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Abstract

Background and objective

In resource-poor settings, micronutrient deficiencies such as vitamin A deficiency may co-

exist with iron-deficiency. In this study we assessed the iron and vitamin A status of school-

children and the association between vitamin A and iron status.

Methods

A cross-sectional design using the baseline data of a dietary intervention trial conducted

among randomly selected 5–12 years old schoolchildren (n = 224) from 2 rural schools in

northern Ghana. Hemoglobin (Hb), serum ferritin (SF) and serum transferrin receptor (sTfR)

concentrations were used as measures of iron status. Retinol binding protein (RBP) was

used as a measure of vitamin A status. Subclinical inflammation (SCI) was measured using

C-reactive protein (CRP) and α1-acid glycoprotein (AGP) concentrations. We examined the

cross-sectional association between vitamin A and iron status biomarkers with multiple lin-

ear regressions.

Results

The proportions of schoolchildren with anemia (WHO criteria), iron-deficiency (ID, SF <15μg/l

and/or sTfR >8.5mg/l) and iron-deficiency anemia (IDA, concurrent anemia and ID) were

63.8%, 68.3% and 46.4% respectively. Low or marginal vitamin A status (0.70 μmol/l� RBP <
1.05μmol/l) was present in 48.2% while 37.5% of the schoolchildren had vitamin A deficiency

(VAD, RBP <0.70 μmol/l). The prevalence of SCI as well as concurrent VAD and ID were

48.7% and 25% respectively. RBP was associated with Hb (β = 7.2, P = 0.05) but not SF (β =

20.7, P = 0.33) and sTfR concentration (β = 12.0, P = 0.63). In the presence of SCI, RBP was

not associated with hemoglobin status but a significant positive association was observed

among children without SCI.
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Conclusions

The study shows that RBP is significantly associated with Hb concentration but not with SF

and sTfR. The observed relationship between RBP and Hb is only significant in the absence

of SCI.

Introduction

Multiple micronutrient deficiencies are common in resource poor settings [1–3]. These micro-

nutrient deficiencies are a result of inadequate consumption of nutrient-rich foods, presence

of diseases and inefficient utilization of available micronutrients[4,5]. One of the important

vulnerable groups, but often neglected by public health interventions, is school-aged children.

Recent studies have emphasized the importance of micronutrient deficiencies among school-

aged children as they are particularly vulnerable [3,6]. Iron deficiency (ID) co-exists with vita-

min A deficiency (VAD) [6–8]. Concurrent deficiencies of vitamin A and iron have been

found among school-aged children in Africa [9,10].

ID is considered one of the ten leading global risk factors with regards to attributable

risk [11] and is believed to be an underlying cause of anemia worldwide [11–13]. ID is also

known to impair cognitive development of children [14–16]. The long term effect of ID is

poor productivity [17,18]. On the other hand, VAD is known to compromise the immune

system [19] and is the leading cause of night blindness and a major nutritional determinant

of severe infection and mortality among children in the developing world [20,21]. In fact,

both ID and VAD increase the risk of morbidity and mortality among young children [22–

24]. The work of Marasinghe et al [2] also demonstrated that iron status is also associated

with weight-age z-score and vitamin A status is associated with severe stunting. It is hypoth-

esized that VAD causes anemia through 3 mechanisms: modulation of erythropoiesis,

reduction of the body’s immunity to infectious diseases thus leading to anemia of infection

and modulation of iron metabolism [21,25]. Both observational studies [26–28] and ran-

domized controlled trials [29–31] have reported an association between vitamin A status

and iron status. VAD may increase the risk of iron deficient-erythropoiesis and anemia as a

result of altering the absorption, storage, release or transport of iron to the marrow [32].

Consequently, interventions that control VAD have been shown to improve iron status and

control anemia induced by either ID or infection [33,34]; this has been attributed to the

increased absorption and mobilization of hepatic iron stores in the presence of adequate

vitamin A [35].

Although ID and VAD are a significant cause of undernutrition, there is a paucity of data

on the prevalence of VAD, ID and the association between vitamin A status and iron status

among school-aged children in Ghana. Studies on vitamin A and iron status involving differ-

ent populations are necessary to further elucidate the interaction between vitamin A and iron

status. The aim of the present study was to investigate the association between vitamin A status

and iron status among rural Ghanaian school-aged children.

