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Abstract

The structures of non-human antibodies are largely unstudied despite the potential for the

identification of alternative structural motifs and physical properties that will benefit a basic

understanding of protein and immune system evolution as well as highlight unexplored

motifs to improve therapeutic monoclonal antibody. Here we probe the structure and recep-

tor-binding properties of the mouse IgG2c crystallizable fragment (Fc) to compare to mouse

IgG2b and human IgG1 Fcs. Models of mIgG2c Fc determined by x-ray crystallography with

a complex-type biantennary (to 2.05 Å) or a truncated (1)GlcNAc asparagine-linked (N)-gly-

can attached (to 2.04 Å) show differences in key regions related to mouse Fc γ receptor IV

(mFcγRIV) binding. Mouse IgG2c forms different non-bonded interactions between the BC,

DE and FG loops than the highly-conserved mIgG2b and binds to FcγRIV with 4.7-fold

greater affinity in the complex-type glycoform. Secondary structural elements surrounding

the Asn297 site of glycosylation form longer beta strands in the truncated mIgG2c Fc glyco-

form when compared to mIgG2c with the complex-type N-glycan. Solution NMR spectros-

copy of the N-linked (1)GlcNAc residues show differences between mIgG2b, 2c and hIgG1

Fc that correlate to receptor binding affinity. Mutations targeting differences in mIgG2 DE

and FG loops decreased affinity of mIgG2c for FcγRIV and increased affinity of mIgG2b.

Changes in NMR spectra of the mutant Fc proteins mirrored these changes in affinity. Our

studies identified structural and functional differences in highly conserved molecules that

were not predicted from primary sequence comparison.

Introduction

Antibodies protect against invading pathogens and diseased tissue through a host of different

mechanisms, including neutralization, antibody-dependent cell mediated cytotoxicity

(ADCC), complement-mediated cytotoxicity, phagocytosis, and trogocytosis. ADCC, as the

name implies, is triggered when an IgG-coated particle engages certain Fc γ receptor (FcγR)-

expressing leukocytes. Phagocytosis and trogocytosis can likewise be triggered through FcγR-

mediated mechanisms. FcγRs bind IgG through the invariant homodimeric crystallizable
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fragment (Fc) formed by the C-terminal halves of the gamma heavy chain (Fig 1). Receptor

binding interactions are sensitive to the subclass of IgG, with human IgG1 and 3 eliciting a

response at lower concentrations than IgG2 and 4 [1].

FcγRIIIa/CD16A is the primary receptor that triggers ADCC in humans. CD16A preferen-

tially binds IgG1 and 3 over IgG2 and 4 [3], and is expressed as the only FcγR on natural killer

cells, but is also expressed on some populations of monocytes/macrophages [4]. A related

molecule, CD16B is expressed on neutrophils and potentiates similar responses. The murine

adaptive immune is similar with IgG2 antibodies and mFcγRIV comparable to hIgG1 and

hCD16A, respectively, though no hCD16B homolog is known in mouse [5]. Mouse FcγRIV is

expressed on neutrophils and monocytes/macrophages and a recent study indicates mFcγRIV

shares multiple unique functional features associated with hCD16A, reinforcing the identity of

these two proteins as homologues [6]. Though numerous studies described the structure and

function of human IgG1 and the IgG1 Fc:CD16A interaction (including but not limited to [7–

20]), much less is known about the mIgG2 structure and the mIgG2:FcγRIV complex despite

the central role for mice strains in developing and testing monoclonal antibody therapies. Dif-

ferent antibodies provide the potential to understand disparate functional solutions selected by

evolution in antibodies that are highly conserved at the primary sequence level, despite the
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Fig 1. Mouse IgG2c Fc is comparable to other IgGs but shows differences in crucial features. A. A cartoon model of mouse IgG2c Fc solved by x-ray crystallography.

Domain and secondary structure element labels (B.) are noted. C. An overlay of two mouse IgG2c Fc models with different N-glycan composition. D. A cartoon

schematic showing the glycoforms studied here, individual carbohydrate residues are indicated by colored shapes according to the SNFG system [2]. The colors of

individual Fcs will be used as indicated throughout the text to denote sequence and glycan variants. E. Sequence and secondary structure arrangement of the Fc Cγ2

domains.

https://doi.org/10.1371/journal.pone.0192123.g001
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potential for subtle differences at the antibody/receptor interface between human and mouse,

and are expected to inform future antibody development efforts.

