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Edited by Ranulfo Romo, Universidad Nacional Autonóma de México, Mexico City, Mexico, and approved November 13, 2018 (received for review July 5,
2018)

A person’s decisions vary even when options stay the same, like
when a gambler changes bets despite constant odds of win-
ning. Internal bias (e.g., emotion) contributes to this variability
and is shaped by past outcomes, yet its neurobiology during
decision-making is not well understood. To map neural circuits
encoding bias, we administered a gambling task to 10 partici-
pants implanted with intracerebral depth electrodes in cortical
and subcortical structures. We predicted the variability in betting
behavior within and across patients by individual bias, which is
estimated through a dynamical model of choice. Our analysis fur-
ther revealed that high-frequency activity increased in the right
hemisphere when participants were biased toward risky bets,
while it increased in the left hemisphere when participants were
biased away from risky bets. Our findings provide electrophysi-
ological evidence that risk-taking bias is a lateralized push–pull
neural system governing counterintuitive and highly variable
decision-making in humans.
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Imagine sitting at a poker table in Las Vegas, facing a hand that
has low odds of winning. You stare at the stack of chips that just

piled up during your recent lucky streak, and the sight of your win-
nings is just the nudge that you need to make a large bet, despite
your bad hand. Such biases during decision-making are ubiquitous
in human behaviors (1). They show that how humans respond to
environmental stimuli is dynamic—not static. That is, it is influ-
enced by their past experiences, in both adaptive and maladaptive
ways. Therefore, we refer to this nudge as “dynamic bias.”

The complex interplay between dynamic bias and environmen-
tal stimuli to produce behavioral responses is a fundamental
aspect of decision-making, yet the neural circuits mediating these
processes are largely unknown. This lack of knowledge stems
mainly from the gap between the timescale at which neural
activity evolves—on the order of milliseconds—and the time res-
olution of the tools that are currently used to measure proxies
of biases and to image the human brain—typically on the order
of seconds or minutes. While researchers commonly manipulate
environmental stimuli in structured behavioral experiments to
study valuation of return and risk during decision-making (refs.
2–5 and references therein), measuring dynamic bias on a trial-
by-trial basis is very challenging because bias is an internal state
that we cannot directly observe. Several autonomic responses
(e.g., skin conductance, heart rate, blood pressure) have been
proposed to measure proxies of bias (e.g., emotion), but all suf-
fer from delays on the order of seconds to minutes (ref. 6 and
references therein).

Identifying the neural substrates of decision-making in
humans is also difficult, as measuring electrical activity across
multiple structures at the source and at millisecond resolution in
humans is not possible in general (ref. 7 and references therein).
On one hand, prior work in humans has been largely dominated

by studies wherein functional magnetic resonance imaging
(fMRI) or positron emission tomography (PET) scans are used
to measure neural activity in participants during decision-making
(8–12). The fMRI and PET scans measure blood flow in the
entire brain, which is an indirect measure of brain activity, and
both suffer from low temporal resolution, on the order of sec-
onds and minutes, respectively (13, 14). On the other hand,
a small number of electroencephalography (EEG) and mag-
netoencephalography (MEG) studies have been conducted to
understand human decision-making (15, 16). While their tempo-
ral resolution is high, EEG- or MEG-based approaches measure
activity from outside the head and suffer from global summation
from different sources (7).

To map the neural circuits mediating dynamic bias in human
decision-making, we used techniques that allowed us to track
dynamic bias and its neural circuits at a relevant timescale and
directly at the source. First, we administered a sequential eco-
nomic decision-making task in which bias fluctuates in both
positive and negative directions and can play a role in at least
20% of trials (17). Then, we constructed a stochastic dynamical
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model to estimate dynamic bias from participants’ responses
using maximum-likelihood methods. In addition, we exploited a
unique opportunity to record neural activity from humans with
medically refractory epilepsy implanted with multiple intracere-
bral depth electrodes while they performed the decision-making
task. Specifically, we used a functional electrophysiological mon-
itoring modality, called stereoelectroencephalography (SEEG),
to simultaneously record local field potentials at millisecond res-
olution from hundreds of sources in cortical and subcortical
brain structures.

