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The function of natural killer (NK) cells, defending against virus infection and tumour progression, is regulated by multiple
activating and inhibiting receptors expressed on NK cells, among which sialic acid-bind immunoglobulin-like lectins (Siglecs)
act as a vital inhibitory group. Previous studies have shown that Siglec7 and Siglec9 are expressed on NK cells, which negatively
regulate the function of NK cells and modulate the immune response through the interaction of sialic acid-containing ligands.
Siglec7 and Siglec9 are very similar in distribution, gene encoding, protein sequences, ligand affinity, and functions in regulating
the immune system against virus and cancers, but differences still exist between them. In this review, we aim to discuss the
similarities and differences between Siglec7 and Siglec9 and analyze their functions in virus infection and tumour progression in
order to develop better anti-viral and anti-tumor immunotherapy in the future.

1. Introduction

Natural killer (NK) cells are essential innate immune cells
which are able to directly kill unhealthy host cells, including
virus-infected cells [1] and tumour cells [2]. Due to the
downregulation of MHC I of virus-infected cells and tumour
cells, the target cells can escape from the specific recognition
of T cells [3]. However, NK cell-mediated cytotoxicity does
not require antigenic stimulation and is not restricted by
MHC I molecules. Various activating receptors, such as
NKp30, NKp44, NKp46, CD16, NKG2C, and NKG2E, are
involved in the NK-mediated cytotoxicity. Not only activat-
ing receptor interaction with ligands can induce NK cells to
kill target cells but also inhibitory receptors take part in reg-
ulating the cellular cytotoxicity exerted by NK cells.

Siglecs are important fragments of receptors, which reg-
ulate inhibitory signal conduction on NK cells [4]. They are
characterized subset of immunoglobulin superfamily and
one family of type I transmembrane proteins of I-lectin.
Sialic acid (Sia), on the one hand, is a group of 9-carbon-
backnone monosaccharide and is necessary for immunomo-
dulation; on the other hand, it is hydrophilic and negatively
charged and widely expressed at the terminal of the protein
or lipid on the cell surface and secretory proteins [5, 6].
Siglecs are critical receptors of Sia. Siglecs promote cell-cell
recognition and modulate the cytotoxicity of NK cell
towards virus and tumour by binding to the Sia residue of
the glycoconjugates on target cells. According to the evolu-
tion, Siglecs can be divided into two groups. The conserved
Siglecs include sialoadhesin (Siglec1), CD22 (Siglec2), MAG
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(Siglec4), and Siglec15. Another group involves a group of rap-
idly evolving Siglecs, named CD33-related Siglecs. In human,
CD33-related Siglecs consist of CD33 (Siglec3), Siglec5,
Siglec6, Siglec7, Siglec8, Siglec9, Siglec10, Siglec11, Siglec14,
and Siglec16. However, due to no homology between human
and mouse, CD33-related Siglecs in mouse comprise CD33
(Siglec3), Siglec-E, Siglec-F, Siglec-G, and Siglec-H.

Siglecs play important roles in mediating immune
response. For example, CD22 (Siglec-2), specifically expressed
on B cells, interacts with its ligand, α 2,6-linked Sia on adja-
cent cells, inhibiting cell activating signal transduction,
calcium mobilization and B cell receptor activation [7].
Besides, antibody blocking of Siglec8 can induce caspase-3-
like apoptosis and inhibit eosinophil viability [8]. Moreover,
the interaction between Siglec7 and Sia,or between Siglec9
and Sia leads to the phosphorylation of immunoreceptor
tyrosine-based inhibition motif (ITIM), which can suppress
the cytotoxicity of NK cells. Whereas the most prominent
Siglecs of immune regulation on NK cells are Siglec7 and
Siglec9 [9], this review will focus on the current research
progress on the similarities and differences between Siglec7
and Siglec9 and their functions in tumour and virus infection
progression.

