swersky K (2012). Neural networks for machine learning lecture 
6A overview of mini-batch gradient descent. https://www.cs.toronto.edu/tijmen/csc321/slides/
lecture_slides_lec6.pdf.

Howard MW, and Eichenbaum H (2013). The hippocampus, time, and memory across scales. J. Exp. 
Psychol. Gen 142, 1211–1230. [PubMed: 23915126] 

Hunnicutt BJ, Jongbloets BC, Birdsong WT, Gertz KJ, Zhong H, and Mao T (2016). A comprehensive 
excitatory input map of the striatum reveals novel functional organization. Elife 5, e19103. 
[PubMed: 27892854] 

Ito M, and Doya K (2015). Parallel representation of value-based and finite state-based strategies in the 
ventral and dorsal striatum. PLoS Comput. Biol 11, e1004540. [PubMed: 26529522] 

Jin DZ, Fujii N, and Graybiel AM (2009). Neural representation of time in cortico-basal ganglia 
circuits. Proc. Natl. Acad. Sci. U S A 106, 19156–19161. [PubMed: 19850874] 

Joel D, Niv Y, and Ruppin E (2002). Actor–critic models of the basal ganglia: new anatomical and 
computational perspectives. Neural Netw. 15, 535–547. [PubMed: 12371510] 

Kalivas PW, Churchill L, and Klitenick MA (1993). GABA and enkephalin projection from the 
nucleus accumbens and ventral pallidum to the ventral tegmental area. Neuroscience 57, 1047–
1060. [PubMed: 7508582] 

Kawai T, Yamada H, Sato N, Takada M, and Matsumoto M (2015). Roles of the lateral habenula and 
anterior cingulate cortex in negative outcome monitoring and behavioral adjustment in nonhuman 
primates. Neuron 88, 792–804. [PubMed: 26481035] 

Kelley AE, Smith-Roe SL, and Holahan MR (1997). Response-reinforcement learning is dependent on 
N-methyl-D-aspartate receptor activation in the nucleus accumbens core. Proc. Natl. Acad. Sci. U 
S A 94, 12174–12179. [PubMed: 9342382] 

Kim H, Sul JH, Huh N, Lee D, and Jung MW (2009). Role of striatum in updating values of chosen 
actions. J. Neurosci 29, 14701–14712. [PubMed: 19940165] 

Kim H, Lee D, and Jung MW (2013). Signals for previous goal choice persist in the dorsomedial, but 
not dorsolateral striatum of rats. J. Neurosci 33, 52–63. [PubMed: 23283321] 

Kim CK, Ye L, Jennings JH, Pichamoorthy N, Tang DD, Yoo A-CW, Ramakrishnan C, and Deisseroth 
K (2017). Molecular and circuit-dynamical identification of top-down neural mechanisms for 
restraint of reward seeking. Cell 170, 1013–1027.e14. [PubMed: 28823561] 

Kimura M, Kato M, Shimazaki H, Watanabe K, and Matsumoto N (1996). Neural information 
transferred from the putamen to the globus pallidus during learned movement in the monkey. 
J. Neurophysiol 76, 3771–3786. [PubMed: 8985875] 

Kondo M, Kobayashi K, Ohkura M, Nakai J, and Matsuzaki M (2017). Two-photon calcium imaging 
of the medial prefrontal cortex and hippocampus without cortical invasion. Elife 6, e26839. 
[PubMed: 28945191] 

Parker et al. Page 41

Cell Rep. Author manuscript; available in PMC 2022 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.cs.toronto.edu/tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/tijmen/csc321/slides/lecture_slides_lec6.pdf


Kozhevnikov AA, and Fee MS (2007). Singing-related activity of identified HVC neurons in the zebra 
finch. J. Neurophysiol 97, 4271–4283. [PubMed: 17182906] 

Krumin M, Lee JJ, Harris KD, and Carandini M (2018). Decision and navigation in mouse parietal 
cortex. Elife 7, e42583. [PubMed: 30468146] 

Lau B, and Glimcher PW (2008). Value representations in the primate striatum during matching 
behavior. Neuron 58, 451–463. [PubMed: 18466754] 

Lee RS, Mattar MG, Parker NF, Witten IB, and Daw ND (2019). Reward prediction error does not 
explain movement selectivity in DMS-projecting dopamine neurons. Elife 8, e42992. [PubMed: 
30946008] 

Leon MI, and Shadlen MN (2003). Representation of time by neurons in the posterior parietal cortex 
of the macaque. Neuron 38, 317–327. [PubMed: 12718864] 

Li H, Vento PJ, Parrilla-Carrero J, Pullmann D, Chao YS, Eid M, and Jhou TC (2019). Three 
rostromedial tegmental afferents drive triply dissociable aspects of punishment learning and 
aversive valence encoding. Neuron 104, 987–999.e4. [PubMed: 31627985] 

Long MA, Jin DZ, and Fee MS (2010). Support for a synaptic chain model of neuronal sequence 
generation. Nature 468, 394–399. [PubMed: 20972420] 

Lovett-Barron M, Chen R, Bradbury S, Andalman AS, Wagle M, Guo S, and Deisseroth K (2019). 
Multiple overlapping hypothalamus-brainstem circuits drive rapid threat avoidance. Preprint at 
bioRxiv. 10.1101/745075.