Mice strains express three IgG2 subclasses: IgG2a, 2b and 2c that share 74–80% primary

sequence identity in the hinge and Fc regions with greatest similarity in the receptor binding

Cγ2 domains (Fig 1E). Mouse IgG2a is highly polymorphic [21] with less variability described

for the heavy chains of mIgG2b and mIgG2c. While mouse IgG2b is encoded by a distinct

gene and likely present in all mice, the Igh-1a and Igh-1b genes encoding the mIgG2a and 2c

heavy chains, respectively, appeared to be allelic with dramatically different allele frequencies

found in different strains [21]. Four structures of mIgG2a and 2b are available in the protein

database, and no structures of mIgG2c have been described [22–25].

IgGs in all systems thus described require co-translational modification for effector func-

tion. A three amino acid sequon of Asn-(any non Pro residue)-Ser/Thr is modified by the oli-

gosaccharyltransferase complex that adds a 14-residue carbohydrate to the sidechain nitrogen

atom of Asn297 (an N-glycan). This carbohydrate is trimmed and extended by glycosylhydro-

lase and glycosyltransferase enzymes in the ER and the Golgi during protein secretion, result-

ing in the expression of antibodies that contain primarily a complex-type biantennary N-

glycan that varies primarily in the amount of galactose at the two non-reducing termini [2]. In

addition to the requirement of the N-glycan for FcγR interactions, the composition of the N-

glycan also impacts receptor binding affinity, primarily CD16A [14, 19, 26]. The correlation

between antibody N-glycan composition and receptor binding affinity can be explained by the

work of our group that showed the N-glycan specifically stabilizes the hIgG1 Fc C’E loop and

increasing the N-glycan length adds further stabilizing intramolecular contacts [16–18, 20, 27].

Thus, intramolecular contacts between N-glycan and polypeptide residues are critical features

of antibody structure and receptor binding function. Probing differences in N-glycan structure

and motion promises to provide insight into antibody structure/function relationships.

Our group recently reported a strategy to quickly identify interactions between N-glycans,

in particular the asparagine-linked (1)GlcNAc residue, and polypeptide residues with 2d
13C-HSQC spectra of HEK293-expressed and 13C[glycan]-labeled glycoproteins [28]. We

identified two CD16A N-glycans that contribute to antibody binding activity; the three

remaining N-glycans showed little interaction. We also identified hIgG1 Fc residues that con-

tribute to structural stabilization of proximal N-glycan residues and promote CD16A binding

[20]. The 1H1-13C1 correlation on the hIgG1 Fc (1)GlcNAc residue showed two resolved

peaks that were consistent with CD16A binding activity (Fig 2). Mutations that disrupted

structure or glycosylation of the C’E loop caused the two peaks to collapse into one peak and

likewise disrupted CD16A binding. N-glycan truncation to a single (1)GlcNAc residue pre-

served both the spectral features and receptor binding properties of hIgG1 Fc and simplified

the NMR spectra. With this expression and NMR technique we investigated mouse antibody

fragments and characterized differences in structure and function between mouse IgG2b and

2c Fc.

Materials and methods

All materials purchased from Sigma-Aldrich unless noted.

Protein expression and purification

Mouse Fc expression constructs were prepared by amplifying open reading frames corre-

sponding to the Fc and hinge regions from heavy chain expression constructs for mIgG2b and

2c provided by Prof. Falk Nimmerjahn (University of Erlangen-Nuremberg). These fragments

were cloned into the pGen2 vector NotI and BamHI sites [29] that encoded residues 224–447
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for mIgG2b Fc, and mIgG2c Fc residues 224–447 or mIgG2c Fc residues 209-447(only used

for crystallizing mIgG2c Fc with the truncated (1)GlcNAc N-glycan). Mouse Fc mutations

were prepared with the fusion PCR protocol [30] and verified by DNA sequencing (ISU

DNA sequencing facility). Mouse antibody fragments were expressed using HEK293F (Life

Technologies) or HEK293S cells [31] grown in a mixture of 90% Freestyle293 (Life Technolo-

gies) and 10% ExCell media as previous described [29]. Fc expressions were purified on a 5 mL

protein A-sepharose column eluted with 5x 5 mL 100 mM glycine, pH 3.0. Fractions were

immediately neutralized with 2.5mL 1 M Tris, pH 8.0. Protein was exchanged into 20 mM

MOPS, 100 mM sodium chloride, pH 7.2, using an Amicon 10 kDa cut off centrifugal filter

and stored at 4˚C.