Materials and methods

Study design

A cross-sectional design using the baseline data of a dietary intervention trial in northern

Ghana [36].

Vitamin A and iron status

PLOS ONE | DOI:10.1371/journal.pone.0170747 February 2, 2017 2 / 15



Study area

The study was carried out in Tolon district; one of the 26 districts in the Northern Region of

Ghana. The district has a single rainy season beginning in April and ending by October. The

vegetation is guinea savannah with a dry season which starts in November and ends in March

with maximum temperatures occurring towards the end of the dry season [37]. About 90% of

the district is rural and subsistence agriculture is the main occupation of the people. The main

staples cultivated include maize, yam and rice. Other crops commonly cultivated and con-

sumed are groundnuts and cowpeas [38]. The main food sources of vitamin A and iron in the

district are green leafy vegetables such as amaranth (Amaranthus spp.), okra leaves and fruit

(Abelmoschus esculentus), jute mallow (Corchorus olitorius), and kenaf/roselle (Hibiscus sabdar-
iffa). Although seasonal, mangoes are also a good dietary source of vitamin A and iron in the

district.

Subjects

The study population consisted of 5–12 years old schoolchildren (n = 241) who were randomly

selected from 2 primary schools in 2 rural communities in the Tolon district of Ghana. Data

was collected in October 2010 on apparently healthy children; details of the selection proce-

dure has previously been published elsewhere [36]. For this analysis, only schoolchildren with

complete data on vitamin A and iron status biomarkers, inflammation biomarkers (C-reactive

protein and α1-glycoprotein), malaria antigen, anthropometric measurements, dietary diver-

sity and socio-demographic characteristics were included (n = 224).

The dietary intervention trial within which this baseline data was collected was approved by

the Medical Research Ethics Committee of Wageningen University, The Netherlands and the

Institutional Review Board of Noguchi Memorial Institute for Medical Research, University of

Ghana. Permission was also obtained from the district administration, chiefs, opinion leaders

of the respective communities and thumb-printed informed consent was obtained from each

parent or caregiver

Biochemical measurements

Serum ferritin (SF), soluble transferrin receptors (sTfR), C-reactive protein (CRP), α1-acid

glycoprotein (AGP) and retinol binding protein (RBP) were simultaneously measured using

an in-house sandwich ELISA technique [39]. Hemoglobin (Hb) was analyzed with a Pentra

60C+ automated analyzer on the same day blood was drawn. Details of the measurements have

been previously reported [36]. Anemia was defined using the WHO criteria [12] i.e. Hb<115

g/l for children 5–11 years (n = 213) and 120 g/l for children aged 12 years (n = 11). Using the

WHO criteria [12], we further defined ID as SF concentration <15μg/l and/or sTfR concentra-

tion >8.5 mg/l (Ramco equivalents) [12,40]. Subclinical inflammation (SCI) was defined as

CRP >5 mg/l and/or AGP>1.0 g/l [41]. IDA was defined as concurrent anemia and ID. We

also defined VAD as RBP<0.7μmol/l and low or marginal vitamin A status as RBP�0.7 but

<1.05μmol/l [23]. Concurrent VAD and ID was defined as RBP <0.7μmol/l with ID (SF

<15μg/l and/or sTfR>8.5 mg/). The prevalence of ID and VAD were re-calculated after

adjustment for inflammation using the correction factors of Thurnham et al [42].

Malaria screening

The malaria rapid diagnostic cassettes (First Response; Premier Medical) were used to screen

for current or recent malaria. The cassette had a sensitivity of 95% and a specificity of 99.5%

(First Response; Premier Medical). Children who were positive to the malaria antigen were

Vitamin A and iron status
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subsequently treated following recommended guidelines; details of the screening and treat-

ment can be found in our previous work [36].

Anthropometry

Weight and height of the children were measured according to standard procedures [43].

Height was measured to the nearest 0.1cm with a microtoise (Bodymeter 208; Seca) whilst

weight was measured to the nearest 0.1kg with an electronic scale (UNIscale; Seca). The aver-

age of duplicate measurements was used to compute z-scores [height-for-age z-score (HAZ),

BMI-for-age z-score (BAZ) and weight-for-age (WAZ)] for each child using WHO anthro

plus 3.2.2. A verifiable record (birth certificate, health record, community birth register) was

used to estimate each child’s age.