In this paper, we first report the variability in choices across
participants but also across trials within participants when they
were faced with the same options. Then, we explain this variabil-
ity using participant-specific stochastic dynamical (state space)
models of the decision-making process. In particular, we show
that an estimated dynamic bias (state variable) predicts when and
why participants changed their betting strategies (that is, made
different choices under identical task stimuli), and exactly how
participants weighed bias with respect to return and risk (that
can be directly computed from the task stimuli) on each deci-
sion. These findings highlight the importance of incorporating
dynamic bias within models of human choice, which has recently
been strongly argued by philosophers (18), psychologists (19),
behavioral economists (1), and neuroscientists (20). Finally, we
map the neural circuits and pathways that modulate with esti-
mated bias during different stages of decision-making (forming
preferences, selecting and executing actions, and evaluating out-
comes). We find that the structures that encode bias are highly
distributed and strikingly lateralized. High-frequency activity
increased in the right hemisphere when participants were biased
toward risky bets (push), while it increased in the left hemi-
sphere when participants were biased away (pull) from risky bets.
Similar push–pull neural control mechanisms have been found

to mediate motion via go/no-go pathways in basal ganglia (21,
22), vision via on/off cells in visual cortex (23, 24), and seizure
spread via synchronizing/desynchronizing populations (25). Lat-
eralization in the brain has also been observed when encoding
approach–avoidance behaviors and positive–negative emotions,
and is thought to maximize processing efficiency by minimizing
competition between conflicting behaviors (26, 27). As a proof
of concept, we also demonstrate that a simple linear regres-
sion model has predictive power to decode dynamic bias from
this lateralized push–pull system, where the quality of decoding
increases with the quality of neural recording coverage.

Our findings demonstrate—with electrophysiological evi-
dence—that risk-taking bias relies on a distributed lateral-
ized push–pull neural system that governs counterintuitive and
highly variable decision-making in humans and involves many
areas beyond the widely studied ventromedial and dorsolateral
prefrontal cortices (vmPFC and dlPFC).

Results and Discussion
Task Exposes Participants to Scenarios Where Bias Can Play a Large
Role. We administered an economic decision-making task that
exposes participants (SI Appendix, Table S1) to a sequence
of stimuli that differ in the probability distribution of their
reward and, therefore, elicit a variety of behaviors that are
influenced by stimuli (through notions like return and risk) but
also potentially by an internal state (dynamic bias) that evolves
over trials.

Our task, previously described in refs. 17 and 28–30, is a com-
puterized game analogous to the classic card game of “war”
(Fig. 1A). In each trial, the player is dealt a single card face
up while the computer is dealt a single card face down. After
evaluation of the exposed card, the player decides between two
choices: a low bet ($5) or a high bet ($20) on the fact that the
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Fig. 1. Economic decision-making task, behavioral data, and neural data. (A) Economic decision-making task. On each trial, two cards are drawn (with
replacement within each trial) from a deck of the five, even cards from 2 through 10 in the spade suit. The player sees the face of one card and the back
of the other card. Then, the player has to bet $5 or $20 on the fact that the exposed card is higher than the hidden card. The player wins/loses the bet if
the exposed card is higher/lower than the hidden card (no win or no loss on a tie). See SI Appendix, SI Materials and Methods for details. (B) Return and
risk computation. Return is defined as the expected value of reward; risk is defined as the variance of reward. (C) Dynamic bias estimation from behavioral
data. Behavioral data (binary decisions) are recorded while participants are playing our gambling task. Dynamic bias is an internal variable that we cannot
measure experimentally but that we estimated from the binary decisions using a stochastic dynamical model of the decision-making system. (D) Neural
recording. Each participant was implanted with multiple intracerebral depth electrodes (SEEG). This method allows us to simultaneously record local field
potentials at millisecond resolution from hundreds of sources in cortical and subcortical brain structures.
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exposed card is higher than the hidden card. The player is not
allowed to decline to bet. If the player’s card is higher/lower than
the computer’s card, the player wins/loses virtual money. If both
cards are equal, then no virtual money is won or lost. To simplify
the task, the deck was limited to only five different cards—the
even cards from 2 through 10 of the spade suit (2♠, 4♠, 6♠,
8♠, or 10♠)—and each card was drawn randomly with equal
probability and with replacement within each trial, allowing the
player’s and the computer’s cards to be identical. The rules of
the task were carefully explained to each participant. They prac-
ticed until they said that they understood the rules of the task
and felt comfortable selecting the choice using the manipulan-
dum (around 20 min). See SI Appendix, SI Materials and Methods
for details.

The five stimuli (five different cards) differ in the probability
distribution of their reward. It is common to compute notions
of return and risk from this probability distribution given the
player’s card and the decision. Return is defined as the expected
value of reward, and risk is defined as the variance of reward
(Fig. 1B). In this task, betting high is therefore always more risky
(higher variance of reward) than betting low. Basic probabilities
about the gambling task are provided in SI Appendix, SI Materials
and Methods and Table S2.

The most profitable strategy (i.e., maximizing return) in our
gambling task is a strict function of stimuli: Bet high when dealt
the 8 or 10 card, and bet low when dealt the 2 or 4 card. On 6-card
trials, the return is equal to zero for both choices, and thus the
most profitable strategy is not unique. The decisions on these 6-
card trials, but also on any other trial, can therefore be influenced
by a dynamic bias that is shaped by past outcomes. For exam-
ple, the dynamic bias may capture a recent winning streak, which
may nudge a player to bet high even on a low card (risk-seeking
behavior). Similarly, the dynamic bias may capture a recent los-
ing streak and may nudge a player to bet low even on a high card
(risk-averse behavior).