2. The Distribution of Siglec7 and Siglec9

Siglec7 and Siglec9 are mainly expressed in immune cells.
Siglec7 is primitively reported to be expressed on NK cells,
especially in CD56bright cells. In addition, a minor subset of
CD8+ T cells, representing cytotoxic T cells, was also con-
firmed to express Siglec7. The expression level in granulocyte
was reported to be lower than monocyte, which was lower
than the lymphocyte’s [10]. In the past years, it was also
proved that Siglec7 was expressed on macrophages [11], den-
dritic cells [12], mast cells, and basophils [13] (Table 1).
Siglec9 is expressed quite broadly among human blood leu-
kocytes, including monocytes, neutrophils, B cells, NK cells,
and minor subsets of T cells [14]. In peripheral blood, the
expression of Siglec9 is predominantly on neutrophils [15–
17] and followed by NK cells, B cells, and monocytes [11].
Siglec9 was also detected on tissue resident macrophages at
low level [11, 18, 19] (Table 1). And it was reported that
the Siglec9 level on neutrophil rose higher than adults during
the neonatal period, but the high level withdrew in one
month after birth. This may be caused by the infection of
the bacterium, Group B Streptococcus (GBS), presenting
mostly in neonatal period [20]. Although the cDNA of
Siglec9 was cloned from promyeloblast, HL60, little evidence
showed that HL60 cells express the protein of Siglec9. It indi-

cates that Siglec9 is possibly expressed in advanced differen-
tiating immune cells [18].

Apart from the immune system, Siglec7 is also found in
other cells, while the expression of Siglec9 in other cells has
not been reported. Nguyen et al. illustrated that Siglec7 was
detected on platelets of healthy donators, and the cross-
linking Siglec7 with its ligand, ganglioside, resulted in platelet
apoptosis [21]. Therefore, Siglec7 may be a potential therapy
target of platelet diseases. Moreover, Dharmadhikari et al.
revealed that Siglec7 detected in β-cells of human pancreatic
islets may participate in glycan metabolism by inhibiting β-
cell apoptosis [22].

3. The Gene and Protein Sequence
Comparison of Siglec7 and Siglec9

With around 84% identity in coding sequence, Siglec7
(p75/AIRM1 or CD328) and Siglec9 encoding genes are both
located in chromosome 19q13.3-13.4 (Figure 1(a)). Full-
length cDNA sequence of Siglec7 was firstly cloned from a
human primary dendritic cell cDNA library by Nicoll and
his colleagues in 1999, and it is 1748 base pair long encoding
a 467-amino acid protein [10]. While Siglec9’s full-length
cDNA sequence was found in the cDNA library of human
acute promyelocytic leukemia cells one year after Siglec7,
which contain a 1392-nucleotide open reading frame and
produces a 463-amino-acid protein [23].

The proteins of Siglec7 and Siglec9 are both type I
membrane proteins of the Ig superfamily. Siglec7 is a
75 kDa protein (the monomer of Siglec7 is reported to
be about 65 kDa) [10], while the protein of Siglec9 is
50.1 kDa [23]. Although there is a difference of molecular
weight between Siglec7 and Siglec9, the protein structure of
Siglec7 is very similar to that of Siglec9 (Figure 1(b),
Table 2). They both consist of an extracellular region, a trans-
membrane region, and a cytoplasmic tail. The extracellular
region of both Siglec7 and Siglec9 contains a hydrophobic
signal peptide and three Ig-like domains including one N-
terminal V-set domain and two C2-set domains. The hydro-
phobic signal peptide in the extracellular region has 18 amino
acids in Siglec7 and 17 amino acids in Siglec9, respectively. In
the three Ig-like domains of both Siglec7 and Siglec9, there
are eight potential N-linked glycosylation sites [10, 14].
Whereas when Siglec7 was treated with N-glycosidase, it
showed a protein backbone of 48 kD [24].Except for the N-
linked glycosylation sites, the Sia binding sites exist in both
of the proteins. The binding of Siglecs with Sia requires mul-
tiple sites to function simultaneously (please see Section 4
below for details).

Table 1: The expression and ligand affinity of Siglec7 and Siglec9 in human immune cells.