Dietary diversity score

A qualitative 24-hour recall (24hR) was used to assess the dietary intake of the schoolchildren.

Mothers and caregivers were first asked to mention all foods including drinks and snacks that

were consumed the previous 24 hours (from wake-up to wake-up) preceding the survey by the

index child from home and outside of home. She was next probed for likely forgotten foods

and then asked to give a detailed description of foods and beverages consumed, including

ingredients for mixed dishes. To ensure intake outside home was captured, children were

asked to assist their mothers/caregivers in the recall. The 24hR was used to complete the Food

and Agriculture Organization’s dietary diversity questionnaire consisting of 13 food groups

[44]. In brief, a score of 1 was assigned if a child consumed a food item belonging to a particu-

lar food group, else 0. Individual food group scores were aggregated into a dietary diversity

score (DDS) for each child. DDS refers to the different number of food groups consumed over

a reference period. Any food consumed on multiple occasions from the 24hR was counted

only once resulting in a maximum attainable score of 13. The scoring did not consider a mini-

mum intake (in grams) for the food groups.

Other covariates

Demographic and socio-economic related covariates were assessed with a pre-tested semi-

structured questionnaire and included child’s compound size, educational status of household

head and mother as well as occupation of household head and mother.

Statistical analysis

Population characteristics were presented as means (standard deviations) for normally distrib-

uted data, median (interquartile range) for skewed data and frequency (percentages) for cate-

gorical variables. We analyzed the cross-sectional association between vitamin A status (RBP)

and iron status (Hb, SF and sTfR) with hierarchical multiple linear regressions using the Gen-

eral Linear Procedure in SAS. The assumption of normality was assessed with visual inspection

(histograms, boxplots and Q-Q plots) and test for normality with the Kolmogorov-Smirnov

test. Normality violations were corrected by a natural log transformation of the dependent

variables (SF and sTfR) before analysis and the β regression coefficients multiplied by 100 to

determine the effect size in percentages. Potential confounders were selected a priori based on

literature and included sex [3,8,12], age [3,8,12], SCI [12,41], malaria [12,45], nutritional status

of child [8], dietary diversity [3], total family size [33], educational status of household head

and mother [33] as well as occupation of household head and mother [8,33]. However, only

covariates which had at least a 10% effect on the crude estimate were retained in the complete

Vitamin A and iron status
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multivariate models. CRP and AGP were significantly correlated (r = 0.61, P< .0001;

Rho = 0.68, P< .0001); although dropping one of the correlated variables is the simplest

method, O’Brien [46] recommends using a combined measure of correlated variables as an

alternative. We therefore included in our regression models the combined measure of CRP

and AGP, SCI (elevated CRP and/or AGP). The Pearson and Spearman correlation coefficients

showed no multicollinearity between the other covariates in the regression models. Four mul-

tivariable models besides the crude model were formulated. In a hierarchical order, model 1

was adjusted for SCI (dichotomous) and malaria (positive or negative); model 2 was adjusted

for demographic factors: age (continuous) and sex (male or female); model 3 was further

adjusted for nutritional status (BAZ as a continuous variable) and dietary diversity (DDS as a

continuous variable) and model 4 was finally adjusted for socio-economic factors: family size

(continuous) and educational status of mother (literate or non-literate). Interaction terms for

age, sex and SCI with other covariates (e.g. age�RBP, sex�RBP and SCI�RBP) were included in

the models but none was significant. Mathematically, the models were expressed as shown

below:

Crude model: y = β0 + β1 × RBP

Model 1: y = β0 + β1 × RBP + β2 × SCI + β3 × malaria

Model 2: y = β0 + β1 × RBP + β2 × SCI + β3 × malaria + β4 × age + β5 × Sex

Model 3: y = β0 + β1 × RBP + β2 × SCI + β3 × malaria + β4 × age + β5 × sex + β6 × BAZ +

β7 × DDS

Model 4: y = β0 + β1 × RBP + β2 × SCI + β3 × malaria + β4 × age + β5 × Sex + β6 × BAZ +

β7 × DDS + β8 × family size + β9 × Mother’s education

Where y = Hb or log (SF) or log (sTfR)

All statistical analyses were done with SAS 9.3 (SAS Institute Inc., Cary NC.) and a two-

tailed P-value � 0.05 at 95% confidence interval was considered statistically significant.