Decision Strategies Vary Across Participants and Trials. We first
asked the question, “Did participants follow the same decision
strategy on each card, and was it the most profitable strategy?”
To answer our question, we computed the sample mean responses
(bets and reaction times) across trials for each player’s card value
and each participant. Participants closely followed the most prof-
itable strategy to maximize return (Fig. 2A, Top). They predomi-
nantly bet low on 2 and 4 cards and bet high on 8 and 10 cards. On
6-card trials, they switched more often between both betting deci-
sions, with a preference for low bets (mean proportion of high bet,
27.35%), which can be explained by an average risk-averse behav-
ior. Because of the ambiguity on 6-card trials, they also took longer
to decide on these trials (Fig. 2A, Bottom). Surprisingly, some par-
ticipants made counterintuitive decisions: bet high on 2 cards or
low on 10 cards on some trials, which is the least profitable strat-
egy (see the proportions of high bets that are different from 0 or
1 on 2 cards or 10 cards, respectively, in Fig. 2A, Top).

To further investigate how participants’ betting strategies vary
during the session, we summarize the variability for each partic-
ipant by computing two measures for two different sets of trials
(Fig. 2B): (i) the set of (2, 4, 8, 10)-card trials for which the two
choices lead to different returns and (ii) the set of 6-card trials
for which both choices lead to the same (zero) return. The vari-
ability on (2, 4, 8, 10)-card trials is defined as the average (across
the four card values) of sample variances of betting decisions
on (2, 4, 8, 10)-card trials, and the variability on 6-card trials is
defined as the sample variance of betting decisions on 6-card tri-
als. We identified two trends with different behavioral patterns
in the population of participants: one that shows a low level of
variability on (2, 4, 8, 10) cards and different degrees of variabil-
ity on 6 cards (along the dotted gray line), and one that shows
different degrees of variability on both (2, 4, 8, 10) cards and on
6 cards (along the dashed gray line).

The next question we asked is “Did participants modulate
their betting behavior across trials in a predictable and smooth
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manner or did they randomly flip their decisions?” To answer
this question, we quantified how much the betting strategy of
each participant on each card value modulated on a trial-by-
trial basis around the average behavior for this card value (see
SI Appendix, SI Materials and Methods for details). The variabil-
ity across trials for three representative participants reveals three
distinct behaviors (Fig. 2C): dynamic on no cards or static on all
cards (participant 8), dynamic on 6 cards only (participant 2),
and dynamic on all cards (participant 7). These three types of
behaviors relate to the 2D mapping of participants according to
variability on (2, 4, 8, 10)-card trials and 6-card trials. The static
behavior corresponds to participants close to the origin, and the
two different dynamic behaviors correspond to the two trends
that we observed.

Motivated by the above observations, we hypothesized that
decisions are influenced by the player’s card (stimulus) through
notions of return and risk, which can be computed at each trial
from the current player’s card value, and by a dynamic bias
(internal state) that fluctuates smoothly on a trial-by-trial basis.
More specifically, counterintuitive and 6-card decisions can be
predicted by dynamic bias.

An Internal State Representing Dynamic Bias Predicts the Variability
Across Trials and Across Participants. We tested our internal state
hypothesis by asking the following question, “Can an internal
state predict the modulation of betting decisions?” To answer
this question, we built a stochastic dynamical (state space) model
of the decision-making process for each participant (Materials

and Methods and SI Appendix, Fig. S1). Briefly, the dynamical
model predicts the decision of each participant on individual tri-
als by integrating the input of the current trial (through notions
of return and risk computed from the player’s card) and a state
variable (representing dynamic bias). The state variable accu-
mulates evidence from the inputs up to the current trial. For
example, a participant might be more likely to take a risk by
betting high on a 6-card trial when the state variable reflects a
recent “string of good luck.” Similar models have been recently
used to model decision-making (29–32). However, either they
include only information from the previous trial or they assume
that the state variable accumulates information in a determin-
istic fashion. The framework of a stochastic dynamical model
generalizes these models by including a fading effect for all
past trials and allowing more flexibility with the introduction
of a noise term in the state evolution. This framework allows
us to estimate the model parameters as well as the state vari-
able from the observations. We estimated the model parameters
and the distribution of the state at each trial by maximizing the
likelihood of observing the betting decisions given the set of stim-
uli. We solved this problem using the expectation–maximization
algorithm (33–36). See SI Appendix, SI Materials and Methods
for details.