Luk C-H, and Wallis JD (2013). Choice coding in frontal cortex during stimulus-guided or action-
guided decision-making. J. Neurosci 33, 1864–1871. [PubMed: 23365226] 

Maggi S, and Humphries MD (2019). Independent population coding of the present and the past in 
prefrontal cortex during learning. Preprint at bioRxiv. 10.1101/668962.

Maggi S, Peyrache A, and Humphries MD (2018). An ensemble code in medial prefrontal cortex links 
prior events to outcomes during learning. Nat. Commun 9, 2204. [PubMed: 29880806] 

Matsumoto M, and Hikosaka O (2009). Two types of dopamine neuron distinctly convey positive and 
negative motivational signals. Nature 459, 837–841. [PubMed: 19448610] 

Matsumoto N, Minamimoto T, Graybiel AM, and Kimura M (2001). Neurons in the thalamic CM-pf 
complex supply striatal neurons with information about behaviorally significant sensory events. J. 
Neurophysiol 85, 960–976. [PubMed: 11160526] 

Mnih V, Badia AP, Mirza M, Graves A, Lillicrap T, Harley T, Silver D, and Kavukcuoglu K (2016). 
Asynchronous methods for deep reinforcement learning. International conference on machine 
learning, 1928–1937.

Montague PR, Dayan P, and Sejnowski TJ (1996). A framework for mesencephalic dopamine systems 
based on predictive Hebbian learning. J. Neurosci 16, 1936–1947. [PubMed: 8774460] 

Musall S, Kaufman MT, Juavinett AL, Gluf S, and Churchland AK (2019). Single-trial neural 
dynamics are dominated by richly varied movements. Nat. Neurosci 22, 1677–1686. [PubMed: 
31551604] 

Nagabandi A, Kahn G, Fearing RS, and Levine S (2018). Neural network dynamics for model-based 
deep reinforcement learning with model-free fine-tuning. In 2018 IEEE International Conference 
on Robotics and Automation (ICRA).

O’Doherty J, Dayan P, Schultz J, Deichmann R, Friston K, and Dolan RJ (2004). Dissociable roles 
of ventral and dorsal striatum in instrumental conditioning. Science 304, 452–454. [PubMed: 
15087550] 

O’Doherty JP, Dayan P, Friston K, Critchley H, and Dolan RJ (2003). Temporal difference models and 
reward-related learning in the human brain. Neuron 38, 329–337. [PubMed: 12718865] 

Ölveczky BP, Otchy TM, Goldberg JH, Aronov D, and Fee MS (2011). Changes in the neural 
control of a complex motor sequence during learning. J. Neurophysiol 106, 386–397. [PubMed: 
21543758] 

Oorschot DE (1996). Total number of neurons in the neostriatal, pallidal, sub-thalamic, and substantia 
nigral nuclei of the rat basal ganglia: a stereological study using the cavalieri and optical disector 
methods. J. Comp. Neurol 366, 580–599. [PubMed: 8833111] 

Parker et al. Page 42

Cell Rep. Author manuscript; available in PMC 2022 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Otis JM, Namboodiri VMK, Matan AM, Voets ES, Mohorn EP, Kosyk O, McHenry JA, Robinson 
JE, Resendez SL, Rossi MA, et al. (2017). Prefrontal cortex output circuits guide reward seeking 
through divergent cue encoding. Nature 543, 103–107. [PubMed: 28225752] 

Otis JM, Zhu M, Namboodiri VMK, Cook CA, Kosyk O, Matan AM, Ying R, Hashikawa Y, 
Hashikawa K, Trujillo-Pisanty I, et al. (2019). Paraventricular thalamus projection neurons 
integrate cortical and hypothalamic signals for cue-reward processing. Neuron 103, 277–290.e6. 
[PubMed: 31151774] 

Pan W-X, Schmidt R, Wickens JR, and Hyland BI (2005). Dopamine cells respond to predicted events 
during classical conditioning: evidence for eligibility traces in the reward-learning network. J. 
Neurosci 25, 6235–6242. [PubMed: 15987953] 

Park IM, Meister MLR, Huk AC, and Pillow JW (2014). Encoding and decoding in parietal cortex 
during sensorimotor decision-making. Nat. Neurosci 17, 1395–1403. [PubMed: 25174005] 

