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Abstract: Metaheuristic algorithms are widely employed in modern engineering applications because
they do not need to have the ability to study the objective function’s features. However, these
algorithms may spend minutes to hours or even days to acquire one solution. This paper presents a
novel efficient Mahalanobis sampling surrogate model assisting Ant Lion optimization algorithm to
address this problem. For expensive calculation problems, the optimization effect goes even further
by using MSAALO. This model includes three surrogate models: the global model, Mahalanobis
sampling surrogate model, and local surrogate model. Mahalanobis distance can also exclude the
interference correlations of variables. In the Mahalanobis distance sampling model, the distance
between each ant and the others could be calculated. Additionally, the algorithm sorts the average
length of all ants. Then, the algorithm selects some samples to train the model from these Mahalanobis
distance samples. Seven benchmark functions with various characteristics are chosen to testify to the
effectiveness of this algorithm. The validation results of seven benchmark functions demonstrate
that the algorithm is more competitive than other algorithms. The simulation results based on
different radii and nodes show that MSAALO improves the average coverage by 2.122% and 1.718%,
respectively.

Keywords: ant lion optimization; surrogate model; mahalanobis distance; radial basis function
network; 3D coverage; wireless sensor networks

1. Introduction

Metaheuristic algorithms such as the Artificial Bee Colony (ABC) [1], Gray Wolf Opti-
mizer (GWO) [2], Cat Swarm Optimization (CSO) [3], Differential Evolution (DE) [4], Ant
Lion Optimization (ALO) [5], Memetic Algorithm (MA) [6] and Particle Swarm Optimiza-
tion (PSO) [7] are widely employed in modern engineering applications [8,9]. Metaheuris-
tic algorithms have the advantage of not needing to study the features of the objective
function such as convex, linear and others. Therefore, these algorithms have good per-
formance in some engineering areas. These fields include structural optimization design
of truss topology [10], traveling salesman problem [11], reliability optimization of com-
plex systems [12], feature selection [13], vehicle routing problem [14], wireless sensor
networks [15,16] and others. However, they have some common characteristics in some
high-dimensional and high-level application scenarios, such as time-consuming evaluation,
which may take minutes to hours or even days to acquire one solution. In the past decades,
a great number of surrogate models assisting metaheuristic algorithms have emerged to
address this problem. For example, there are Kriging [17], Gaussian process(GP) [18,19],
polynomial regression(PR) [20,21], support vector machines(SVM) [22], artificial neural
network(ANN) [23,24] and radial basis function network (RBFN) [25,26]. An increasing
number of comparative experiments have been conducted on the quality of various models
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with various fitness functions. The results demonstrate that the radial basis function net-
work performs superior with the high dimension of complex optimization problems on
smaller training data [27]. GP [28] is appropriate for modeling complex problems in the
global field. When suffering from the problem of searching for the best hyperparameters,
GP has some disadvantages such as being time-consuming, which is a major disadvantage
to using GP.

An increasing number of surrogate models have emerged in the current research
field to settle these expensive calculation problems. Liu et al. [29] employed a Gaussian
process to construct a model which solves the high-dimension computationally optimiza-
tion problems through dimension reduction techniques. In [30], Regis et al. used an RBF
global surrogate to assist particle swarm optimization. They first proposed multiple trial
solutions for each particle. This model selects the promising particle which belongs to one
of many trial particles. Zhou et al. [31] presented a new surrogate model framework that is
employed to solve expensive computational problems. It utilizes a variety of hierarchical
models to replace the real fitness function in order to save computing resources. RBFN
is used to construct the model, which uses the Gaussian process. A trust-region basing
gradient search is used to build the local model. Using a neural network, Jin et al. [24]
constructed a global surrogate model that assists a covariance matrix adaptation strategy
and generation control. Praveen et al. [32] built a global surrogate model assisting particle
swarm algorithm by using radial basis function. In the process of expensive fitness compu-
tation, this model selects the most promising particle in all screened particles. A support
vector regression (SVR) model was utilized by Wang et al. [33] to assist a multi-objective
evolutionary algorithm to search for the best baseline sequence and resource distribution
solution. This algorithm saves completion time and resource costs. In [34], Chugh et al.
presented a Kriging model which selects one method to reduce the calculation time without
damaging the fitness accuracy. This algorithm effectively achieves a balance between
exploration and exploitation.

In recent times, the surrogate models have been divided into two class models involv-
ing the global and local models. In [35], Ong et al. presented one model which can use
alternately real fitness functions and constraint functions via the trust region approach.
The constraint function is a surrogate model which can be computed more cheaply. Sun
et al. [36] proposed a novel fitness function method for PSO. They call the method FESPSO,
and it reduces a lot of time in estimating particles with real fitness functions. Lim et al.
presented one algorithm using various surrogate models assisting evolutionary algorithms
in the local search range of the memetic algorithm [37]. The complex surrogate model is
employed to produce reliable and precise fitness values. It uses ensemble and smoothing
models to search simultaneously. However, the metaheuristic algorithm effectiveness relies
not only on the selection of the surrogate model, but also on the preference of the training
sample set. The global and the local surrogate models need to select samples to train the
model, so the selection of samples is crucial to the model’s training. Therefore, we present
a new distance sampling method for training models.