The dynamical model captures the variability of the behavior
across trials and across participants (Fig. 3). First, plotting the
probability of a high bet pk against the internal state xk for each
trial reveals the spectrum of behaviors among our population of
participants, ranging from static behavior to dynamic behavior
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Fig. 3. Dynamical model predictions. (A) Overlay of model estimation and observed data for three representative participants. (Top) 8, (Middle) 2, and
(Bottom) 7. Each subplot represents the probability of high bet (vertical axis) against the internal state (horizontal axis). Each symbol represents a trial. The
player’s card received on each trial is encoded by different symbols (5 for 2 card, + for 4 card, ◦ for 6 card, × for 8 card, and4 for 10 card). The observed
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as a function of the internal state for each of the five player’s card values (logistic function induced by the model structure). (B) State trajectory for three
representative participants. The relative contribution of the internal state xk in the output Eq. 1b is quantified by dividing the internal state by the sum
of absolute value of the mean of each term in Eq. 1b, i.e., xk/[|x̄k|+ |d1 [E(Rk|pck, 1)− E(Rk|pck, 0)]|+ |d2 [Var(Rk|pck, 1)−Var(Rk|pck, 0)]|], where x̄k is the
mean of xk. We plot the mean of the relative contribution (green solid line) and its 95 % confidence bounds (green shaded area). The betting decisions
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Counterintuitive bets [high on (2, 4) card and low on (8, 10) card] and ambiguous bets (6 card) are highlighted in red (high) and blue (low). All other decisions
are represented in gray. (C) Goodness of fit of each model. The goodness of fit is quantified using the deviance and the prediction error (see SI Appendix, SI
Materials and Methods for definitions). Both statistics show an improvement from the static to the dynamical model for participants with some variability
in the data.
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on all cards to dynamic behavior on the 6 card only (Fig. 3A and
SI Appendix, Fig. S3). Most of the high bets (in red) are asso-
ciated with a probability of a high bet close to 1 (87% of high
bets with pk ≥ 0.5); most of the low bets (in blue) are associated
with a probability of a high bet close to 0 (95% of low bets with
pk < 0.5), i.e., a probability of a low bet close to 1. In addition,
the model captures counterintuitive trial behaviors. For example,
low bets on 10-card trials (blue up-triangle4 in participant 7) are
associated with a low negative internal state that biases the prob-
ability of a high bet toward smaller values. Similarly, high bets
on 2-card trials (red down-triangle5 in participant 7) are associ-
ated with a high positive internal state that biases the probability
of a high bet toward larger values. These counterintuitive trials
are thus predicted by the estimated bias.

In addition, the time evolution of state trajectories across ses-
sions for three representative players reveals exactly for which
trials the contribution of bias plays a significant role over return
and risk (Fig. 3B). Participant 8 has almost no variability across
trials with the same card, and here the state xk hovers around
0 throughout the session (Fig. 3B, Top). Participant 2 has high
variability in betting behavior only on 6-card trials. The major-
ity of 6-card bets (25/39, or 64%) are predicted by xk (Fig. 3B,
Middle). The state variable varies in a spiky manner, in which
nearly each “spike” captures the betting on a 6-card trial. For
other trials, the state variable is close to zero. Participant 7 has
high variability in betting behavior across all card values. The
bets for the majority of 6-card trials (16/23, or 70%) and some
of the counterintuitive (2, 4, 8, 10)-card trials (5/22, or 23%) are
predicted by the state variable (Fig. 3B, Bottom). In particu-
lar, low bets on these trials are explained by negative values of
xk , and high bets are explained by positive values of xk . The
state variable varies smoothly to capture as many of these trials
as possible.

Finally, we quantified the improvement in goodness of fit
of the model with and without an internal state for each
participant using two statistics that quantify how much the
variation of the output can be predicted by the state vari-
able and inputs of the model. The first statistic is the total
deviance, and the second statistic is the prediction error (see
SI Appendix, SI Materials and Methods for definitions). For

both statistics, smaller values indicate better model perfor-
mance. The dynamical model (with internal state) predicted the
behavior better than the static model (without internal state)
for participants who changed their betting strategies on one
or more trial types, i.e., whose behavior was more dynamic
(Fig. 3C).

Model Parameters Reveal Different Types of Gamblers. The model
parameters reveal how the participants update their dynamic
bias, and how they weigh dynamic bias with return and risk in
their decisions throughout their session (Fig. 4). First, the coef-
ficient in front of the “memory” term (a) in Eq. 2 shows that
memory contributes to our participants’ bias with varying levels
of decay (Fig. 4A).

