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ABSTRACT Here, we present draft genome sequences for three atypical Frankia
strains (lineage 4) that were isolated from root nodules but are unable to reinfect
actinorhizal plants. The genome sizes of Frankia sp. strains EUN1h, BMG5.36, and
NRRL B16386 were 9.91, 11.20, and 9.43 Mbp, respectively.

Endosymbiotic plant-bacterium associations are contributors to terrestrial biological
nitrogen fixation and include actinorhizal symbiosis. This mutually beneficial sym-

biotic relationship between actinobacterial Frankia spp. and actinorhizal plants results
in the formation of plant root nodule structure. This relationship allows proliferation of
the plant through the bacterium, obtaining nutrients from the host plant in exchange
for a source of fixed nitrogen that is assimilated by the host plant (1). Mutualistic
infective Frankia strains are systematically classified based on their morphology, be-
havior in culture, and mode of infection within one of three major phylogenetic clusters
(2). Another Frankia group isolated from actinorhizal nodules that are unable to
undertake the nitrogen fixation process (Fix-) and/or reinfect their host plant causing
nodulation (Nod-) are classified as “atypical Frankia” spp. and form a fourth phyloge-
netic cluster within the genus Frankia. The phenomena of how these atypical Frankia
spp. enter inside nodule and the host metabolic cost of their presence as parasitic
cheaters remain unclear (3). Although genomes for representatives for all four clusters
have been sequenced (4), only two genomes are available for atypical Frankia spp. from
cluster 4. The purpose of this study was to expand the number of genomes sequenced
from cluster 4 to provide insight on these questions.

Frankia sp. strains EUN1h, BMG5.36, and NRRL B16386 were isolated from Elaeagnus
umbellata (Tunisia), Coriaria myrifolia (Algeria), and Morella californica (United States; A.
Gueddou, M. Gtari, M. Lechevalier, unpublished data), respectively. All three strains
have failed to reinfect and nodulate their respective original host and any other
actinorhizal host plant tested.

Sequencing of the draft genomes of Frankia sp. strains EUN1h, BMG5.36, and NRRL
B16386 was performed at the Hubbard Center for Genome Studies (University of New
Hampshire, Durham, NH) using Illumina technology techniques (5). A standard Illumina
shotgun library was constructed and sequenced using the Illumina HiSeq 2500 platform
with paired-end reads of 2 � 250 bp, which generated 2,121,668 to 15,077,492 reads
(Table 1). The Illumina sequence data were trimmed by Trimmonatic version 0.32 (6)
and assembled using SPAdes version 3.5 (7) and ALLPaths-LG version r52488 (8). Data
on the final draft assemblies for Frankia sp. strains EUN1h, BMG5.36, and NRRL B16386
are presented in Table 1. The final assembled genomes for Frankia sp. strains EUN1h,
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BMG5.36, and NRRL B16386 contained total sequence lengths of 9,910,952, 11,203,906,
and 9,435,764 bp, respectively, with an average G�C content of 71% (Table 1). The
assembled Frankia sp. strains EUN1h, BMG5.36, and NRRL B16386 genomes were
annotated via the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) and resulted
in 7,928, 8,952, and 7,562 candidate protein-coding genes, respectively. Bioinformatic
analysis of these three genomes by use of the antiSMASH program (9, 10) revealed that
these genomes again provided high numbers of secondary metabolic biosynthetic
gene clusters (Table 1), similar to previous findings (4, 11), and including potential
compounds, like frankiamicin (12).

Accession number(s). The draft genome sequences have been deposited in Gen-
Bank under the accession numbers in Table 1.
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TABLE 1 Genome statistics

Frankia strain
No. of
reads

N50 contig
size (kb)

Assembly
size (Mb)

No. of
contigs

Sequencing
depth (�)

No. of
CDSsa

G�C
content (%)

No. of biosynthetic
gene clustersb Accession no.

BMG5.36 2,121,668 84.9 11.20 280 28.0 8,952 71.26 33 MBLO00000000
NRRL B-16386 10,384,450 117.5 9.43 174 161.4 7,562 71.93 27 MOMC00000000
EUN1h 15,077,492 194.6 9.91 129 305.1 7,928 71.83 30 MBLN00000000
aCDSs, coding sequences.
bBiosynthetic gene clusters for natural products were identified by the use of the antiSMASH software (9, 10).
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