In this article, we propose a novel efficient Mahalanobis sampling surrogate model
assisting Ant Lion Optimization [5] algorithm where the optimization effect be upgraded for
expensive calculation problems. This model includes three surrogate models—the global
model, local surrogate model and Mahalanobis sampling surrogate model. Mahalanobis
distance also excludes the interference of correlations between variables. In the Mahalanobis
distance sampling model, we calculate the average Mahalanobis distance between each
ant and others. Then, the algorithm sorts these average distances from small to large of all
ants in order to obtain the top gs ants. The sampling data from these three models can be
stored in one database called DB. The surrogate assisting ALO is applied to the 3D coverage
in wireless sensor networks. The experimental data show that the presented algorithm
MSAALO is efficient in addressing expensive calculation problems.

The remainder of this article is organized as follows. In Section 2, this paper briefly
reviews the related knowledge, including the ALO algorithm, the radial basis function
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network, the coverage model of wireless sensor networks and Mahalanobis Distance. In
Section 3, the article introduces MSAALO and its application in the node coverage in WSN
in detail. The experimental results with the other three algorithms in seven benchmark
functions and the simulation application results in the 3D coverage of WSN are revealed in
Section 4. In Section 5, the article concludes the proposed MSAALO and its future work.

2. Related Work
2.1. Ant Lion OPtimization

From the past decades to the present, many researchers optimized metaheuristic
algorithms [38–40] in order to apply them in engineering fields [41–45]. The Ant Lion
Optimizer is an original metaheuristic algorithm which was introduced by Mirjalili in
2015 [5]. An ant lion moves along a circular hollow made of sand and catches ants using
their massive jaw. When ants randomly move into holes, antlions will seize ants, rebuild
their hollows and wait for another ant. The ALO algorithm mainly includes two members:
ant and antlion. The member with the optimal fitness value among the antlions is selected
as the elite antlion. The execution process of the algorithm mainly includes two processes,
stochastic walking of ants and position movement of antlions. The moving track can be
influenced by traps. The antlion with a high proportion has a higher likelihood of seizing
ants. When the ants have better fitness than the antlion, the antlion needs to relocate its
position to build a new trap. During the random walk of ants, the trajectory of the ants is
modeled according to the following Equation (1):

X(t) = [0, cumsum(2r(t1)− 1); cumsum(2r(t2)− 1); ...; cumsum(2r(tT)− 1); ] (1)

where cumsum is equal to the cumulative sum; t is the current step; T is the maximum
amount of rounds. r(ti) is a stochastic function. It can be defined as Equation (2).

r(ti) =

{
1 i f rand_num > 0.5

0 i f rand_num ≤ 0.5
(2)

where rand_num is a random number which is generated with uniform distribution in the
interval [0,1] and 1 ≤ i ≤ T. T random values are generated during each iteration. Each
ant employs Equation (3) to normalize its position in order to prevent ants from going out
of the search space. The equation can be expressed as follows.

Xt
i =

(Xt
i − di)(bt

i − at
i)

ci − di
+ bt

i (3)

where dt
i is the upper restraint of the random walk of i-th variable, di is the lower restraint

of random walk in i-th variable, at
i is the minimum value of the t-th iteration for the i-th

dimension. ci is the maximum value for the i-th dimension. The definitions of bt
i and at

i are
expressed as follows.

at
i = Antliont

i + at (4)

bt
i = Antliont

i − bt (5)

where at is the minimum value of all variables at the t-th iteration; bt is the maximum value
of all variables at the t-th iteration. Each ant can only be preyed upon by one antlion via
Roulette Strategy [46]. The antlion with a higher fitness value is more likely to capture the
ant. In addition, the antlion casts sand at the edge of the trap to keep the ant from running
away if an ant falls into a trap made by an antlion. At this point, the range of ants randomly
wandering will be drastically reduced. The following Equations (6) and (7) simulate this
capture process.

at =
ct

I
(6)



Entropy 2022, 24, 586 4 of 18

bt =
dt

I
(7)

where I is the ratio factor which can be defined as follows.

I =

1 i f g ≤ 0.1G

10ω ∗ g
G

i f g > 0.1G
(8)

where g is the current round, G is the maximum number of iterations. ω can be fetched via
the following Equation (9).

ω =



1, i f 0 < g ≤ 0.1G

2, i f 0.1G < g ≤ 0.5G

3, i f 0.5G < g ≤ 0.75G

4, i f 0.75G < g ≤ 0.9G

5, i f 0.9G < g ≤ 0.95G

6 i f 0.95G < g ≤ G

(9)

where ω is used to control the degree of exploration, and varies with the number of
iterations. ω controls the balance between convergence and exploration of the algorithm.
The convergence ability of ALO increases in the later generation. Therefore, ω grows with
the number of iterations.