Then, the coefficients in front of the player’s card value (b1)
and the reward prediction error (b2) terms in Eq. 2 reveal how
each term shapes the dynamic bias (Fig. 4B). Positive values for
b1 and b2 correspond to a situation in which people tend to pre-
dict the same outcome as the last events (positive recency or
hot-hand fallacy), while negative values for b1 and b2 correspond
to a situation in which people tend to predict the opposite out-
come as the last events (negative recency or gambler’s fallacy).
Most of our participants either exhibit the hot-hand fallacy for
both inputs (positive b1 and b2) or gambler’s fallacy for both
inputs (negative b1 and b2), while few participants exhibit a mixed
fallacy (b1 and b2 of opposite signs).

In addition, the coefficients in Eq. 1b quantify the contri-
bution of return (d1) and risk (d2) to the decision probability
(Fig. 4C). If 1/d1 is small/large, then the player weighs return
more/less, and if d2 is positive/negative, the player is risk-
seeking/risk-adverse. Most of our participants are risk-averse
(d2< 0) (Fig. 4C). The striking similarity between Figs. 2B and
4C suggests that the return parameter d1 captures the session-
average behavior on (2, 4, 8, 10)-card trials, while the risk
parameter d2 captures the session-average behavior on 6-card
trials.

Neural Rhythms Encode Dynamic Bias. Then, we asked the ques-
tion, “Can we map the neural circuits responsible for encoding
dynamic bias in this task?” To identify brain regions whose
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activity modulates with dynamic bias, we analyzed the neu-
ral oscillations in each brain region, time-locked to each task
epoch. Neural oscillations are commonly used due to their asso-
ciation with synchronized activities of the underlying neuronal
population encoding behavior (ref. 37 and references therein).
Specifically, we measured the correlation between the dynamic
bias signal and the oscillatory power of the local field potential,
across trials, electrodes, and participants, using a cluster-based
nonparametric statistical test (see SI Appendix, SI Materials and
Methods and ref. 38 for details). A positive correlation means
that an increase in the oscillatory power of the activity of that
brain region was associated with an increase in bias across trials,
and therefore an increase in the probability of betting high (i.e.,
“push” toward risk-seeking behavior). A negative correlation
means that an increase in the oscillatory power was associ-
ated with a decrease in bias, and therefore a decrease in the
probability of betting high (i.e., “pull” away from risk-seeking
behavior).

Two representative examples show the variety of neural en-
coding of dynamic bias in terms of the direction of the neu-
ral modulation and the dominant frequency band of the neural
rhythm (Fig. 5). For each brain region (highlighted in Fig. 5A),
we mapped the t-values of the Spearman correlations between
the dynamic bias and the oscillatory power in each time–
frequency window for each epoch. Then, we identified clusters,
that is, sets of adjacent time–frequency windows that show a
significant correlation (surrounded by red lines). These clusters
show when during the epoch and in which frequency band the
neural modulation with dynamic bias occurs (Fig. 5B). In addi-
tion, we plotted the data from one electrode contact contributing
to one cluster for each brain region to provide an additional
visual representation of the neural modulation with dynamic bias
(Fig. 5C). To create these representations, we first binned bias
values into five different groups for each participant individually
using pentiles (the first pentile being the 20th percentile). Then,
we showed (i) the time evolution of the average power in the fre-
quency band defined by the cluster for trials associated with low
bias (first bin) and high bias (last bin), and (ii) the distribution of

the average power in the time–frequency region defined by the
cluster against the binned bias.

To visualize globally which brain regions modulate with bias,
we constructed SEEG maps for each epoch. A SEEG map high-
lights, in an MRI scan, the brain regions where the oscillatory
power of the SEEG neural activity significantly modulates with
dynamic bias (Fig. 6 and SI Appendix, Table S3). We used two
different color codes to highlight two different types of informa-
tion: the direction of the neural modulation (Fig. 6A) and the
dominant frequency band of the neural rhythm (Fig. 6B). The
dominant frequency band associated with a neural modulation
in a cluster was chosen among the six classical frequency bands
(see legend of Fig. 6B) as the one containing the largest number
of time–frequency windows in the cluster.

The brain regions whose activity modulated with the risk-
taking dynamic bias are distributed across the whole brain,
beyond the vmPFC and dlPFC. Encoding appears first in tem-
poral, limbic, and parietal lobes and later appears in frontal
cortex (see the progression through task epochs in Fig. 6 and SI
Appendix, Table S3).

Interestingly, this set of distributed brain regions shows
roughly an equal split between positive and negative correla-
tions with bias (Fig. 6A), and it is mostly localized in the high-γ
frequency band (Fig. 6B). Furthermore, the direction of neu-
ral modulation for high-γ rhythms is lateralized in the left and
right brain hemispheres (Fig. 7A). The high-γ activity in right-
hemisphere regions shows a positive correlation with dynamic
bias (push), while the high-γ activity in left-hemisphere regions
shows a negative correlation with dynamic bias (pull) (Fig. 7B).
In the other frequency bands, we don’t observe this lateralization
in the direction of modulation.