Parker NF, Cameron CM, Taliaferro JP, Lee J, Choi JY, Davidson TJ, Daw ND, and Witten IB (2016). 
Reward and choice encoding in terminals of midbrain dopamine neurons depends on striatal target. 
Nat. Neurosci 19, 845–854. [PubMed: 27110917] 

Parkinson JA, Olmstead MC, Burns LH, Robbins TW, and Everitt BJ (1999). Dissociation in effects of 
lesions of the nucleus accumbens core and shell on appetitive pavlovian approach behavior and the 
potentiation of conditioned reinforcement and locomotor activity by D-amphetamine. J. Neurosci 
19, 2401–2411. [PubMed: 10066290] 

Pastalkova E, Itskov V, Amarasingham A, and Buzsáki G (2008). Internally generated cell assembly 
sequences in the rat hippocampus. Science 321, 1322–1327. [PubMed: 18772431] 

Paxinos G, and Franklin KBJ (2004). The Mouse Brain in Stereotaxic Coordinates (Gulf Professional 
Publishing).

Phillips GD, Le Noury J, Wolterink G, Donselaar-Wolterink I, Robbins TW, and Everitt BJ 
(1993). Cholecystokinin-dopamine interactions within the nucleus accumbens in the control over 
behaviour by conditioned reinforcement. Behav. Brain. Res 55, 223–231. [PubMed: 8357529] 

Phillips GD, Robbins TW, and Everitt BJ (1994). Mesoaccumbens dopamine-opiate interactions in the 
control over behaviour by a conditioned reinforcer. Psychopharmacology 114, 345–359. [PubMed: 
7838928] 

Phillipson OT, and Griffiths AC (1985). The topographic order of inputs to nucleus accumbens in the 
rat. Neuroscience 16, 275–296. [PubMed: 4080159] 

Picardo MA, Merel J, Katlowitz KA, Vallentin D, Okobi DE, Benezra SE, Clary RC, Pnevmatikakis 
EA, Paninski L, and Long MA (2016). Population-level representation of a temporal sequence 
underlying song production in the zebra finch. Neuron 90, 866–876. [PubMed: 27196976] 

Pinto L, and Dan Y (2015). Cell-type-specific activity in prefrontal cortex during goal-directed 
behavior. Neuron 87, 437–450. [PubMed: 26143660] 

Pnevmatikakis EA, and Giovannucci A (2017). NoRMCorre: an online algorithm for piecewise 
rigid motion correction of calcium imaging data. J. Neurosci. Methods 291, 83–94. [PubMed: 
28782629] 

Ponzi A, and Wickens J (2010). Sequentially switching cell assemblies in random inhibitory networks 
of spiking neurons in the striatum. J. Neurosci 30, 5894–5911. [PubMed: 20427650] 

Poulin J-F, Caronia G, Hofer C, Cui Q, Helm B, Ramakrishnan C, Chan CS, Dombeck DA, 
Deisseroth K, and Awatramani R (2018). Mapping projections of molecularly defined dopamine 
neuron subtypes using intersectional genetic approaches. Nat. Neurosci 21, 1260–1271. [PubMed: 
30104732] 

Rakelly K, Zhou A, Quillen D, Finn D, and Levine D (2019). Efficient off-policy meta-reinforcement 
learning via probabilistic context variables. Preprint at arXiv. 10.48550/arXiv.1903.08254.

Reed SJ, Lafferty CK, Mendoza JA, Yang AK, Davidson TJ, Grosenick L, Deisseroth K, and Britt 
JP (2018). Coordinated reductions in excitatory input to the nucleus accumbens underlie food 
consumption. Neuron 99, 1260–1273.e4. [PubMed: 30146308] 

Reynolds JNJ, and Wickens JR (2002). Dopamine-dependent plasticity of corticostriatal synapses. 
Neural Netw. 15, 507–521. [PubMed: 12371508] 

Parker et al. Page 43

Cell Rep. Author manuscript; available in PMC 2022 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Richard JM, Ambroggi F, Janak PH, and Fields HL (2016). Ventral pallidum neurons encode 
incentive value and promote cue-elicited instrumental actions. Neuron 90, 1165–1173. [PubMed: 
27238868] 

Robbins TW, Cador M, Taylor JR, and Everitt BJ (1989). Limbic-striatal interactions in reward-related 
processes. Neurosci. Biobehav. Rev 13, 155–162. [PubMed: 2682402] 

Roitman MF, Wheeler RA, and Carelli RM (2005). Nucleus accumbens neurons are innately tuned 
for rewarding and aversive taste stimuli, encode their predictors, and are linked to motor output. 
Neuron 45, 587–597. [PubMed: 15721244] 

Russo SJ, Dietz DM, Dumitriu D, Morrison JH, Malenka RC, and Nestler EJ (2010). The addicted 
synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends 
Neurosci. 33, 267–276. [PubMed: 20207024] 

Sabatini BL (2019). The impact of reporter kinetics on the interpretation of data gathered with 
fluorescent reporters. Preprint at bioRxiv. 10.1101/834895.