2.2. Radial Basis Function Network

As a sort of artificial neural network [13], Radial Basis Function Network was in-
troduced for the first time by Hardy [47] in order to fit high-dimensional nonlinear data.
Furthermore, RBFN [48] has the ability to perform well in global and local modeling. This
paper employs RBFN assisting Ant Lion Optimization to obtain models. The RBFN is
engaged in this work as follows.

ŷ(x) =
N

∑
i=1

αi ϕ(‖x− xi‖) (10)

where ‖ · ‖, αi and ϕ are the Euclidian model, the weight coefficients which can be acquired
via the linear system Equation (11) and the kernel function. x is the center point; xi is the
i-th sample. Typical RBF kernels include multiquadric splines, linear splines, Gaussian
function, cubic splines and thin-plate splines. This research utilizes a Gaussian kernel to
build a local model and exploit linear splines to construct a global model because of their
different properties. The form of the Gaussian kernel function is shown in Equation (12).

α = φ−1z (11)

ϕ(x) = exp(
−x2

β
) (12)

where φ = [ϕ(‖xi− xj‖)]M×M is the kernel matrix. When only the matrix X = [x1, x2, ..., xM]T

is different, the φ is a positive definite. In accordance with the Gaussian kernel function’s
shape parameter, β is equivalent to Dmax(dM)−1/d where Dmax is the maximum distance
among the training set. In the data set of RBFN, the location and fitness values of the ith
member are xi = (x1

i , x2
i , ..., xD

i )εRD and f (xi), respectively.

2.3. Mahalanobis Distance

Mahalanobis Distance [49,50] is a measure of distance, which can be regarded as a
correction of Euclidean distance. It corrects the problem of the scales of various dimensions
in Euclidean distance being inconsistent and related. The distance of individual data points
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is expressed by Equation (13). The Mahalanobis distance between data points x and y can
be computed by Equation (14).

DP(y) =
√
(y− µ)T ∑−1

(y− µ) (13)

DP(y, z) =
√
(y− z)T ∑−1

(y− z) (14)

where ∑ is the covariance matrix of multidimensional random variables; µ is the sample’s
mean. When the covariance matrix is a unit vector means, the dimensions are independent
and identically distributed, and the Mahalanobis distance becomes Euclidean distance.

2.4. The Coverage Model of Wireless Sensor Networks

The WSN [51] have become more and more popular in the research field because of
their significant value in real-world applications. For instance, seismic detection, intelligent
home and health care applications apply wireless sensor networks. The coverage ability
of nodes affects the lifetime and performance of the whole WSN. There are two classical
sensor detection models, the 0–1 model and the probability model. In this work, we will
optimize the WSN coverage using the 0–1 model. In the 0–1 model, the sensing radius is
set to r. If the Euclidean distance of the node P and the target objection C is less than the
radius r, the probability of the model is equal to 1. On the contrary, the probability is 0. It
can be expressed by the following Equation (15).

F(P, C) =

{
1 i f D(P, C) ≤ r && no obstacle

0 i f D(P, C) > r
(15)

3. Mahalanobis Surrogate-Assisted Ant Lion Optimization and Node Coverage in
Wireless Sensor Network
3.1. Mahalanobis Surrogate-Assisted Ant Lion Optimization

A new surrogate model assisting the Ant Lion optimization is proposed in this part.
This surrogate-assisted antlion algorithm includes three layers of surrogate models which
are the global surrogate, one sampling surrogate using Mahalanobis distance and the
local surrogate model, respectively. A sample database is employed to store the ants
evaluated using the real fitness function. Every sample includes its position and fitness
value. Furthermore, the global surrogate model can perform global fitting of smooth
functions. The novel model is trained by the first gs samples of the database. This algorithm
integrates the local surrogate model and the Mahalanobis sampling model with the global
surrogate model. Then, we can effectively increase the execution efficiency of the Ant Lion
algorithm. An increasing number of samples will multiply the time complexity and space
complexity of the construction of the surrogate model. Therefore, the first gs samples in
the database are elected to form the agent model. Operating the global surrogate model,
MSAALO selects the ants with the better fitness value in each generation of the algorithm
and stores them in the sample database. In each iteration, all ants are evaluated with the
local agent model and compared with the fitness values of the antlion. Then, the ants
with better fitness that do not belong to the previous generation of antlion populations are
evaluated using the true fitness evaluation function and deposited into the sample database.
Algorithm 1 shows the execution process of MSAALO. DB is the samples database.

Independent of the dimensions, the Mahalanobis distance of the two positions is
independent of the measurement for the original data in units. The Mahalanobis distance
between two ants is computed from normalized data. Hence, we use Mahalanobis distance
to sample. The Mahalanobis distance eliminates the interference correlation of variables as
well. In the Mahalanobis distance sampling model, we calculate the distances between each
ant and others. We compute the average distance of each ant, and then the algorithm sorts
these average distances from small to large in order to get the top gs ants. If the covariance
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matrix is not full of rank, this algorithm uses Euclidean distance to select samples. The
computation Equation (16) of ant xi can be expressed as follows.