Expression
Ligand affinity

Neutrophil NK cells T cells B cells Monocyte Macrophage Eosinophil Basophils
Dendritic

cells

Siglec7 + + + - + + + + + α2,8>α2,6>α2,3
Siglec9 + + + + + + - - + α2,6 α2,3 sulfated residues
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Although Siglec7 and Siglec9 are reported as type I
transmembrane proteins, Varchetta et al.’s group discovered
a soluble Siglec7 (sSiglec7) without a transmembrane region
in circular peripheral blood [25]. Zeng et al.’s group also
unveiled a soluble Siglec9 (sSiglec9) in the plasma, which
can induce the oxidative stress, and the expression can be
increased by TNF-α, IL-6, and IL-8 [26]. Matsumoto
et al.’s group also detected the injected-sSiglec9 in the

inflamed tissue of the mouse paws and all digits after intra-
venously administering recombinant human Siglec9 into
arthritis mice. They also proved that sSiglec9 can suppress
arthritis in the mouse model [27]. Siglec-E is the mouse
ortholog of human Siglec-9. However, whether Siglec-E par-
ticipated in suppressing arthritis was not mentioned in the
study. While human sSiglec9 transgenic mice presented
resistance against GBS infection [28], as well as anti-tumour

Chromosome 19 - NC_000019.10

Siglec9 (51124880...51140480) Siglec7 (51142260...51153526)

51124880 51153526

(a)

Extracellular region

Transmembrane region

Cytoplasmic region

(b)

Figure 1: (a) The gene location of Siglec7 and Siglec9. They are both mapped in the chromosome 19q13.3-13.4. (b) The sequence alignment
of protein Siglec7 and Siglec9. The protein sequences are from uniport (The UniProtKB of Siglec7 Human: Q9Y286; Siglec9 Human:
Q9Y336). The topological domains are colored in pink, light yellow, and blue, representing the extracellular region, transmembrane
region, and cytoplasmic region, respectively. Asterisk: indicating a conserved amino acid in all sequences; colon: indicating the position of
a sequence alignment composed of residues having similar physicochemical properties; point: indicating the column of the multiple
sequence alignment in which the semiconservative substitution was observed. The dark blue frames indicate the eight glycosylation sites.
The green frame represents the Sia binding site, and the yellow frame indicates the Sia binding region. The red frame denotes the ITIM
motif, and the purple frame signifies the ITIM-like motif.

Table 2: Amino acid sequence analysis of Siglec7 and Siglec9 in human immune cells.

Signal peptide
Extracellular region

Transmembrane region
Cytoplasmic region

Ig-like V-type Ig-like C2-type 1 Ig-like C2-type 2 ITIM motif ITIM-like motif

Siglec7 1–18 39–122 150–233 240–336 354–376 435–440 458-463

Siglec9 1-17 20–140 146–229 236–336 349–369 431–436 454-459
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benefit against mammary tumour cells [29], the structure of
sSiglec9 has yet not been well characterized.Hence, further
study is required.

The cytoplasmic regions of Siglec7 and Siglec9 both have
two important functional domains: a membrane proximal
ITIM domain and a membrane-distal motif. Pro439 in the
proximal motif and Asn458 in the distal motif of Siglec7 both
contribute to recruiting phosphatases [30]. The ITIM motif
in Siglec9 is very similar to Siglec7, Ile435-Gln-Tyr-Ala-
Pro-Leu440 in Siglec7 and Leu431-Gln-Tyr-Ala-Ser-Leu436

in Siglec9. And the membrane-distal motif of Siglec9
Thr454-Glu-Tyr-Ser-Glu-Ile459 is an ITIM-like motif, which
is Asn458-Glu-Tyr-Ser-Glu-Ile463 in Siglec7 [10, 18].

4. The Ligand Affinity of Siglec7 and Siglec9

Although comparison of the amino acid sequences between
Siglec7 and Siglec9 results in a similarity up to 98% (compar-
ison tool: T-coffee http://tcoffee.vital-it.ch/), ligand affinity
differences still exist between Siglec7 and Siglec9. It was
reported that Siglec7 binds to α2,8-sialyl residue with the
highest affinity, while binds to α2,6-sialyl residue with lower
affinity and α2,3-sialyl residue with the lowest affinity [31,
32]. Meanwhile, Siglec9 prefers to bind to α2,6-sialyl and
α2,3-sialyl residues [14, 31].