Sæmundsson S, Hofmann K, and Deisenroth MP (2018). Meta reinforcement learning with latent 
variable Gaussian processes. Preprint at arXiv, 1803. 07551 10.48550/arXiv.1803.07551.

Sakata JT, Hampton CM, and Brainard MS (2008). Social modulation of sequence and syllable 
variability in adult birdsong. J. Neurophysiol 99, 1700–1711. [PubMed: 18216221] 

Salamone JD, Steinpreis RE, McCullough LD, Smith P, Grebel D, and Mahan K (1991). Haloperidol 
and nucleus accumbens dopamine depletion suppress lever pressing for food but increase 
free food consumption in a novel food choice procedure. Psychopharmacology 104, 515–521. 
[PubMed: 1780422] 

Saunders BT, Richard JM, Margolis EB, and Janak PH (2018). Dopamine neurons create Pavlovian 
conditioned stimuli with circuit-defined motivational properties. Nat. Neurosci 21, 1072–1083. 
[PubMed: 30038277] 

Schultz W (1998). Predictive reward signal of dopamine neurons. J. Neurophysiol 80, 1–27. [PubMed: 
9658025] 

Schultz W, Dayan P, and Montague PR (1997). A neural substrate of prediction and reward. Science 
275, 1593–1599. [PubMed: 9054347] 

Seo M, Lee E, and Averbeck BB (2012). Action selection and action value in frontal-striatal circuits. 
Neuron 74, 947–960. [PubMed: 22681697] 

Setlow B, Schoenbaum G, and Gallagher M (2003). Neural encoding in ventral striatum during 
olfactory discrimination learning. Neuron 38, 625–636. [PubMed: 12765613] 

Siniscalchi MJ, Wang H, and Kwan AC (2019). Enhanced population coding for rewarded choices in 
the medial frontal cortex of the mouse. Cereb. Cortex 29, 4090–4106. [PubMed: 30615132] 

Song HF, Yang GR, and Wang X-J (2017). Reward-based training of recurrent neural networks for 
cognitive and value-based tasks. Elife 6, e21492. [PubMed: 28084991] 

Steinmetz NA, Zatka-Haas P, Carandini M, and Harris KD (2019). Distributed coding of choice, action 
and engagement across the mouse brain. Nature 576, 266–273. [PubMed: 31776518] 

Stuber GD, Sparta DR, Stamatakis AM, van Leeuwen WA, Hardjoprajitno JE, Cho S, Tye KM, 
Kempadoo KA, Zhang F, Deisseroth K, et al. (2011). Excitatory transmission from the amygdala 
to nucleus accumbens facilitates reward seeking. Nature 475, 377. [PubMed: 21716290] 

Sul JH, Kim H, Huh N, Lee D, and Jung MW (2010). Distinct roles of rodent orbitofrontal and medial 
prefrontal cortex in decision making. Neuron 66, 449–460. [PubMed: 20471357] 

Suri RE, and Schultz W (1998). Learning of sequential movements by neural network model with 
dopamine-like reinforcement signal. Exp. Brain. Res 121, 350–354. [PubMed: 9746140] 

Suri RE, and Schultz W (1999). A neural network model with dopamine-like reinforcement signal that 
learns a spatial delayed response task. Neuroscience 91, 871–890. [PubMed: 10391468] 

Sutton RS (1988). Learning to predict by the methods of temporal differences. Mach. Learn 3, 9–44.

Sutton RS, and Barto AG (1998). Reinforcement Learning: An Introduction (MIT Press).

Swanson LW (1982). The projections of the ventral tegmental area and adjacent regions: a combined 
fluorescent retrograde tracer and immunofluorescence study in the rat. Brain. Res. Bull 9, 321–
353. [PubMed: 6816390] 

Parker et al. Page 44

Cell Rep. Author manuscript; available in PMC 2022 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Tai L-H, Lee AM, Benavidez N, Bonci A, and Wilbrecht L (2012). Transient stimulation of distinct 
subpopulations of striatal neurons mimics changes in action value. Nat. Neurosci 15, 1281–1289. 
[PubMed: 22902719] 

Taylor J, and Robbins T (1986). 6-Hydroxydopamine lesions of the nucleus accumbens, but not of 
the caudate nucleus, attenuate enhanced responding with reward-related stimuli produced by 
intra-accumbens d-amphetamine. Psychopharmacology 90, 1651–1659.