Average(xi) =
1
N

n

∑
j=1

FD(xi, xj) (16)

where FD(xi, xj)can be computed through Equation (14).

Algorithm 1 Surrogate-assisted Ant Lion optimization algorithm.

Input: The lower boundary lb, the upper boundary ub, the dimension dim, the size of
population N, the maximum iteration Maxiteration, the objective function fobj;

1: Initialization: Generate initial samples using Latin hypercube sampling, evaluate the
fitness values of initial samples using the expensive real fitness function and save them
into the DB;

2: i = 1;
3: while i ≤ Maxiteration do
4: Update DB by using the Global surrogate model;
5: Update DB by using the Mahalanobis distance surrogate model to sample;
6: Update DB by using the Local surrogate model;
7: end while

Output: The best fitness value and its position.

Algorithm 2 introduces the execution process of the local model. The number of
samples that have been utilized for training the model in the DB is gs. The local surrogate
model mainly acquires the function model around the currently best ant to improve the
search ability of the algorithm. Using the real fitness function to evaluate, MSAALO selects
the ant smaller than the current antlion. DB will be updated by these ants.

Algorithm 2 Local surrogate model.

Input: Archive DB;
1: Select top gs samples from the sorted DB database;
2: The Local surrogate model (Fl) can be trained by these gs samples;
3: Generate the population by ALO algorithm;
4: Estimate the fitness value of each ant in the colony by local surrogate model;
5: if the fitness value of ants are better than antlions then
6: Evaluate the fitness value of these ants using the real fitness function and store them

into DB;
7: end if
8: Update Elite antlion and antlions;

Output: The updated archive DB, the Elite antlion vector E and its fitness value Fl(E).

Algorithm 3 outlines the specific execution process of the global surrogate model. The
global surrogate model improves the exploration ability of the algorithm. In Algorithm 3,
the position matrix of all ants is initialized, and the top P best ants are selected as antlions.
E and maxgen are the elite antlion position and the maximum amount of iteration of
evolution, respectively. N refers to the amount of ants in each generation. Fg(xi) represents
the approximation of the i-th ant evaluated using the global surrogate model.
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Algorithm 3 Global surrogate model.

Input: Archive DB,ants position X, antlions position matrix P, Elite antlion vector E;
1: Let maxgen = 500;
2: Select top P samples from the sorted DB database;
3: The Global surrogate model (Fg) can be trained by these gs samples;
4: Fg replaces the real fitness function to evaluate the fitness value of ants;
5: while j ≤ maxgen do
6: for i = 1:N do
7: Select the first N ants as antlions from the colony;
8: An antlion RA should be selected in accordance with roulette principles;
9: The ants randomly roam around the elite antlion and RA;

10: end for
11: for i = 1:N do
12: Fg are employed to assess the fitness value of each ant and stored in the population

database colony;
13: end for
14: if there exists at least an ant that Fg(xi) < Fg(E) then
15: E is replaced by an ant position with the best fitness value;
16: end if
17: end while
18: Update DB via saving E into DB;
Output: The updated archive DB, the Elite antlion vector E and its fitness value Fg(E).

3.2. The Node Coverage in WSN

In the research field of 2D plane area coverage, an increasing number of methods
have emerged. This paper mainly overcomes the challenge of covering the area in 3D with
a fixed number of nodes. For the purpose of simulating the real coverage problem, we
place these nodes on 3D terrain. In the 3D coverage of WSN, there are many intelligent
computation ways to address this 3D problem [51]. This paper optimizes the performance
by applying the surrogate model. The 3D coverage problem of WSN are settled using this
algorithm.

In the 3D problem, spherical space is obtained when there are two coordinates and
radius r. The sphere space is the sensing detection area. Furthermore, we improve the
coverage ability of WSN through using MSAALO to optimize the two coordinates. Each
ant is equivalent to one deployment strategy. The form (17) of each ant can be expressed
as follows:

[Ant1
1, Ant2

1, Ant1
2, Ant2

2, ....., Ant1
i , Ant2

i , ....., Ant1
n, Ant2

n] (17)

where i refers to the i-th node, n is the total number of sensor nodes. Ant1
i is the first

dimension value of the i-th node. Ant2
i is the second dimension value of the i-th node. The

coverage rate at the i-th round can be computed by the following Equation (18).

rate(j) =
1
A

A

∑
a=1

(
B

∑
b=1

F(Pb, Ca)) (18)

where A represents the number of pixels (target objects) of the 3-D terrain. B refers to the
amount of sensor nodes. F(Pb, Ca) indicates whether the a pixel is covered by the b node. It
can be calculated by Equation (15).