Siglec7 and Siglec9 can also bind to sulfated sialyl Lewisx,
which was proved on normal colonic epithelial cells. And the
expression of sulfated sialyl Lewisx decreased when these cells
become colonic cancer cells. The ligand affinity was con-
firmed by a consortium of functional glycomics using ELISA
onmolecular level (http://www.functionalglycomics.org) and
flow cytometric analyses on cell level in Miyazaki et al.’s
group [11]. The ELISA results showed that Siglec-7 was the
seventh reactive to sialyl 6-sulfo Lewisx, while Siglec9 was
the most reactive. However, cell level results showed that sia-
lyl 6-sulfo Lewisx was detected strongly binding to Siglec7
and hardly binding to Siglec9. The contradictory findings
may be due to that ELISA results on a molecular level may
not always be consistent with the cell experiments, and this
requires further study.

The Sia binding characteristics of Siglec7 and Siglec9 are
determined by specific amino acids. Yamaji et al.’s group
exchanged the V-set domain of Asn (70)-Lys (75) between
Siglec7 and Siglec9, resulting in loss of the original binding
specificities and gaining of each other’s binding properties.
Proved by aforementioned evidence, they further highlighted
that the affinity specificity of Siglec7 and Siglec9 was deter-
mined by the C-C loop of the glycan binding domain [33],
whereas the Arg124 in Siglec7 and Arg120 in Siglec9 was
the definite amino acid for binding to Sia. It was reported that
Siglec-9 transiently transfecting to COS cells was able to rec-
ognize red blood cells, but COS cells expressing Arg120-
mutant Siglec9 could not bind to red blood cells. This result
indicated that the stable salt bridge connecting Arg and Sia
is necessary for binding [18, 31].

Moreover, Malaker et al. proved that cells treated with
secreted protease of C1 esterase inhibitor (StcE) had a
decreased affinity with Siglec7, but the binding to Siglec9
was not affected. StcE is a bacterial protease from E. coli

and selective for mucin-domain cleavage by identifying dis-
crete peptide- and glycan-based motifs. The main feature of
the mucin domain is the high frequency of Ser and Thr resi-
dues that are O-glycosylated by α-N-acetylgalactosamine (α-
GalNAc) [34]. This phenomime indicates that the binding
between Siglec7 and cells depends on the mucin domain,
and the binding between Siglec9 and cells may rely on some
other motifs rather than mucin domain. Besides, StcE was
reported to mainly cut densely O-glycosylated proteins
and has no reactivity with N-glycosylated proteins and
sparsely O-glycosylated [35]. The difference in ligand affin-
ity between Siglec7 and Siglec9 may not only be due to the
differences in sialylation site but also be due to the differences
in N-glycosylation or O-glycosylation, even the density of
glycosylation. Taken together, accumulating evidences indi-
cate Siglec7 and Siglec9 have diverse ligand affinity which,
to some extent, explains the different function of the two lec-
tins in immune cells.

5. The Function of Siglec7 and Siglec9 in
NK Cells

Siglec7, Siglec9, and Siglec-17 are expressed in NK cells
and play important roles in inhibitory signal transducing
through Sia-dependent binding. Siglec7, first detected in
NK cells in 1999, serves as an inhibitory receptor mediat-
ing Sia-dependent ligand recognition [10, 24]. Shao et al.
proved that the Siglec7+ subgroup of NK cells produces more
CD107a degranulation and secretes more cytokines, such as
IFN-γ and TNF-α, and they considered Siglec7 as a marker
of a higher function group of NK cells [36]. Siglec9, which
is highly related to Siglec7, was first found in NK cells in
2000 [14, 18]. It has been proved that the expression of
Siglec9 happened in the early stage of NK cell differentiation
from CD56bright to CD56dim. Jandus et al. indicated that
Siglec9 might be a maker for an early maturity group of NK
cells, which are less cytotoxic but more chemotactic [9]. It
was previously reported that Siglec7 was expressed on all
NK cells [10, 24]. However, more and more evidences show
that there are Siglec7- NK cell subsets [10, 36, 37]. Shao
et al. reported that Siglec7 was preferentially expressed on
mature NK cells, and Siglec7+ NK cells express more activat-
ing receptors and less inhibitory receptors. They believed that
Siglec7 may be defined a more cytotoxic group of NK cells
[36]. And Siglec9 is expressed on 30-40% of CD56dim NK
cells [19] and shows very weakly positive on CD56bright NK
cells [18]. Except for immune function, it is showed that
the expression of Siglec7 decreased on NK cells among the
obese population (BMI > 30 kg/m2), which was not applica-
ble to Siglec9 [38]. However, whether Siglec7 participates in
lipid metabolism remains unclear.