DNA encoding mouse FcγRIV (residues Q19–D191) was cloned into the pGen2 vector

using the EcoRI and HindIII sites to express an 8xHis and N-term GFP-tagged protein. Mouse

FcγRIV was expressed in HEK293F cells grown in a mixture of 90% Freestyle293 (Life Tech-

nologies) and 10% ExCell media as described above and purified using a Ni-NTA agarose col-

umn (Qiagen). Purified receptor was exchanged into 20 mM MOPS 100 mM sodium chloride,

pH 7.2, using an Amicon 10 kDa cut off centrifugal filter. FcγRIV was stored at -80˚C after

adding glycerol to a final (v/v) ratio of 25%.

N-glycan remodeling

N-glycans from HEK293S(lec-/-)-expressed Fc were truncated using either endoglycosidase F1

or endoglycosidase S depending on the absence or presence of fucose on the Fc, respectively.

Endoglycosidase was added in a 1:50 molar ratio to Fc in 20 mM MOPS, 100 mM sodium

chloride, pH 7.2 for 18 h at RT. Digestion was assessed using SDS-PAGE(Supplementary Fig

3). Remodeled Fc (not 8xHis-tagged) was purified from endoglycosidase F1 (8xHis-tagged) by

flowing over Ni-NTA agarose resin.

Binding measurements

Mouse IgG2b Fc and IgG2c Fc were immobilized on a CM5 sensor chip using amine coupling

on a Biacore T100 (GE Healthcare). Lane 1 was used for a control with no protein immobi-

lized. Carboxymethyl dextran was activated by flowing over a 1:1 mixture of 0.4 M 1-ethyl-3

(3-dimethylaminopropyl)carbodiimide and 0.1M N-hydroxy-succinimide for 7 min at 5 μL/

min. Mouse IgG samples were diluted to a concentration of 1 μg/mL in 10 mM sodium acetate,

pH 5.0, and flowed over the CM5 chip for 10 min at 5 μL/min. Unreacted sites were blocked

with 1 M ethanolamine, pH 8.5, for 7 min. Typical immobilization response units varied from

400–1000. The CM5 chip used a coupling buffer containing 20 mM MOPS, 100 mM sodium

chloride, and 0.05% P20 surfactant (GE Healthcare). The binding analysis buffer was identical

but contained 1 μM bovine serum albumin. All experiments were carried out at 25˚C. The

CM5 chip was regenerated between runs with 100 mM glycine, pH 3.0, washes for 30 s to

remove any bound receptor. Dissociation constants and rates were determined by averaging

the values from at least two independent experiments. The error for this mean was determined

by propagating the errors associated with the least-squares fit of each individual value. Differ-

ences in values were assessed by comparing the propagated error associated with each mean

value.

Fig 2. 2d HSQC spectra of the Fc N-glycan (1)GlcNAc 1H1-13C1 reveals orthologous Fcs provide different N-glycan environments. The spectra of human IgG1 Fc

were previously reported [20].

https://doi.org/10.1371/journal.pone.0192123.g002
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Crystallizing Mouse IgG2c Fc

Proteins were applied to a Superdex200 size exclusion column (GE Healthcare) pre-equili-

brated with 20 mM MOPS, 100 mM sodium chloride, pH 7.2. Fractions containing Fc were

identified using SDS-PAGE, pooled, and concentrated using a Amicon 10kDa cutoff
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Fig 3. Mouse IgG2c Fc and 2b Fc show a high degree of similarity with a complex-type N-glycan, however, differences in loop residues impact conformation. A.

Ribbon diagram of the mIgG2c Fc model shows clear Van der Waals contacts between Y296 and (0)Fuc. B. The ribbon diagram for mIgG2b Fc shows a different

organization of the DE loop. C. A comparison of the 2b Fc and 2c Fc models shows the effect of residue 300 in DE loop conformation and D. sequence differences in the

FG loop.

https://doi.org/10.1371/journal.pone.0192123.g003
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centrifugal filter to 8–10 mg/mL. Initial screens for crystals were carried out at 18˚C using the

hanging drop vapor diffusion method. The mIgG2c Fc with a single (1)GlcNAc residue crys-

tallized as large rod crystals when using the longer construct (residues 209–447) in 50 mM

TRIS, pH 8.0, with 10% PEG 6K. Mouse IgG2c Fc with the complex-type glycan crystallized

using the shorter construct (residues 224–447) as large rod crystals in 50 mM HEPES, 5% PEG

3.35K, pH 7.0.