4. Experimental Results

In order to prove the efficiency and effectiveness of MSAALO on time-consuming op-
timization problems, seven benchmark functions with different characteristics are selected.
These test methods consist of unimodal functions, multimodal functions and extraordinary
complex multimodal functions. Table 1 shows the detailed characteristics of these bench-
mark functions. In addition, Yu et al. [52,53], Sun et al. [27] and Li et al. [54] also used these
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functions to evaluate their proposed algorithms for expensive optimization problems. This
research compared MSAALO and the original ALO with the famous PSO and QUATRE
algorithms in 30, 50 and 100 dimensions, respectively. All algorithms compared conduct
20 times independently in MATLAB2019b on a computer with an AMD Ryzen 7 5800 H
with Radeon Graphics 3.20 GHz processor and 16.0 GB of RAM under the Windows 10
operating system. These comparison results are then analyzed. The surrogate model is
constructed using the ’newrb’ function offered in the matlab toolbox.

Table 1. Benchmark.

Benchmark Function Name Characteristics Global Optimal

F1 Ackley Multimodal 0
F2 Griewank Multimodal 0
F3 Rosenbrock Multimodal with narrow valley 0
F4 Ellipsoid Unimodal 0
F5 Shifted rotate Rastrigin(F10 in [53]) Very complicated multimodal −330
F6 Rotated Hybrid composition function(F16 in [53]) Very complicated multimodal 120
F7 Rotated Rosenbrock’s Function(F6 in [55]) Multimodal −300

4.1. Parameter Settings

In the experiment, for 30-dimensional and 50-dimensional problems, the population
size of MSAALO, PSO, QUATRE, and ALO is set to 100, and the training sample size
of MSAALO is set to 50. For a 100-dimensional problem, all comparison algorithms’
population sizes are set to 200, MSAALO training sample size is equal to 150, and the
maximum amount of true test function evaluations is equivalent to 1000. For the PSO,
the inertia coefficient is equivalent to social cognitive parameter. They are equal to 2.05.
The inertia coefficient of PSO decreases linearly. The minimum and maximum inertia
parameters are 0.4 and 0.9, respectively. These factors are set the same as those of the
particle swarm algorithm [7]. For the QUATRE, c is set to 0.7 following [56]. According
to [5], the parameter settings of ALO are the same, and the walking and selection strategy
adopts the design used previously in the literature [5]. Latin hypercube sampling is used
before evolution. During the population search process of the local surrogate, it will be
terminated after twenty consecutive times without further advancement. Each optimization
progress is less than the power of 10−6.

4.2. Experimental Analysis on 30- and 50-Dimensional Problems

Tables 2 and 3 show the experimental results of all algorithms. The mean value,
best fitness value, standard deviation, worst fitness value and the Wilcoxon rank-sum
test results on the confidence level of 0.05 are presented in the tables. In these tables,
‘+’ represents that MSAALO is better than other algorithms; ‘≈’ shows that MSAALO is
no different from other algorithms in terms of the statistical results. PSO is an effective
metaheuristic algorithm for optimization problems in engineering fields. QUATRE is a
QUasi-Affine TRansformation Evolutionary algorithm [56] which automates the generation
of cross matrices.

For the 30-dimensional problems, we conclude that the results of MSAALO are sig-
nificantly better than the other competition algorithms in the Table 2. Figure 1 shows the
converge curve of comparison data. Under the influence of the initializing hypercube sam-
pling, these algorithms have no apparent difference in the early evolution. However, there
is the superiority of MSAALO during the later evolution. Compared with the QUATRE
algorithm, MSAALO can converge to the best fitness value earlier. Furthermore, MSAALO
has an optimum fitness value compared with the QUATRE algorithm. MSAALO converges
the best fitness value in 700 calculations approximately, which refers to the computation of
the real fitness function. However, QUATRE can reach the optimum fitness value after the
maximum calculations or so.
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Figure 1. Convergence profiles of algorithms MSAALO, PSO, ALO and QUATRE on 30D with 1000
expensive fitness evaluations.
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Based on F1–F2 and F4 benchmark function tests, the MSAALO algorithm performs
better than the other three algorithms. Compared to the other three algorithms, MSAALO
finds better solutions at the beginning of the algorithm. However, the other three algorithms
encounter local convergence problems after 300 accurate evaluations. These data prove that
MSAALO has an excellent ability to capture the global optimum. From the convergence
curves of F1 and F2, MSAALO faces local convergence problems after 900 actual evaluations.
For the F3 and F5-F6 benchmark functions, MSAALO decreases faster than the other
algorithms, indicating that MSAALO has a more robust global search capability than the
other algorithms. Although QUATRE stuck in a local optimum in late stages, the best
solution is worse than MSAALO. For the Rotated Rosenbrock Function (F7), MSAALO
does not perform as well as QUATRE, but it is better than the other two algorithms. We
see that MSAALO performs better than other algorithms in finding the best solutions from
Table 2. These examinations indicate that MSAALO achieves a better balance between
exploration and exploitation.

Table 2. Statistical results of the proposed algorithm MSAALO and the comparison algorithm in the
30D benchmark problems.

Function Method Best Worst Mean Std.