Results

From Table 1, the mean Hb was 109.3 ± 13.4 g/l whilst the median (IQR) for SF and sTfR were

44.8 (29.7 to 93.9) μg/l and 10.1(8.1 to 13.2) mg/l respectively. Overall, 63.8% of the schoolchil-

dren were anemic. Using a cut-off value of<15μg/l for SF concentration, 7.1% of the children

had ID and this proportion increased to 8.9% after correction with factors proposed by Thurn-

ham. ID differed widely if based on SF or sTfR (7.1% vs. 68.3%). The overall prevalence of ID

defined as SF<15μg/l and/or sTfR> 8.5 g/l was 68.3%.

We found that 46.4% of the schoolchildren had IDA. The mean RBP concentration was

0.8 ± 0.2 μmol/l with 37.5% of the children being vitamin A deficient; the VAD prevalence

decreased to 30.8% after correction with factors proposed by Thurnham. Furthermore, a half

(50.5%) of the schoolchildren had low or marginal vitamin A status and a quarter (25%) of

them had concurrent VAD and ID. Close to half (48.7%) of the children had SCI. The preva-

lence of malaria antigenemia was 81.3%; about 40% of those with malaria antigenemia had

SCI. The mean DDS of the children was 5.9 ± 0.9. Only a quarter (24.6%) of the children con-

sumed vitamin A-rich dark green leafy vegetables and less than 10% each consumed dairy

products, flesh foods, eggs, vitamin A-rich fruits and vitamin C-rich fruits (S1 Fig).

In the crude model of the multivariate linear regression analysis (Table 2), a unit increase in

RBP was associated with a significant 10.4 g/l increase in Hb concentration (β = 10.4, P = 0.01).

After adjustment for possible confounders, the association between RBP and Hb remained

Vitamin A and iron status
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Table 1. Descriptive statistics of the schoolchildren.

Variable Overall (n = 224)

Child characteristics

Sex (Male); n (%) 141 (63.0)

Age in years; (mean ± SD) 8.1 ± 2.1

DDS (mean ± SD) 5.9 ± 0.9

Family size (mean ± SD) 15.6 ± 8.7

Iron biomarkers and status

Hb concentration, g/l; (mean ± SD) 109.3 ± 13.4

SF concentration, μg/l; median (IQR) 44.8 (29.7, 93.9)

sTfR concentration, mg/l; median (IQR) 10.1 (8.1, 13.2)

Anemiaa, n (%) 143 (63.8)

ID based on SF <15 μg/l; n (%) 16 (7.1)

ID based on SF <15 μg/l with Thurnham correction [42]; n (%) 20 (8.9)

ID based on SFb <15 μ g/l; n (%) 13 (5.8)

ID based on SF <30 μg/l; n (%) 58 (25.9)

ID based on sTfR >8.5 g/l 153 (68.3)

ID based on SF <15 μ g/l and/or sTfR > 8.5 mg/l; n (%) 153 (68.3)

IDA; n (%) 102 (45.5)

Vitamin A biomarker and status

RBP, μmol/l; (mean ± SD) 0.8 ± 0.2

VAD based on RBP <0.7 μmol/l; n (%) 84 (37.5)

VAD with Thurnham correction [42]; n (%) 69 (30.8)

VADc; n (%) 35 (29.7)

Low or marginal vitamin A (0.7 μmol/l� RBP <1.05μmol/l); n (%) 108 (48.2)

Low or marginal vitamin A after Thurnham Correction [42]; n (%) 112 (50.0)

Concurrent VAD and IDd 56 (25.0)

Malaria antigenemia; n (%) 182 (81.3)

Inflammation biomarkers and classification

AGP concentration, g/l; median (IQR) 1.0 (0.8, 1.2)

CRP concentration, mg/l; median (IQR) 1.1 (0.3, 4.7)

CRP concentration with malaria, mg/l; median (IQR) 1.3 (0.3, 5.7)

AGP concentration with malaria, g/l; median (IQR) 1.0 (0.8, 1.2)

Elevated CRP (> 5 mg/l) 54 (24.1)

Elevated AGP (>1 g/l) 98 (43.8)

Malaria with elevated CRP; n (%) 46 (20.5)