Terada S, Sakurai Y, Nakahara H, and Fujisawa S (2017). Temporal and rate coding for discrete event 
sequences in the Hippocampus. Neuron 94, 1248–1262.e4. [PubMed: 28602691] 

Thévenaz P, Ruttimann UE, and Unser M (1998). A pyramid approach to subpixel registration based 
on intensity. IEEE. Trans. Image Process 7, 27–41. [PubMed: 18267377] 

Tian J, Huang R, Cohen JY, Osakada F, Kobak D, Machens CK, Call-away EM, Uchida N, 
and Watabe-Uchida M (2016). Distributed and mixed information in monosynaptic inputs to 
dopamine neurons. Neuron 91, 1374–1389. [PubMed: 27618675] 

Tsitsiklis JN, and Van Roy B (1997). An analysis of temporal-difference learning with function 
approximation. IEEE Trans. Automat. Contr 42, 674–690.

Tsutsui K-I, Grabenhorst F, Kobayashi S, and Schultz W (2016). A dynamic code for economic object 
valuation in prefrontal cortex neurons. Nat. Commun 7, 12554. [PubMed: 27618960] 

Wan X, and Peoples LL (2006). Firing patterns of accumbal neurons during a pavlovian-conditioned 
approach task. J. Neurophysiol 96, 652–660. [PubMed: 16641388] 

Wang JX, Kurth-Nelson Z, Kumaran D, Tirumala D, Soyer H, Leibo JZ, Hassabis D, and Botvinick 
M (2018). Prefrontal cortex as a meta-reinforcement learning system. Nat. Neurosci 21, 860–868. 
[PubMed: 29760527] 

Watabe-Uchida M, Zhu L, Ogawa SK, Vamanrao A, and Uchida N (2012). Whole-brain mapping of 
direct inputs to midbrain dopamine neurons. Neuron 74, 858–873. [PubMed: 22681690] 

Wörgötter F, and Porr B (2005). Temporal sequence learning, prediction, and control: a review of 
different models and their relation to biological mechanisms. Neural. Comput 17, 245–319. 
[PubMed: 15720770] 

Wright CI, and Groenewegen HJ (1995). Patterns of convergence and segregation in the medial 
nucleus accumbens of the rat: relationships of prefrontal cortical, midline thalamic, and basal 
amygdaloid afferents. J. Comp. Neurol 361, 383–403. [PubMed: 8550887] 

Yagishita S, Hayashi-Takagi A, Ellis-Davies GCR, Urakubo H, Ishii S, and Kasai H (2014). A critical 
time window for dopamine actions on the structural plasticity of dendritic spines. Science 345, 
1616–1620. [PubMed: 25258080] 

Zhou P, Resendez SL, Rodriguez-Romaguera J, Jimenez JC, Neufeld SQ, Giovannucci A, Friedrich J, 
Pnevmatikakis EA, Stuber GD, Hen R, et al. (2018). Efficient and accurate extraction of in vivo 
calcium signals from microendoscopic video data. Elife 7, e28728. [PubMed: 29469809] 

Zhou S, Masmanidis SC, and Buonomano DV (2020). Neural sequences as an optimal dynamical 
regime for the readout of time. Neuron 108, 651–658.e5. [PubMed: 32946745] 

Zhu Y, Wienecke CFR, Nachtrab G, and Chen X (2016). A thalamic input to the nucleus accumbens 
mediates opiate dependence. Nature 530, 219–222. [PubMed: 26840481] 

Zhu Y, Nachtrab G, Keyes PC, Allen WE, Luo L, and Chen X (2018). Dynamic salience processing in 
paraventricular thalamus gates associative learning. Science 362, 423–429. [PubMed: 30361366] 

Parker et al. Page 45

Cell Rep. Author manuscript; available in PMC 2022 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• Prelimbic cortex inputs to NAc (PL-NAc) encode actions and choice-selective 

sequences

• Midline thalamus inputs to NAc (mTH-NAc) preferentially encode cues

• PL-NAc supports learning in models based on synaptic plasticity or neural 

dynamics

• In models and mice, PL-NAc perturbations affect future, but not current, 

choice
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Figure 1. Cellular-resolution imaging of PL and mTH neurons that project to the NAc in mice 
performing a reinforcement learning task
(A) Schematic of probabilistic reversal learning task.

(B) Example behavior during a recording session. The choice of the mouse (black marks) 

follows the identity of the high-probability lever as it alternates between left and right (gray 

lines).

(C) Left: probability the mice choose the left or right lever ten trials before and after 

a reversal from a left-to-right high-probability block. Right: same as left for right-to-left 

high-probability block reversals.

(D) Mice had a significantly higher stay probability following a rewarded versus unrewarded 

trial (***p = 5 × 10 9, two-tailed t test, n = 16 mice).