Abundant evidences have proved that Siglec7 and Siglec9
exhibit inhibitory roles in regulating the immune balance
[39, 40]. The important functional domain of both Siglecs7
and Siglec9 is the membrane-proximal ITIM, mediating
the inhibitory signaling. Siglecs crosstalk with Sia of the gly-
coconjugates through its N-terminal Sia-binding domain
and mediate cell-cell recognition, which induce tyrosine
phosphorylation. ITIMs are able to provide docking sites
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for Src homology 1/2domain containing cytoplasmic phos-
phatases(SHP-1/2) when tyrosine phosphorylated, which is
critical for signal delivery [41, 42]. Through the interaction
with Sia, Siglec7 can reduce the cytotoxicity of NK cells
towards the target cells through the ITIM recruiting
SHP-1/2, blocking signal conduction pathway, and playing
negative regulation (Figure 2) [43]. Here, we aim to dis-
cuss the functions of Siglec7 and Siglec9 in virus infection
and tumour progression.

5.1. Siglec7 Involves in Human Immunodeficiency Virus-1
(HIV-1), Hepatitis B Virus (HBV), and Hepatitis C Virus
(HCV) Infection, While Siglec9 Participates in the HBV
Replication. Siglec7 is involved in HIV-1 infection, which
usually accompanies the changes of Siglec7 expressions on
NK cells while maintaining the total number of NK cells in
the peripheral blood [44, 45]. Brunetta et al.’s group indicated
that Siglec7 may be a biomarker of disorder functional sub-
sets of NK cells and HIV-1 infection, because they found that
reduced number of Siglec7+ NK cell subgroup was related to
the high level of HIV-1 replication [44]. They also believed
that the downregulation of Siglec7 on NK cells was due to
the decreased size of the Siglec7+ NK cell subgroup and
increased amount of the Siglec7- NK cells, while the total
number of NK cells in the peripheral blood was not reduced.
Moreover, based on the study of Siglecs endocytic function
[46], Brunetta et al. provided another hypothesis that Siglec7
may bind to HIV-1 envelope (Env) glycoprotein 120 (gp120),
triggering the endocytic process of siglec7 [45]. Zulu et al.’s
group discovered a decrease of Siglec7 on NK cells in most
of HIV-1 samples from the peripheral blood collected from
healthy donors, chronic viremic, long-term nonprogressor
(LTNP), and early viremic HIV-1-infected patients. They
also found out that Siglec7 in CD56dim NK cells in viremic

patients decreased with comparison to healthy donors [47],
whereas Brunetta et al.’s group proved that antiretroviral
therapy can rescue the expression of Siglec7 [44]. And
in vitro studies showed that recombinant human Siglec7
bound to sialyl residues of HIV-1 envelope (Env) glycopro-
tein 120 (gp120), which mediated virus entrying into target
cells [25, 48]. It revealed that Sia residues on gp120 can pro-
tect the virus through Siglec7 from the human immune sys-
tem attacking and promote virus replication and disease
progression. However, according to Varchetta et al.’s group,
an increase level of serum sSiglec7 was detected in AIDS
patients compared to healthy donors [25]. Siglec7 on the
NK cell surface was suggested to be masked by virus, and
the serum sSiglec7 may be from the apoptosis NK cells [25,
44, 49].

Besides, Siglec7 may contribute to HCV and HBV infec-
tion. Similar to the expression profile in HIV-1 patients, the
expression of Siglec7 on NK cells declined in HCV-infected
and HBV-infected patients, whereas the serum sSiglec7 level
increased [37, 50]. The serum sSiglec7 level was associated
with the HBV/HCV level and negatively correlated with
Siglec7+ NK cells.