Malaria with elevated AGP; n (%) 80 (35.7)

Malaria with elevated CRP and/or AGP 89 (39.7)

Presence of sub-clinical inflammatione 109 (48.7)

Nutritional status

BAZ; (mean ± SD) -0.5 ± 0.8

HAZ; (mean ± SD) -1.4 ± 1.2

WAZ; (mean ± SD) -1.2 ± 1.0

Stunting; n (%) 69 (30.8)

Underweightf; n (%) 26 (16.5)

Level of education of mother; n (%)

Literate 7 (3.1)

Level of education of father; n (%)

Literate 37 (16.5)

(Continued )
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statistically significant (β = 7.2, P = 0.05). A unit increase in RBP resulted in a non-significant

1% increase in SF in the crude model (β = 0.01, P = 0.99). When we adjusted for SCI and

malaria, the association between RBP and SF was still not statistically significant (β = 22.5,

P = 0.29); further adjustment for demography, nutritional status and socio-economic factors

did not change the association (β = 20.7, P = 0.38). Table 2 also indicates that a unit increase in

RBP was associated with a 0.9% decrease in sTfR concentration in the crude model (β = -0.9,

P = 0.94). This inverse association became positive after adjustment for SCI, malaria and back-

ground characteristics but remained not statistically significant (β = 5.7, P = 0.63).

Tables 3 and 4 show that RBP is only associated with Hb in the absence of SCI. Tables 3

and 4 demonstrate that in the presence of SCI, there is an overestimation of the association

between RBP and SF and an underestimation of the association between RBP and sTfR.

While controlling for all other potential confounders (Table 5), children without SCI had

3.7g/l significantly higher Hb level compared to those with SCI (P = 0.04). However, children

without SCI compared to those with SCI had a 63% and 0.23% reduction in SF and sTfR con-

centrations respectively (P = 0.001 and P = 0.97 respectively). We found a significant positive

association between malaria antigenemia (present vs. absent) and SF (β = 25.1, P = 0.05) and

an insignificant positive association with sTfR (β = 12.8, P = 0.09). In contrast, presence of

malaria resulted in a non-significant 1.3g/l decrease in Hb (P = 0.55). With the exception of

sTfR (R2 = 0.05, P = 0.19), the proportion of variance explained by the multivariate models for

Hb (R2 = 0.17, P< .0001) and SF (R2 = 0.20, P< .0001) were significant. Lastly, the goodness

of fit of the multivariate models as measured by the mean squared errors (MSE) was 12.49,

0.75 and 0.42 respectively for Hb, SF and sTfR.

Discussion

Prevalence of anemia, ID, IDA and VAD

In this population of schoolchildren from rural northern Ghana, the overall prevalence rates of

anemia, ID, IDA and VAD were of severe public health significance [12,47]. In the same area,

Table 1. (Continued)

Variable Overall (n = 224)

Occupation of mother (n = 221)

Farmer 153 (69.2)

Trader 39 (17.7)

Other 29 (13.1)

Occupation of father (n = 221)

Farmer 201 (91.0)

Other 20 (9.0)

DDS, dietary diversity score; Hb, Hemoglobin; SF, Serum ferritin; sTfR, Transferrin receptor concentration;

ID, Iron deficiency; IDA, Iron deficiency anemia; CRP, C-reactive protein and AGP, α1 glycoprotein; RBP,

retinol binding protein; VAD, vitamin A deficiency; BAZ, Body-mass-index for age z-score; HAZ, Height-for-

age z-score; WAZ, weight-for age z-score; IQR, Inter-quarter range
aHb < 115g/l for 5–11 years children (n = 213) and Hb <120g/l for 12 years children (n = 11)
bID based on SF <15 μg/l excluding children with elevated CRP and/or AGP
cVitamin A deficiency excluding children with sub-clinical inflammation
dRBP <0.7 μmol/l with ID (SF <15 μg/l and/or sTfR>8.5 mg/l)
eSub-clinical inflammation, elevated CRP and/or AGP (CRP >5 mg/l and/or AGP >1.0 g/l)
funderweight was computed for 158 children with age <10 years (n = 66 had ages� 10 years).

doi:10.1371/journal.pone.0170747.t001

Vitamin A and iron status
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an earlier work among school children corroborates the severity of anemia, ID and IDA [48].