(E) Coefficients from a logistic regression that uses choice and outcome from the previous 

five trials to predict choice on the current trial. Positive regression coefficients indicate a 

greater likelihood of repeating the previous choice.
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(F) Left: surgical schematic for PL-NAc (top) and mTH-NAc (bottom) recordings showing 

the injection site and optical lens implant with miniature head-mounted microscope 

attached. Right: coronal section from a PL-NAc (top) and mTH-NAc (bottom) mouse 

showing GCaMP6f expression in the recording sites. Inset: confocal image showing 

GCaMP6f expression in individual neurons.

(G) Left: example field of view from a recording in PL-NAc (top, blue) and mTH-NAc 

(bottom, orange) with five representative regions of interest (ROIs). Right, normalized 

GCaMP6f fluorescence traces from the five ROIs on the left. For visualization, each trace 

was normalized by the peak fluorescence across the hour-long session.

Data in (C), (D), and (E) are presented as mean ± SEM across mice (n = 16).
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Figure 2. PL-NAc preferentially represents action events while mTH-NAc preferentially 
represents the CS+
(A) Time-locked responses of individual PL-NAc (blue) and mTH-NAc (orange) neurons to 

task events. Data are presented as mean ± SEM across trials.

(B) Kernels representing the response to each of the task events for an example neuron, 

generated from the encoding model. The predicted GCaMP trace is the sum of the individual 

response kernels (see STAR Methods).

(C) Heatmap of response kernels generated from the encoding model for all PL-NAc 

neurons. Heatmap is ordered by the time of the peak response across all behavioral events (n 

= 278 neurons, n = 7 mice).

(D) Same as (C) except the heatmap of response kernels is from mTH-NAc neurons (n = 256 

neurons, n = 9 mice).

(E) Heatmap of mean Z-scored GCaMP6f fluorescence from PL-NAc neurons aligned to the 

time of each event in the task. Neurons are ordered as in (C).
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(F) Same as (E) for mTH-NAc neurons.

(G) Top row: fraction of neurons significantly modulated by action events in the PL-NAc 

(blue) and mTH-NAc (orange). For all action events, PL-NAc had a larger fraction of 

significantly modulated neurons than mTH-NAc. Bottom row: fraction of neurons in PL-

NAc (blue) and mTH-NAc (orange) significantly modulated by stimulus events. Two out of 

three stimulus events had a larger fraction of significantly modulated neurons in mTH-NAc 

than in PL-NAc. Significance was determined using the linear model used to generate 

response kernels in (B) (STAR Methods).

(H) Top: a significantly larger fraction of event-modulated PL-NAc neurons encode at least 

one action event (p = 0.0004: two-proportion Z test comparing fraction of action-modulated 

PL-NAc and mTH-NAc neurons). Bottom: a significantly larger fraction of mTH-NAc 

neurons encode a stimulus event (p = 0.002: two-proportion Z test comparing fraction of 

stimulus-modulated neurons between PL-NAc and mTH-NAc). Asterisk denotes p < 0.05.

For (G) and (H), fractions are determined using the total number of neurons significantly 

modulated by at least one task event (n = 140 for PL-NAc, n = 90 for mTH-NAc).
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Figure 3. PL-NAc preferentially represents choice but not outcome relative to mTH-NAc
(A) Fraction of choice-selective neurons in PL-NAc (n = 92 out of 278 neurons, 7 mice) 

and mTH-NAc (n = 42 out of 256 neurons, 9 mice). A significantly larger fraction of 

PL-NAc neurons was choice-selective compared with mTH-NAc neurons (p = 9.9 × 10 −6: 

two-proportion Z test).

(B) Choice decoding accuracy using randomly selected subsets of simultaneously imaged 

neurons around the lever press. The PL-NAc population more accurately decoded the choice 

of the trial compared with mTH-NAc (*p < 0.05, unpaired two-tailed t test, n = 9 PL-NAc 

and 6 mTH-NAc mice, peak decoding accuracy of 72% ± 3% for PL-NAc and 60% ± 2% for 

mTH-NAc).

(C) Fraction of outcome-selective neurons in mTH-NAc (n = 86 out of 256 neurons, 9 

mice) and PL-NAc (n = 62 out of 278 neurons, 7 mice). A significantly larger fraction of 

mTH-NAc neurons were outcome-selective compared with PL-NAc neurons (p = 0.004: 

two-proportion Z test).
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(D) Outcome decoding accuracy using neural activity after the time of the CS from 

randomly selected, simultaneously imaged neurons in mTH-NAc (orange, peak decoding 

accuracy: 73% ± 2%) and PL-NAc (blue, peak decoding accuracy: 68% ± 1%). p > 0.05, 

unpaired two-tailed t test.