F1 Ackley

MSAALO 0.123326744 3.13585031 1.43972806 0.849227975
ALO 12.10555809 15.6481591 14.19208313(+) 0.9459971
PSO 20.15494482 20.82542968 20.59548416(+) 0.172703454

QUATRE 20.31594928 20.8686191 20.62503928(+) 0.163136984

F2 Griewank

MSAALO 0.025057236 0.348212147 0.20459889 0.105483642
ALO 34.50123904 85.11353248 61.12324826(+) 13.39587586
PSO 399.9440594 629.2822719 539.9281838(+) 58.72504985

QUATRE 1430.698577 2134.531336 1793.335464(+) 181.220765

F3 ROSENBROCK

MSAALO 27.33130867 31.2019712 28.919217 0.911458613
ALO 212.0563715 472.0551911 329.7765029(+) 73.50371706
PSO 3612.815328 8177.474992 5768.083768(+) 1056.556912

QUATRE 13816.70038 25796.98324 20242.16778(+) 3580.971155

F4 Ellipsoid

MSAALO 0.064639725 1.745649711 0.76747429 0.542000353
ALO 137.5505289 316.3088353 236.7281153(+) 47.19823742
PSO 1869.607222 2942.181818 2298.538358(+) 266.6575441

QUATRE 18719.26637 29801.73299 24745.30049(+) 3096.902059

F5 Shifted Rotated Rastrigin’s

MSAALO −177.3906961 41.14829764 −97.86071 62.85805275
ALO −28.50723525 190.6024357 121.7342326(+) 61.58425884
PSO 349.4033779 684.5691941 560.3924598(+) 97.33286262

QUATRE 2210.59487 2905.192736 2527.153953(+) 161.6924755

F6 Rotated Hybrid Composition

MSAALO 487.8856464 883.2270767 657.345355 91.4233247
ALO 680.0437144 1185.978105 931.6602035(+) 144.3053267
PSO 1012.886072 1529.59108 1240.718675(+) 146.1381248

QUATRE 993.5244617 1254.09476 1126.998238(+) 69.97195687

F7 Rotated Rosenbrock’s Function (cec2013)

MSAALO 305.9999456 968.5415869 497.931191 166.910778
ALO 2516.102941 8820.339926 5375.970745(+) 1790.558688
PSO 13511.26453 28774.73239 21609.56369(+) 4160.450511

QUATRE 371.1491082 1080.859897 580.0806404(+) 190.9446216



Entropy 2022, 24, 586 11 of 18

Table 3. Statistical results of the proposed algorithm MSAALO and the comparison algorithm in the
50D benchmark problems.

Function Method Best Worst Mean Std.

F1 Ackley

MSAALO 0.940415879 5.167946126 2.3517038 1.251470448
ALO 13.82370384 16.68453778 15.25804536(+) 0.796298412
PSO 20.54068171 20.9449642 20.81156212(+) 0.095431374

QUATRE 19.56914323 20.50332195 20.09924447(+) 0.22904872

F2 Griewank

MSAALO 0.104616818 0.926048755 0.37396578 0.216959396
ALO 105.2416856 174.1706141 132.4385061(+) 21.29345499
PSO 941.2522423 1143.06337 1043.479008(+) 63.8714882

QUATRE 511.6977831 739.5520411 627.2609005(+) 68.17036889

F3 ROSENBROCK

MSAALO 48.49067593 75.15137415 53.4668016 8.024656915
ALO 592.1867282 1107.620799 851.1901101(+) 129.4974263
PSO 9478.242386 15087.31686 12884.91921(+) 1425.141242

QUATRE 4668.454943 7782.74757 5958.326781(+) 803.8444471

F4 Ellipsoid

MSAALO 0.183039002 15.10150372 3.84620633 3.659057369
ALO 688.2929038 1333.181207 935.4220777(+) 173.2759225
PSO 6395.877995 7872.311698 7117.623372(+) 385.1067671

QUATRE 3115.474344 5157.058137 4328.406839(+) 475.7695647

F5 Shifted Rotated Rastrigin’s

MSAALO 160.0359335 626.0513082 337.473869 126.853667
ALO 495.0934545 757.8380202 653.8728804 (+) 77.2052377
PSO 1194.449781 1551.690511 1386.945263(+) 98.67065573

QUATRE 499.8560298 731.0150509 629.5159052(+) 74.64785504

F6 Rotated Hybrid Composition

MSAALO 558.4800991 1040.265314 802.894535 161.6001346
ALO 951.0065564 1216.362594 1099.303637(+) 89.67953714
PSO 1360.985177 1601.730509 1481.080647(+) 70.85044609

QUATRE 643.4407881 991.0314188 805.936404(≈) 90.57789709

F7 Rotated Rosenbrock’s Function (cec2013)

MSAALO 741.5338717 2449.577822 1368.97891 395.6821817
ALO 3968.852388 9349.459488 5934.070009(+) 1408.381766
PSO 20661.10026 37463.82879 28844.48817(+) 4722.00103