Overall, the prevalence of anaemia and ID were about twice the rates reported by Herrador

et al (anemia = 30.9%, ID = 3.4%) [3] in Ethiopia and higher compared to Righetti et al in Côte

d’Ivoire (anemia = 47.3%, ID = 2.7%) [49]. However, the VAD prevalence among this cohort

of schoolchildren was similar to that reported by Herrador et al (VAD = 29.3%) [3] in Ethio-

pia. Using serum retinol concentration, a study among schoolchildren in the Volta region of

Ghana reported a similar prevalence of VAD (35.6%) [50] and associated it with inadequate

dietary vitamin A intake.

Among this group of schoolchildren, adjusting of RBP with Thurnham et al [42] correction

factors or excluding children with SCI had no influence on the public health significance of

VAD. Similarly, adjusting SF with Thurnham et al [42] correction had little influence on the

prevalence of ID based on SF<15 μg/l. However, we observed that the prevalence estimates of

ID varied widely depending on the biomarker used (SF or sTfR); caution may therefore be

needed when estimating ID prevalence in a country like Ghana.

In the present study, a quarter of the children had concurrent VAD and ID; a phenome-

non described by others[3,6–8,32]. The co-existence of high of ID and VAD could partly be

explained by the heavy burden of infections and infestations in the study area, reflected in

Table 2. Multivariate linear regression analysis of the association between iron status biomarkers and retinol-binding protein.

Variable Hemoglobin (Hb) Serum ferritin (SF)** Serum transferrin receptor (sTfR)**

β SE (β) P-value Β SE (β) P-value Β SE (β) P-value

Crude 10.4 3.7 0.01* 0.01 22.8 0.99 -0.9 11.8 0.94

Model 1 8.7 3.7 0.02* 22.5 21.3 0.29 2.9 11.9 0.81

Model 2 7.6 3.6 0.03* 18.3 21.3 0.39 3.8 12.0 0.75

Model 3 7.2 3.6 0.05* 21.0 21.3 0.33 5.3 12.0 0.66

Model 4 7.2 3.6 0.05* 20.7 21.3 0.33 5.7 12.0 0.63

β,regression co-efficient; SE(β), standard error of regression coefficient; n = sample size; Model1: adjusted for sub-clinical inflammation and malaria

(elevated CRP and/or AGP); Model 2: further adjusted for age, sex; model 3 was adjusted for Body-mass-index for age z-score (BAZ) and dietary diversity

score (DDS) and model 4 finally adjusted for family size and education of mother.

*P-value statistically significant at α = 0.05

**Values were log-transformed and estimates are in percentages.

doi:10.1371/journal.pone.0170747.t002

Table 3. Multivariate linear regression of the association between iron status biomarkers and retinol-binding protein for children with sub-clinical

inflammation (n = 109).

Variable Hemoglobin (Hb) Serum ferritin (SF)* Serum transferrin receptor (sTfR)*

n = 109 n = 109 n = 109

β SE (β) P-value Β SE (β) P-value Β SE (β) P-value

Crude 7.7 4.7 0.10 23.3 24.9 0.35 -5.4 14.6 0.71

Model 1 6.8 4.7 0.15 28.1 25.0 0.26 -0.15 14.4 0.99

Model 2 5.6 4.7 0.24 22.8 24.7 0.36 2.3 14.5 0.87

Model 3 4.9 4.7 0.30 25.2 24.5 0.33 4.4 14.5 0.77

Model 4 5.6 4.7 0.24 26.0 25.9 0.32 2.5 14.6 0.86

β,regression co-efficient; SE(β), standard error of regression coefficient; Model1: adjusted for malaria; Model 2: further adjusted for age and sex; model 3

was adjusted for nutritional status (body-mass index for-age z-score/BAZ) and dietary diversity score (DDS) and model 4 finally adjusted for family size and

education of mother.

*Values were log-transformed and estimates are in percentages.

doi:10.1371/journal.pone.0170747.t003

Vitamin A and iron status
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the high prevalence of malaria and SCI (81.3% and 48.7% respectively). Inadequate intake

of ID and VAD-related micronutrients among the school-age children may also partly

explain our findings as their dietary pattern was mainly monotonous plant based foods with

poor consumption of animal foods as well as vitamin A-rich fruits and vegetables (S1 Fig).