Data in (B) and (D) are presented as mean ± SEM across mice; n = 6 PL-NAc mice and 9 

mTH-NAc mice. In (A) and (C) the asterisk denotes p < 0.05, two-proportion Z test.
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Figure 4. Choice-selective sequences in PL-NAc persist into the subsequent trial
(A) Top: average peak-normalized GCaMP6f fluorescence of three simultaneously imaged 

PL-NAc choice-selective neurons. Data are presented as mean ± SEM across trials. 

Bottom: heatmaps of GCaMP6f fluorescence across trials aligned to ipsilateral (blue) and 

contralateral (gray) press.

(B and C) Heatmaps showing sequential activation of choice-selective PL-NAc neurons (n 

= 92/278 neurons from 7 mice). Each row is a neuron’s average GCaMP6f fluorescence 

time-locked to the ipsilateral (left column) and contralateral (right column) lever press, 

normalized by its peak average fluorescence. In (B) (“train data”), heatmap is average 

fluorescence from half of trials and ordered by the time of peak activity. In (C) (“test data”), 

the peak-normalized, time-locked GCaMP6f fluorescence from the other half of trials was 

plotted in the order from “train data” in (B).

(D) Correlation between time of peak activity using the “train” and “test” trials for choice-

selective PL-NAc neurons in response to a contralateral or ipsilateral lever press (R2 = 0.80, 

p = 5.3 × 10−22, n = 92 neurons).

(E) Average decoding accuracy of choice on the current (blue), previous (gray), and next 

(black) trial as a function of time-adjusted GCaMP6f fluorescence throughout the current 

trial from ten simultaneously imaged PL-NAc neurons. Data are presented as mean ± SEM 

across mice. Red dashed line indicates median onset of reward consumption. *p < 0.01, 

two-tailed, one-sample t test across mice comparing decoding accuracy to chance, n = 6 

mice.

Parker et al. Page 53

Cell Rep. Author manuscript; available in PMC 2022 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Choice-selective sequences recorded in PL-NAc, combined with known downstream 
connectivity, can implement a temporal difference (TD) learning model based on synaptic 
plasticity
(A) Schematic of circuit architecture used in the model. Model implementation used single-

trial recorded PL-NAc or mTH-NAc responses as input. See results and STAR Methods for 

model details and Figure S9 for alternative, mathematically equivalent circuit architectures.

(B) Model equations. V: value; VL, VR: weighted sum of the nL left-choice- or nR right-

choice-preferring NAc neuron activities fi
L and fi

R, respectively, with weights wiL or W i
R; α: 
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learning rate; τe: decay time constant for the PL-NAc synaptic eligibility trace E(t); Δ: delay 

of the pathway through the VTA GABA interneuron; γ: discounting of value during time Δ.

(C) Heatmap of single-trial PL-NAc estimated firing rates input to the model.

(D) Behavior of the synaptic plasticity model for 120 example trials. The decision variable 

(red trace) and the choice of the model (black dots) follow the identity of the higher 

probability lever.

(E) Probability the model chooses left (black) and right (gray) following a left-to-right block 

reversal.

(F) Stay probability of the synaptic plasticity model following rewarded and unrewarded 

trials.

(G) Top: simulated VTA dopamine neuron activity averaged across rewarded (green) and 

unrewarded (gray) trials. Bottom: coefficients from a linear regression that uses outcome of 

the current and previous five trials to predict dopamine neuron activity following outcome 

feedback (STAR Methods).

(H–L) Same as (C) to (G), instead showing results from using estimated firing rates from 

mTH-NAc single-trial activity. The mTH-NAc model input generates worse performance 

than using PL-NAc input, with less and slower modulation of the decision variables, and 

weaker modulation of dopamine activity by previous trial outcomes. Dashed line in (L) 

shows results from PL-NAc model (same data as in G).

(M) Control model including only early-firing neurons active at the onset of the sequence, 

when the model makes the choice.

(N–Q) Same as (D) to (G), instead showing results from using the early-only control model. 

Open bar in (P) and dashed line in (Q) show results from PL-NAc model (same data as in F 

and G).

Parker et al. Page 55

Cell Rep. Author manuscript; available in PMC 2022 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Neural dynamics model, with recorded choice-selective PL-NAc activity input to the 
critic, performs the task similarly to synaptic plasticity model
(A) Model schematic. See results and STAR Methods for details.

(B–E) Example behavior and dopamine activity from the neural dynamics model. Panel 

descriptions are the same as those for the synaptic plasticity model (Figures 5D–5G).

(F) Reward rate as a function of the number of training episodes for the model with recorded 

PL-NAc input to the critic (orange) and for a model with persistent choice-selective input to 

the critic (black). Red arrow indicates the training duration used to generate all other figure 

panels. Gray dashed line indicates chance reward rate of 0.4.

(G) Relationship between the decision variable used to select the choice on the next trial and 

the calculated RPE across right and left blocks. The RPE shown is an average of 0–2 s after 

lever press, averaged across blocks. The decision variable is also averaged across blocks.