QUATRE 1622.13098 4279.212564 2891.371949 (+) 640.6297767

For the 50-dimensional problem, Figure 2 shows the convergence curves of four
comparison algorithms. For the convergence curves on F1 and F2, MSAALO initiates to
converge around 900 generations; ALO starts to converge around 300 generations; PSO and
QUATRE begin to perform convergence around 200 generations. The convergence curves
prove that MSAALO is stronger than the other three algorithms in the global search for
the F1 and F2 benchmark functions. ALO, PSO and QUATRE algorithms encounter the
problem of local convergence earlier. For F3–F4 and F6 benchmark functions, MSAALO
converges around 600 generations; ALO starts to converge around 300 generations; PSO
starts to converge around 200 generations; QUATRE begins to converge at a later stage,
but QUATRE is not as good at global search as MSSALO. Compared to PSO and ALO,
MSAALO initiates to converge in the late evaluations. These demonstrate that MSSALO
is more robust than the other three algorithms in capturing global profiles. On the F5
benchmark function, QUATRE keeps exploring and converges at 800 generations, while
MSAALO converges at 600 generations, but the graphs show that MSAALO has a more
vital search capability than QUATRE. Although MSAALO converges in 600 generations,
the image shows that MSAALO has a more robust search capability. Compared with the
30-dimensional pictures, MSAALO has better exploitation and exploration ability, proving
that MSAALO effectively solves expensive high-dimensional problems.
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Figure 2. Convergence profiles of algorithms MSAALO, PSO, ALO and QUATRE on 50D with 1000
expensive fitness evaluations.
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4.3. Experimental Analysis on 100-Dimensional Problems

In this section, we compared MSAALO with ALO, PSO and QUATRE in the 100
ultrahigh dimension benchmark functions. Table 4 shows the experimental results of
the working process in the 100-dimensional benchmark function. Figure 3 shows the
convergence curve of these comparison algorithms. The analytical results of these bench-
marks of MSAALO and the three other algorithms for comparison in the 100 dimensions
are displaced in the Table 4. Some evident conclusions can be obtained from this table.
MSAALO is better than the other three algorithms for comparison based on the statistics in
all these benchmark functions. We infer some efficient summary from Ackley, Griewank
and Ellipsoid. The average values of the results acquired by MSAALO are close to the
true optima. For the other functions, these algorithms cannot locate efficient areas. The
information presented in these figures and tables shows that MSAALO efficiently solves
expensive optimization problems. We see from these figures that MSAALO achieves the
optimal value earlier than the other algorithms.

Table 4. Statistical results of the proposed algorithm MSAALO and the comparison algorithm in the
100D benchmark problems.

Function Method Best Worst Mean Std.

F1 Ackley

MSAALO 4.091671039 8.774707511 5.93663355 1.261160452
ALO 17.21809925 18.35013969 17.75140425(+) 0.252252221
PSO 20.77643095 21.02382447 20.92523434(+) 0.056834438

QUATRE 20.31594928 20.8686191 20.62503928(+) 0.163136984

F2 Griewank

MSAALO 1.851830569 6.001070319 3.76704066 1.069549415
ALO 464.5274265 583.0803864 528.7988196(+) 39.70428045
PSO 1943.472754 2498.344413 2276.611987(+) 107.2391004

QUATRE 1430.698577 2134.531336 1793.335464(+) 181.220765

F3 ROSENBROCK

MSAALO 112.0862083 211.8498645 138.034242 26.45273892
ALO 2410.659629 4175.374741 3366.246959(+) 441.5179758
PSO 27037.12808 34123.8097 30717.76802(+) 1815.48804

QUATRE 13816.70038 25796.98324 20242.16778(+) 3580.971155

F4 Ellipsoid

MSAALO 22.89635178 73.41179558 35.8898755 14.07490228
ALO 5696.304718 8042.695737 6953.813749(+) 662.0899404
PSO 28389.28814 33571.10473 31854.291(+) 1220.854732

QUATRE 18719.26637 29801.73299 24745.30049(+) 3096.902059

F5 Shifted Rotated Rastrigin’s

MSAALO 1489.06262 1799.211178 1629.79298 95.1636403
ALO 1655.179877 2148.085759 1926.3667(+) 124.7194161
PSO 2857.938669 3291.183242 3066.387997(+) 113.9989264

QUATRE 2210.59487 2905.192736 2527.153953(+) 161.6924755

F6 Rotated Hybrid Composition

MSAALO 848.527674 1255.817093 1062.61981 133.5560952
ALO 1122.289105 1417.145008 1274.688185(+) 80.250579
PSO 1512.055362 1740.348203 1627.7907(+) 63.57016225

QUATRE 993.5244617 1254.09476 1126.998238(+) 69.97195687

F7 Rotated Rosenbrock’s Function (cec2013)

MSAALO 10046.25135 22562.53428 16436.0136 3689.60855
ALO 35859.80184 54097.03908 42368.11593(+) 5130.810022
PSO 92916.94975 152443.4916 128356.6319(+) 14760.00506