Importantly, this result does not rely on a small subpopula-
tion (SI Appendix, Fig. S4). First, all but one participant that
have electrodes in the respective hemispheres contribute to the
push–pull effect (SI Appendix, Fig. S4A). The one exception is
participant 7, who also shows a strong push in the right hemi-
sphere but almost no signal in the left hemisphere. This may be
due to the sparse implantation (only two electrodes) in the left
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hemisphere for this participant. Second, all but two participants
that have electrodes in the respective hemispheres show an effect
in the same direction as what the population analysis reveals:
push in right hemisphere, pull in left (SI Appendix, Fig. S4B). The
two exceptions show a push effect in the left hemisphere: Partic-
ipant 1 shows a stronger push than pull in the left hemisphere
and no signal in the right hemisphere (no electrode in the right
hemisphere); participant 5 shows a stronger push than pull in the
left hemisphere and a strong push in the right hemisphere.

We asked a final question: “Could fluctuations in betting
behavior be explained by variations in task engagement or
arousal?” For example, a participant may appear to be risk-
averse when, in reality, the participant is just not paying much
attention. We anticipated this potential problem and designed
the task to make sure that each participant is paying attention
during each trial by forcing the participant to use the manipu-
landum to move and hold the cursor on the fixation point at the
center of the screen before the trial would begin.

Furthermore, from the behavioral data, we see that partici-
pants use the optimal strategy to maximize the expected reward
(a unique optimal choice exists for all cards but the 6 card) on
most of the trials, suggesting that participants are maintaining
a similar level of attention throughout the task. The deviation
from this optimal strategy is explained by the state variable in our
dynamical model, which is constructed to follow a very particular
evolution. The state evolution equation involves the accumula-
tion of card values (minus 6 card) and the reward prediction
error. We don’t believe that a state variable capturing attention
would follow this specific structure.

Finally, we examined α-band activity in all recorded brain
regions, as attention is normally associated with power in this
frequency band (39–44). We observed the following. (i) Only a
few brain regions showed a modulation of the α-band power
with dynamic bias over trials (SI Appendix, Fig. S5A). (ii) Very
few brain regions showed a difference in the α-band power
between low bets (low risk) and high bets (high risk) (SI
Appendix, Fig. S5B). Therefore, there is no consistent modula-
tion in the α-band activity across all brain regions that could be
caused by a change in attention driving the change in behavior
in our data.

Why Distributed Lateralized Push–Pull High-γ Rhythms? Our find-
ings suggest the existence of lateralized push–pull high-γ rhy-
thms encoding dynamic bias. But why? In this section, we
speculate on the reason why we observed such a mechanism.
Why distributed? Human cognitive processes involved in a com-
plex task such as decision-making are often associated with
widely distributed neural activation patterns, which involve
numerous cortical and subcortical regions (45). Even though
studies of decision-making under risk have widely focused on
vmPFC and dlPFC, it is not surprising that brain regions in the
temporal, parietal, and limbic lobes that project to the prefrontal
cortex are also involved in the processing of risk-taking dynamic
bias. Some literature on the involvement of these brain regions
in decision-making tasks is provided in SI Appendix, SI Results
and Discussion.
Why high-γ rhythms? High-γ rhythms have been found to cor-
relate with spiking activity (46). In addition, an MEG study
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showed that high-γ oscillations across distributed networks reli-
ably reconstruct decision-making stages, including processing
of sensory input, option evaluation, intention formation, and
action execution (15). These findings suggest that dynamic
bias may be encoded in the firing rates of individual neu-
rons as well as patterns in which groups of neurons work
together.
Why push–pull? Push–pull control mechanisms have been found
to be pervasive throughout neuroscience, in different functions
and dysfunctions of neural circuits. For executive motor func-
tion, the excitatory and inhibitory pathways of the basal ganglia
operate in concert as a push–pull system to control neural activ-
ity in the neocortex and brainstem (21, 22, 47). For vision, the
majority of cells of layer 4 in the visual cortex have receptive
fields built of parallel, adjacent On and Off subregions in which
stimuli of the opposite contrast evoke responses of the inverse
sign, an arrangement known as push–pull (23, 24). In the epilep-
tic brain, a push–pull interaction between synchronizing and
desynchronizing brain regions controls the seizure spread (25).
These findings suggest that dynamic bias may be encoded by two
systems pushing toward and pulling away from risky decisions.
Why lateralized? The lateralization of brain functions has often
been associated with an enhancement of cognitive capacity and
efficiency of the brain at the individual level and with an “evolu-
tionarily stable strategy under social pressures” at the population
level (48). For example, the lateralization of the approach–
avoidance motivation and positive–negative emotions (valence
hypothesis) seems to have an evolutionary benefit, where mini-
mizing competition between two conflicting behaviors enhances
processing efficiency (26, 27).
Our results in the context of prior art. Functional lateralization
effects have been observed during gambling in vmPFC, dlPFC,
and amygdala, in both lesion and stimulation studies. Tranel
et al. (49, 52) studied decision-making under uncertainty (using
the Iowa gambling task) in participants with lesions in the