(H) Evolution of the principal components of the output of the actor LSTM units across 

trials within a right and left block. The displayed activity is from the first time point in 

each trial (when the choice is made), averaged across blocks. The first three components 

accounted for 70.9%, 16.6%, and 6.4% of the total variance at this time point, respectively.

(I) Cosine of the angle between the actor network’s readout weight vector and the vectors 

corresponding to the first three principal components (PCs). Network activity in the PC1 

direction (but not PC2 or PC3) aligns with the network readout weights.

(J) Coefficients from a linear regression that uses choice on the previous trial (green), 

average RPE from 0–2 s after the lever press (red), and “choice × RPE” interaction (blue) 

from the previous seven trials to predict the amplitude of activity in PC1 on the current trial.
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Figure 7. Stimulation of PL-NAc neurons disrupts the influence of previous trial outcomes on 
subsequent choice in both the models and mice
(A) In the mice and models, PL-NAc neurons were stimulated for the whole trial on a 

random 10% of trials, disrupting the endogenous choice-selective sequential activity (see 

STAR Methods and Figure S13).

(B) Effect of stimulating the PL-NAc input on the previous (left) or current (right) trial in the 

synaptic plasticity model.

(C) Logistic choice regression showing dependence of the current choice on previously 

rewarded and unrewarded choices, with and without stimulation. Higher coefficients indicate 

a higher probability of staying with the previously chosen lever.

(D and E) Same as (B) and (C) for the neural dynamics model.

(F) Top left: schematic illustrating injection site in the PL (black needle) and optical fiber 

implant in the NAc core. Top right: location of optical fiber tips of PL-NAc ChR2 cohort 
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(n = 14 mice) Bottom left: coronal section showing ChR2-YFP expression in PL. Bottom 

middle and right: ChR2-YFP expression in PL terminals in the NAc core.

(G) Similar to the models, PL-NAc ChR2 stimulation on the previous trial significantly 

reduced the mice’s stay probability following a rewarded trial (p = 0.002) while increasing 

stay probability following an unrewarded trial (p = 0.0005). Stimulation on the current trial 

had no significant effect on stay probability following rewarded (p = 0.62) or unrewarded (p 

= 0.91) trials. All comparisons were paired two-tailed t tests, n = 14 mice.

(H) PL-NAc ChR2 stimulation decreased the weight of rewarded choices one and two trials 

back (p = 0.002: one trial back; p = 0.023: two trials back) and increased the weight of 

unrewarded choices one trial back (p = 5.4 × 10−6).

(I–K) Same as (F) to (H) for mTH-NAc ChR2 stimulation (n = 8 mice). mTH-NAc 

stimulation had no significant effect on stay probability following either rewarded (p = 

0.85) or unrewarded choices (p = 0.40) on the previous trial back (J, paired t test, n = 8 

mice) or multiple trials back (K, p > 0.05 for all trials back, one-sample t tests). Current-trial 

stimulation also had no effect following either rewarded (p = 0.59) or unrewarded (p = 0.50) 

choices.

**p < 0.005 and *p < 0.05 for one-sample two-tailed t tests.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-GFP Life Technologies Corporation Cat# G10362; RRID: AB_2536526

Donkey anti-rabbit coupled to Alexa 488 Jackson ImmunoResearch Cat# 711-545-152; RRID: AB_2313584

Bacterial and virus strains

CAV-Cre virus IGMM Vector core, France NA

retroAAV-Ef1a-NLS-Cre_WPRE-
hGHpA

PNI Viral Core, Princeton ; RRID: Addgene_5536

AAV2/5-CAG-Flex-GCamp6f-WPRE-
SV40

UPenn Vector Core AV-5-PV2816; RRID: Addgene_100835

AAV2/5-CamKIIa-hChR2-EYFP UNC Vector Core https://www.addgene.org/26969; RRID: Addgene_26969

Experimental models: Organisms/strains

Mouse: wild type C57BL/6J Jackson Laboratory JAX: 000,664; RRID: ISMR_JAX_000664

Software and algorithms

“Synaptic plasticity” temporal difference 
learning algorithm

Generated by this study https://github.com/baiydaavi/
RL_models_with_choice_selective_sequences

“Neural dynamics” deep reinforcement 
learning algorithm

Generated by this study https://github.com/baiydaavi/
RL_models_with_choice_selective_sequences

Behavioral event encoding model Generated by this study https://github.com/nfparker/event_encoding_model

Other

Fibers for optogenetics Thor Labs BFL37-300

Ferrules for optogenetics Precision Fiber Products MM-FER-2006SS-330

0.5mm diameter, ~6.1mm length GRIN 
lens

Inscopix GLP-0561

Imaging baseplate Inscopix BPL-2

Baseplate cover Inscopix BPC-2
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