Studies have shown that monotonous plant based diets are poor sources of micronutrients

due to high concentrations of phytates and other dietary inhibitors in such diets [51,52]. A

study among school-aged children in the study area confirms micronutrient inadequacy

among the children [48].

Association between vitamin A and iron status

To our knowledge, the present study was the first to examine the association between vitamin

A status and iron status of school-aged children in northern Ghana. The association between

RBP and iron status showed a significant result for only Hb (P = 0.05) with a unit increase in

Table 4. Multivariate linear regression of the association between iron status biomarkers and retinol-binding protein for children without sub-clin-

ical inflammation (n = 115).

Variable Hemoglobin (Hb) Serum ferritin (SF)* Serum transferrin receptor (sTfR)*

n = 115 n = 115 n = 115

β SE (β) P-value Β SE (β) P-value Β SE (β) P-value

Crude 11.7 6.0 0.06 1.3 39.0 0.98 10.7 20.6 0.61

Model 1 12.4 6.1 0.05** 10.3 39.1 0.79 11.1 21.0 0.60

Model 2 12.3 5.9 0.04** 10.8 39.5 0.78 8.5 21.1 0.69

Model 3 12.4 5.9 0.04** 13.0 40.0 0.75 9.3 21.4 0.67

Model 4 11.8 6.0 0.05** 20.0 39.8 0.61 6.4 20.6 0.76

β,regression co-efficient; SE(β), standard error of regression coefficient; Model1: adjusted for malaria; Model 2: further adjusted for age and sex; model 3

was adjusted for nutritional status (body-mass index for-age z-score/BAZ) and dietary diversity score (DDS) and model 4 finally adjusted for family size and

education of mother.

**P-value statistically significant at α = 0.05

*Values were log-transformed and estimates are in percentages.

doi:10.1371/journal.pone.0170747.t004

Table 5. Multivariate linear regression analysis for the association between iron status biomarkers and retinol-binding protein.

Variable Hemoglobin Serum ferritin Serum transferrin receptor

(Hb) (log SF) (log sTfR)

Β SE (β) P-value β SE (β) P-value β SE (β) P-value

RBP 7.2 3.6 0.05* 20.7 21.3 0.33 5.7 12.0 0.63

SCI (absent vs present) 3.7 1.7 0.04* -63.0 10.4 < .0001* -0.23 5.8 0.97

Malaria (positive vs negative) 1.3 2.2 0.55 25.1 13.2 0.05 12.8 7.4 0.09

Age 1.7 0.4 0.0001* 2.1 2.6 0.43 -2.4 1.5 0.09

Sex (male) 0.4 1.8 0.84 15.7 10.7 0.14 4.1 6.0 0.50

BAZ 0.6 1.1 0.59 -11.3 6.3 0.07 -3.7 3.5 0.29

DDS -2.1 1.0 0.03* -2.2 6.0 0.72 4.5 3.3 0.18

Education of mother (Non-literate) -5.5 4.9 0.26 40.0 29.1 0.17 -25.2 16.3 0.12

Family size -0.2 0.1 0.11 0.4 0.6 0.55 0.2 0.3 0.54

β = co-efficient of regression, SE (β) = standard error of regression coefficient; SCI, sub-clinical inflammation. Note: For Hb, R2 = 0.17, root mean squared

error (MSE) = 12.49 and P < .0001; for SF, R2 = 0.20, MSE = 0.75 and P < .0001; for sTfR, R2 = 0.05, MSE = 0.42 and P = 0.19

*P-value statistically significant at α = 0.05.

doi:10.1371/journal.pone.0170747.t005
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RBP resulting in a 7.2g/l increase in Hb concentration after adjusting for possible confounders;

the present findings corroborate those of other studies [6,28,53]. Several intervention studies

have associated vitamin A supplementation with an increase in hemoglobin concentration

[30,33,34]. In this regard, suggestions that anemia prevention programmes should include

vitamin A improvement programmes are justified. In the present study, we hypothesized a sig-

nificant positive association between RBP and SF as well as sTfR. However, we found no signif-

icant association between RBP and SF nor between RBP and sTfR, a phenomenon described

by Hashizume et al [6] and Sales et al [54]. Nevertheless, some studies have reported significant

associations between vitamin A status and SF and sTfR [55,56]. Indeed, the association

between RBP and SF as well as sTfR has been inconsistent in the literature and may be attrib-

uted to extraneous or intrinsic factors within the population that can influence both vitamin A

and iron status indicators.