vmPFC. Initially, they showed that participants with lesions in
the right vmPFC showed significantly more decision impairments
than those with lesions in the left vmPFC (49). In follow-up
studies, they found that men with right-side vmPFC lesions and
that women with left-side vmPFC lesions had more severe social,
emotional, and decision-making impairments than healthy par-
ticipants (50, 51). Finally, they also showed a similar sex-related
asymmetry in unilateral amygdala lesions (52).

Knoch et al. (53, 54) have studied decision-making under
risk (using the Cambridge gambling task) in healthy individu-
als using low-frequency Repetitive Transcranial Magnetic Stim-
ulation (rTMS) of the dlPFC. They showed that increased
risk-taking behavior was induced by rTMS to the right dlPFC
in comparison with the left dlPFC. In addition, Fecteau
et al. (55, 56) also studied decision-making under risk in
healthy individuals using concurrent anodal transcranial direct
current stimulation (tDCS). They showed that right-anodal/left-
cathodal tDCS of the dlPFC decreased risk-taking behav-
ior compared with left-anodal/right-cathodal tDCS or sham
stimulation.

These studies raise the hypothesis that interhemispheric bal-
ance of activity may be critical in decision-making. However, this
hypothesis is based on observed differences in overall session
behaviors that were associated with lateralized brain function
manipulated “once,” either via a lesion or via conditioning of the
brain using stimulation (often administered before tasks began).
In addition, no neural activity was recorded during these ses-
sions. Rather, neural activity was inherently modulated by lesions
or exogenously via noninvasive stimulation modalities that are
limited in spatial specificity.

Our data may explain prior observations, and further show that
the lateralized effects occur dynamically on a trial-by-trial basis.
Furthermore, our data show that these effects occur in temporal,
limbic, and parietal structures earlier than in prefrontal cortices,
which are commonly implied in decision-making.
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Conclusion
The influence of dynamic bias is ubiquitous in human behaviors.
Bias has been recognized as a key factor in the field of behavioral
economics, first inspired by Herbert A. Simon’s (57) principle
of bounded rationality (late 1950s), and recently formalized by
Richard H. Thaler et al.’s (1) notion of “nudge.” Neuroscien-
tists studying decision-making have also been interested in bias
affecting choice in humans (20), but have lacked the tools to
study its role in brain and behavior during sequential decision-
making occurring on the order of seconds. Measuring dynamic
bias, such as emotion, is difficult to do at this “fast” timescale,
and recording electrical activity in relevant brain regions (which
span the entire brain, as we discovered here) in humans is even
more challenging.

We exploited a unique experimental setup and a stochas-
tic dynamical (state-space) modeling framework that enabled
us to estimate bias and its trial-by-trial fluctuations and iden-
tify neural structures across the entire brain that modulated
with bias, while humans gambled virtual money and made deci-
sions on the order of milliseconds to seconds. As demonstrated
in this study, a bias signal can be estimated on a trial-by-
trial basis from measurable data using a dynamical model. This
bias signal predicts the variability in behavioral data and, in
particular, explains why a participant implements a less prof-
itable strategy at times. It was therefore used to identify the
neural circuits at the root of this variability. We found that
the neural circuits that encode dynamic bias during different
stages of decision-making are strikingly lateralized. Increased
high-frequency activity in the right hemisphere pushed partici-
pants to be more risk-seeking, while increased high-frequency
activity in the left hemisphere pulled participants away from
risky bets.

Our study demonstrates the importance of incorporating
dynamic bias—or other internal states—in models of behavior,
combined with high spatial and temporal resolution recordings
of the neural activity, and will lead to improvements in the
understanding of human behavior and its neural origins.

Materials and Methods
Human Participants. Ten human participants (seven females and three
males; mean age, 36 y) with medically refractory epilepsy, who underwent a
surgical procedure in which depth electrodes were implanted for seizure
monitoring, performed an economic decision-making task (SI Appendix,
Fig. S2). Demographics and clinical characteristics of each participant are
listed in SI Appendix, Table S1.