Siglec9 participates in the hepatitis B virus (HBV) repli-
cation and is involved in the dysfunction of NK cells. Zhao
et al.’s group pointed out that the level of Siglec9 on NK cells
in HBV-infected patients decreased. And the expression level
of Siglec9 was negatively correlated with virus replication.
Moreover, the Siglec9+ NK cells of HBV-infected patients
show a higher level of several activating receptors than the
Siglec9- NK cells do. However, blocking Siglec9 on NK cells
of HBV-infected patients can increase IFN-γ, TNF-α secre-
tion, and CD107a degranulation [51]. And the expression
profile of Siglec9 has not been reported in the infection pro-
cess in HIV and HCV so far. It would be interesting to

Target cell Disease progression

Activate ligand

Active receptor

Cytotoxicity inhibited

NK cell

Glycan

Sialic acid

Sialic acid
Siglec7/9

ITIM P SH1/2

SH1/2 kinase

Figure 2: Siglec-7/9, cross-talking with sialic acids (Sia) on the surface of target cells, can inhibit the cytotoxicity of NK cells. The interaction
between siglec7/9 and Sia can lead to the phosphorylation of ITIM and recruit SHP-1 and SHP-2, which will suppress the NK cell activation,
and resulting in disease progression.
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analyze the glycol-structure differences between these viruses
to reveal the role of Siglec7 and Siglec9 in the above viral
infection.

5.2. Siglec7 and Siglec9 Binding to Sia Helps Cancer Cells
Escape from Immune Surveillance. One of the hotspots in
Siglec7/9 researches is their functions in the interaction of
cancer cells and NK cells, due to its anti-tumour effects. NK
cells participate in killing tumour cells through the specific
lysis of target cells and the secretion of cytokine, such as
IFN-γ and TNF-α. Siglec7 and Siglec9 expressed on NK
cells and their ligands play important roles in promoting
the process of proliferation and migration of tumour cells.
The ligands recognized by recognition Siglec7 and Siglec9,
Sia, is the glycan chain ending residue of glycolipids and
glycoproteins. We introduce the specific roles of Siglecs
binding with Sia from the following three aspects: the total
Sia: the sialy-glycolipids, ganglioside, and mucins (MUC), a
family of heavily sialylated glycoproteins.

Firstly, Sia, the ligand of Siglec7 and Siglec9 expressed
on the surfaces of tumour cells, is correlating with the
immune evasion in cancer [52]. Jandus et al.’s group
reported that Sia was widely expressed on a great number
of different organizational tumour cells, which can protect
tumour cells from NK cell-mediated cytotoxicity. As Hudak
et al.’s group claimed, Sia-equipped glycan can protect
tumour cells from the immune system attacking through
Sia-Siglec7 interaction [40]. It is worth mentioning that
the hypersialylation tumour cells are capable of binding to
the Siglec9 on NK cells and modulating immunosurveil-
lance. Jandus et al.’s group also revealed that Siglec9+ NK
cells expressed more inhibitory receptors (KIR and ILT2)
and exhibited a less cytotoxicity towards tumour cells.
Treating tumour cells with neuraminidase enhanced the
NK cell lysis through the degranulation and the secretion
of cytokines [9]. Pearce and Laubli have researched one of
the main forms of Sia expressed in mammals: the N-glyco-
lylneuraminic acid (Neu5Gc) on the surfaces of tumour
cells. Neu5Gc cannot be synthesized by humans, because
the human body is lacking of CMP-N-acetylneuraminic
acid hydroxylase (the enzyme used to transfer CMP-
Neu5Gc from CMP-N-acetylneuraminic (CMP-Neu5Ac)
acid [53]). But Neu5Gc can be absorbed from the food and
becomes the materials of glycan for the human [54]. More-
over, Neu5Gc can enhance the inflammatory response
induced by anti-Neu5Gc [55–57].