QUATRE 28101.80237 49374.69153 38759.84115(+) 5441.075378
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Figure 3. Convergence profiles of algorithms MSAALO, PSO, ALO and QUATRE on 100D with 1000
expensive fitness evaluations.
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For Ackley and Griewank test functions, MSAALO converges around 1000 evaluations;
ALO converges around 300 evaluations; PSO and QUATRE start to perform convergence
around 100 evaluations. ALO, PSO and QUATRE algorithms encountered the problem of
local convergence very early. For Ellipsoid and Rotated Rosenbrock test functions, MSSALO
converges around 900 evaluations; ALO converges around 300 evaluations; PSO converges
around 100 evaluations; QUATRE has better exploring ability than the convergence curve.
We can see that the MSAALO algorithm has a better global ability for the best solutions.
The convergence curves of Rosenbrock show that MSAALO has a better exploration ability
and achieves a good balance between exploitation and exploration. In the Rotated Hybrid
Composition (F6) benchmark function, MSAALO converges in 900 evaluations; ALO
converges in 400 evaluations; QUATRE converges in 600 evaluations; PSO converges in
200 evaluations. The other three algorithms converge later out of the Shifted Rotated
Rastrigin benchmark function. Compared with the 50-dimensional problems, MSSALO
has a more vital ability to capture the global best solution, demonstrating that MSSALO is
prevalent in solving high-dimensional problems.

4.4. WSN Coverage Optimization Experiment Simulation

In this paper, MSAALO is employed to address the sensor coverage problem of WSN.
MSAALO optimizes the positions of sensor nodes to reach the maximum coverage area.
In order to verify the validity of this algorithm for optimizing the coverage area of WSN,
this study compared MSAALO with PSO, ALO, QUATRE in this application. First, we
tested the coverage rate in a different amount of sensor nodes with the same radius (5 m).
The amount of sensors vary from 30 to 55. Secondly, we validated the effectiveness with
different sensor radius and a fixed number of sensor nodes (30). The variation range of
radius is from 5 m to 10 m. The ants’ size is equal to 50, and the round time is 10. The four
algorithms independently run 30 times to compare. From the coverage rates of 30 times,
this study computes the average rates to analyze. This research included a simulation
experiment in the area of plane of 50 m × 50 m in the three-dimensional terrain.

Table 5 represents the comparing results of coverage rate using the different number
of sensor nodes with identical radius. Table 6 shows the comparing results of coverage
rate using different sensor detecting radius with the same amount of sensor nodes (30).
From these data, this article analyze that MSAALO has more advantages to address the
complication situation as the number and radius of sensor nodes increase. The simulation
results based on different radii and nodes show that MSAALO improves the average
coverage by 2.122% and 1.718%, respectively.

Table 5. Comparing results with different numbers of nodes.

Num MSAALO ALO PSO QUATRE

30 47.56% 36.22% 47.72% 41.16%
35 51.74% 40.61% 51.08% 45.48%
40 59.45% 44.83% 56.68% 50.56%
45 62.14% 48.96% 59.12% 55.00%
50 66.87% 52.54% 64.84% 59.28%
55 69.73% 55.88% 67.60% 60.92%

Table 6. Comparing results with different radii.

Radius MSAALO ALO PSO QUATRE

5m 47.56% 36.22% 47.72% 41.16%
6m 61.96% 47.15% 60.88% 55.92%
7m 75.45% 57.58% 74.28% 66.44%
8m 86.14% 66.48% 84.28% 76.72%
9m 92.59% 69.88% 90.60% 83.48%

10m 96.93% 79.24% 94.44% 89.96%
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5. Conclusions

In order to improve the sampling technology of the surrogate models and the con-
vergence performance of ALO, this paper proposes a Mahalanobis Sampling Surrogate-
Assisted Ant Lion Optimization (MSAALO) algorithm. There are three layers: the local
surrogate, Mahalanobis sampling surrogate model and global model. Together, these triple
layers shape the holistic framework of MSAALO. By using RBFN, the whole model is
trained. The algorithm uses Mahalanobis distance to obtain some samples in the Ma-
halanobis sampling surrogate model. Then, the algorithm uses these samples to form a
surrogate model. The global surrogate model has the ability of global fitting of smooth
functions. The local surrogate model mainly acquires the function model around the
currently best ant to enhance the search ability of the algorithm. This work uses seven
benchmark functions to test to verify the effectiveness in dealing with high-dimensional
time-consuming problems. The validation data in 30 dimensions, 50 dimensions, and
100 dimensions demonstrates that MSAALO is competitive. In order to verify the effect
in practical application, this study simulates the 3D deployment effect of Wireless Sensor
Networks. MSAALO also has a significant number of spaces to improve. Future work could
enhance the diversity of selected samples. Additionally, in order to improve the surrogate’s
ability to acquire the global landscape more precisely of the real problem, we should choose
various models. Future work must incorporate refining the model or algorithm to solve
real multi-objective large-scale world problems, as well.
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