We excluded two additional participants who volunteered but failed to
complete the experiment.
Limitations. There are standard concerns in analyzing data from epileptic
participants. First, participants are often on medication, which might affect
the neurophysiology of the brain. For clinical purposes, participants were
kept off of their antiseizure medication for their entire stay at Cleveland
Clinic, so these effects would be minimized. Secondly, actual seizures might
impact the neurophysiology around the seizure focus. Human epilepsy
recordings are taken to localize the seizure focus, so overlap is expected
between seizure focus and areas recorded.
Ethics Statement. All experimental protocols were approved by the Cleve-
land Clinic Institutional Review Board. Experiments and methods were per-
formed in accordance with the guidelines and regulations of the Cleveland
Clinic Institutional Review Board. All participants volunteered and provided
informed consent in accordance with the guidelines of the Cleveland Clinic
Institutional Review Board. Participant criteria required individuals over the
age of 18 with the ability to provide informed consent and perform the
behavioral task. Besides the behavioral experiments, no alterations were
made to the course of clinical care.

Stochastic Dynamical Model of Choice. We use the following notations to
describe our model. At each trial k, the player’s card and the computer’s
card are denoted by PCk and CCk ∈{2, 4, 6, 8, 10}, respectively. The binary
betting decision is denoted by Yk ∈{0, 1}. Here, Yk = 1 means that the
participant bets high ($20), while Yk = 0 means that the participant bets
low ($5). The reward is denoted as Rk ∈{−20,−5, 0, 5, 20} and is given by

Rk = [20 Yk + 5 (1−Yk)] sign(PCk − CCk). In the following, uppercase letters
denote random variables, and lowercase letters denote specific values for
these variables.

At each trial k, we modeled the player’s betting decision as a random
variable Yk ∈{0, 1} with a Bernoulli distribution, i.e.,

prob(Yk = 1) = pk, prob(Yk = 0) = 1− pk, [1a]

where pk ∈ [0, 1] is the probability of betting high. The probability of bet-
ting high on any given trial is assumed to depend on three terms: (i) dynamic
bias quantified by an internal state xk, (ii) return difference quantified by
the expected reward, and (iii) risk difference quantified by the variance
of reward. The probability of betting high is assumed to follow a logistic
model,

log
(

pk

1− pk

)
= xk︸︷︷︸

bias

+ d1 [E(Rk|pck, 1)− E(Rk|pck, 0)]︸ ︷︷ ︸
return difference

+ d2 [Var(Rk|pck, 1)−Var(Rk|pck, 0)]︸ ︷︷ ︸
risk difference

,
[1b]

where d1 ∈R and d2 ∈R are the model parameters that determine how the
probability pk varies as a function of the inputs (return and risk).

This internal state process xk ∈R is modeled by the first-order update
equation

xk+1 = a xk︸︷︷︸
memory

+ b1 (pck − 6)︸ ︷︷ ︸
card value

+ b2 [rk − E(Rk|pck, yk)]︸ ︷︷ ︸
reward prediction error

+ wk︸︷︷︸
noise

,
[2]

where wk is an independent normal random input with zero mean and
covariance σ2

w ∈R≥0 (process noise). The initial state x1 is assumed to be
a normal random variable with mean x̄1 ∈R and covariance σ2

1 ∈R≥0. The
coefficients a∈ [0, 1], b1 ∈R, and b2 ∈R determine how the participant’s
state at trial k + 1 is related to the participant’s state and inputs (stimuli) at
trial k.

The inputs were chosen based on previous literature and on observations
in our behavioral data. The first input, (pck − 6), is the player’s card (minus 6,
the median card value) and could represent an effect of luck (29, 58). Specif-
ically, cards larger than 6 and cards smaller than 6 are assumed to have an
opposite effect on bias. The second input, [rk − E(Rk|pck, yk)], is the reward
prediction error, i.e., the difference between the actual reward rk and the
expected reward E(Rk|pck, yk), and represents an effect of performance
feedback (59–61).

Following the state evolution in Eq. 2, the state accumulates evidence
from the inputs over the session, and its expected value x̄k is written as
follows:

x̄k = ak−1 x̄1︸ ︷︷ ︸
initial bias

+

k−1∑
i=1

ak−i−1 b1 ( pci − 6)

︸ ︷︷ ︸
cumulative card value

+

k−1∑
i=1

ak−i−1 b2 [ri − E(Ri|pci , yi)]︸ ︷︷ ︸
cumulative reward prediction error

.

[3]

Depending on the value of the parameter a, the previous trials (memory)
contribute to the current trial with varying levels of decay, between fast
decay (a = 0) and slow decay (a = 1). Indeed, if a = 0, the state x̄k depends
only on the inputs at trial k− 1; if a = 1, the state x̄k depends equally on
inputs from all previous trials and the initial condition; if 0< a< 1, the
state x̄k depends on inputs from all previous trials and the initial condition
with exponentially decaying weights. Note that only information from pre-
vious trials (trials i = 1, . . . , k− 1) is influencing the current state variable
(trial k).
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