Secondly, Siglec7 can interact with ganglioside which is
composed of glycosphingolipid with a group of Sia. Kawasaki
et al.’s group reported that Siglec7 on NK cells bound to
one of the major gangliosides expressed on the surface of
renal cell carcinoma (RCC) cells: the disialosyl globopen-
taosylceramide (DSGb5), which lead to a reduction of
NK cell cytotoxicity towards RCC cells. DSGb5 then fur-
ther promoted RCC metastasis and migration potential
[58]. In addition to DSGb5, Siglec7 also interacts with
GD3, a ganglioside expressed on tumour cells. Siglec7-GD3
interaction suppresses the NK cell killing activity. Thus, with
its highly expressed GD3 ganglioside, melanoma is deemed
to escape from NK cell cytotoxicity. And through the trans-

fection of GD3 synthase to the cell lines without the expres-
sion of recombinant Siglec7-Fc protein ligands, the
cytotoxicity of NK cells to mastocytoma, P815, and colorectal
adenocarcinoma cell, DLD-1, was inhibited [43, 59].

Thirdly, Siglec9 can interact with transmembrane epithe-
lial MUC, the heavily glycosylated proteins mainly pro-
duced by epithelial tissues, such as MUC1 and MUC16,
which leads to immune evasion modulation. MUC1 is over-
expressed on adenocarcinomas and hematological cancers
[60–62]. MUC1 can induce the growth of tumour cells
through recruiting β-catenin binding to its C-terminal
domain [63]. MUC1-sialylated O-linked glycans on tumour
cells binding to Siglec9 did not recruit SHP-1 or SHP-2 but
induced calcium flux that lead to the activation of MEK-
ERK kinases [64]. Similar to MUC1, Siglec9 can interact
with MUC16 expressed on epithelial ovarian cancer cells,
protecting tumour cells from immune attacking. Siglec9
promoted tumour cell adhesion process through the recog-
nition of MUC16 glycans which contain α2,3-linked Sia, the
ligand of Siglec9 [19].

The fact that tumour cells escape from NK cell attack
through the interaction of cell surface sialyl-decoration with
Siglec7 and Siglec9 on NK cells makes the two lectins prom-
ising target in antitumor drug development. Recently, high-
affinity low molecular weight Siglec7 ligands are artificially
designed and synthesized. The synthetic ligands can weaken
the interactions between Siglec7 and its tumour ligands
and, hence, inhibit cancer immune evasion [40, 65].

6. Conclusion and Outlook

Although Siglec7 and Siglec9 show high similarities in the
distribution, gene encoding, protein sequences, ligand affin-
ity, and functions, differences still exist between them. The
study of Siglec7 expressed on NK cells is clearer, but the study
of Siglec9 on NK cells is lacking. Although Siglec7 and Siglec9
are usually believed to play negative roles in mediating lysis
and cytokine secretion in NK cells through Siglecs-ligand
recognition, an active role of Siglec7 has been reported as
the cross-linking of Siglec7 by a specific antibody that can
upregulate the inflammatory cytokines and chemokines in
monocytes [66], whereas little research has indicated the
active function of Siglec9. With this regard, whether Siglec7
and Siglec9 possess a positive property in immune response
and how they play active roles in regulating immune system
require further confirmation.

Siglec7 was proved to be related to HIV, HBV, and
HCV infection, but only the function of Siglec9 in HBV
was reported. The evidence that Siglec9 expressed on NK
cells is involved in the immune response to HIV and
HCV infection needs further study. There may be structural
differences of glycan ligands among HIV, HBV, and HCV,
resulting in insufficient recognition of HIV and HCV by
Siglec9. Although there are abundant evidences that show
Siglec7 and Siglec9 expressed on NK cells are related to
the HIV, HBV, and HCV infection, the exact mechanism
of Siglec7 and Siglec9 involve in these viral infections
requires further investigation.
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Siglec7 and Siglec9 binding to the ligands helps the target
cells to inhibit the NK cells and also evade immune surveil-
lance. In antivirus and antitumour immunotherapy, the
inhibitory effect of Siglec7 and Siglec9 can be blocked by
either adding antibodies of the two proteins or the elimina-
tion of cell surface ligands of the two. In addition, the reg-
ulatory molecules of Siglecs and sialylation can be
considered. A glycocalyx engineering approach is created to
help tumour cells suppress NK cell lysis. However, whether
it contributes to defecting pathogen-infected or tumour dete-
rioration in vivo demands further studies.
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