After adjusting for SCI and malaria antigenemia, the β regression coefficients for sTfR and

SF increased from to -0.9 to 2.9 and from 0.01 to 22.5 respectively, emphasizing the influence

of infection and inflammation on iron status biomarkers. In other words, the findings support

evidence that interpretations of the interaction between vitamin A and iron metabolism can be

masked by infections which lead to increased SF and sTfR concentrations and decreased

plasma retinol concentrations [39,41,42]. Notably, SF has been shown to increase during infec-

tion, giving false negative results [41,42,57]; this explains why we observed a significant posi-

tive correlation between SF concentration and the inflammation biomarkers (CRP and AGP,

data not shown). Thus, the lack of statistical significance between RBP and SF in the present

study could be that SCI exerts its impact on SF independent of the vitamin A status of the host.

The prevalence of malaria in the present study was high compared to Otupiri et al (58.6%)

in the south of Ghana [58]. Whilst this may suggest a geography variation in the prevalence of

malaria even within the same country, studies suggest malaria infection alters the concentra-

tions of iron indicators (notably sTfR) independent of iron status [45,49,59]. Although this

may have affected the measured associations in the current study, by mathematically adjusting

for malaria, we presume its effect on the iron status indicators was sufficiently accounted for.

Strengths and limitations of study

In this study, we could not assess the status of other relevant micronutrients such as the B-vita-

mins, vitamins C and D as well as Zn which have all been linked to iron and vitamin A status

[1–3,25]. Hence, though plausible, the co-existence of VAD and ID with other micronutrient

deficiencies in our study population which may partly explain our findings cannot be ascer-

tained. In our analysis, however, we controlled for dietary diversity which is known to be a

good proxy indicator of micronutrient intake [60].

We used RBP as a proxy measure of vitamin A status rather than serum retinol which may

affect our estimates of vitamin A status. Infection, protein malnutrition and inflammation

depress RBP concentration because it is an acute phase protein [61,62]. It was thus plausible

the RBP levels of the children were not a true reflection of their vitamin A status; but, we pre-

sume the multivariate adjustment for SCI and BAZ may have curtailed the influence of protein

malnutrition and inflammation on the measured effects. RBP has been shown to correlate well

with serum retinol and is a simple, inexpensive tool for assessing vitamin A status in popula-

tion studies [61,63]In addition, sickle cell traits are prevalent in Ghana [64] and may be associ-

ated with increased sTfR [65]; however, because we did not measure hemoglobin variants, we

are unable to examine the extent to which these conditions contribute to elevated sTfR in this

population. Although residual confounding is often a problem in observational studies even

with extensive statistical adjustments [66], we presume this was not a major issue in our

Vitamin A and iron status
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present analysis as we had sufficient information on the main potential confounders and

adjusted for them. Additionally, high correlations between the predictors may cause large

problems in the estimation process [67], but our test for multicollinearity was acceptable in

all predictors used.

The major limitation of the present study is its cross-sectional design. Notably, the inference

of a possible causality is unfounded since it is not possible to determine whether improved vita-

min A status precedes a better iron status. A prospective study would better address this issue.

Finally, the school-aged children we studied may not necessarily be representative of all chil-

dren in Ghana for two reasons. Firstly, our study population is rural, which limits the generali-

zation of our findings to all school-aged children in Ghana. Secondly, Ghana is a multi-ethnic

country with diverse cultural and dietary patterns making it rather impossible to account for all

variations among school aged children in Ghana. At best, the present findings can be extrapo-

lated to all rural school-aged children in Northern Ghana where culture and dietary patterns are

quite similar.

Conclusion

The study shows that RBP is significantly associated with Hb concentration but not with SF and

sTfR. The observed relationship between RBP and Hb is only significant in the absence of SCI.

Supporting information

S1 Fig. Percentage consumption of different food groups for school-aged children in

Tolon district (in October 2010). Vit. A, vitamin A; Vit. C, vitamin C; DGLV, dark green

leafy vegetables; YORV, yellow orange and red vegetables; vegs, vegetables.

(PDF)
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