X-ray data collection and processing

Crystals were cryoprotected utilizing a quick soak in 20% glycerol (mIgG2c Fc with a truncated

N-glycan) or 20% ethylene glycol (mIgG2c Fc with a complex-type N-glycan). Diffraction data

was collected at the Advanced Photon Source at Argonne National Laboratory on beamline

23-IDD using a PILATUS detector. Data was indexed, merged and scaled using HKL-2000.

Iterative molecular replacement was performed using Phenix Phaser-MR and the mIgG2b

protein model (PDB ID: 2rgs; [24]). Final refinement was performed using Phenix with auto-

matically-generated non-crystallographic symmetry restraints and translation-libration-screw

restraints.

NMR

NMR spectra were obtained using a 700-MHz Bruker Avance II spectrometer equipped with

a 5 mm cryogenically cooled probe and operated with TopSpin 3.2. Samples were exchanged

into a buffer containing 20 mM potassium phosphate, 100 mM sodium chloride, 0.5 mM

DSS (4,4-dimethyl-4-silapentane-1-sulfonic acid), pH 7.0, using an Amicon 10kDa cutoff

centrifugal filter. All HSQC spectra were collected at 50˚C. Spectra were processed using

NMRPipe and visualized using NMRViewJ (One Moon Scientific). Proton and carbon fre-

quencies were referenced to the internal DSS standard using the methyl proton resonance

(0.07 ppm).

Accession numbers

Coordinates and structure factors have been deposited in the Protein Data Bank with accession

numbers 6BHY (truncated) and 6BHQ (complex-type).

Results

Behavior of mouse IgG2 Fc differs from human IgG1 Fc

Spectra of 13C[glycan]-labeled mIgG2b Fc and mIgG2c Fc, following endoglycosidase trun-

cation, showed a single peak for the (1)GlcNAc anomeric 1H1-13C1 correlation indicating

differences in the chemical environment surrounding N297 (Fig 2). The peak from mIgG2c Fc

showed a similar resonance frequency to the intense peak observed with hIgG1 Fc at ~4.99

ppm (1H). This intense peak was absent in a spectrum of hIgG1 Fc D265A that also showed no

binding to CD16A [20]. The anomeric 1H peak from mIgG2b Fc appeared 0.07 ppm from the

IgG2c Fc peak position and was comparable to a previously observation [32]. These spectra

indicate mouse IgG2c and 2b share a similar single anomeric peak feature and the potential for

less local structural heterogeneity than human IgG1 Fc which has a well characterized dynamic

C’E loop and C’ strand [18, 20]. Furthermore, the resonance frequency of the mIgG2c peak is

shifted to a lower 1H ppm value than mIgG2b. Based on hIgG1 Fc, the lower 1H ppm value for

mIgG2c Fc is consistent with greater conformational restriction and the potential for tighter

FcγRIV binding compared to mIgG2b Fc.

Mouse IgG2c Fc loop residues promote greater receptor-binding affinity than mouse IgG2b or human IgG1

PLOS ONE | https://doi.org/10.1371/journal.pone.0192123 February 6, 2018 7 / 17

https://doi.org/10.1371/journal.pone.0192123


Mouse IgG2b and 2c bind FcγRIV with high affinity

Mouse IgG2c Fc bound mFcγRIV with 1.5-fold greater affinity than mIgG2b Fc when both

contained core-fucosylated complex-type N-glycans (Table 1; Fig A in S1 File). These mouse

antibody fragments bound mFcγRIV with 30–40 fold greater affinity (12–18 nM, respectively)

than hIgG1 Fc bound FcγRIIIa/CD16A (550 nM [20]).

Truncating the Fc N-glycan to display a single (1)GlcNAc residue reduced the binding of

mIgG2c Fc by 50-fold, however, mIgG2c Fc displayed 4.7-fold greater binding than the simi-

larly truncated mIgG2b Fc which was reduced by 155-fold following glycan truncation (Fig B

in S1 File). This result is comparable to truncating the hIgG1 Fc N-glycan which reduced bind-

ing by 11-fold [20]. Thus, an extended complex-type biantennary N-glycan enhanced binding

for both human IgG1 and mouse IgG2b and 2c Fcs.

Structure of mouse IgG2c Fc in two glycoforms

We pursued the structure of these antibody fragments to define how differences in the amino

acid primary sequence affect structure. Attempts to crystallize mIgG2c in both the full length

and truncated N-glycoforms provided diffracting crystals (Table 2). Mouse IgG2b Fc truncated

to the (1)GlcNAc residue did not form crystals in our screens; a high-resolution model of

mIgG2b Fc with a full length N-glycan was previously reported [24]. Models of both mIgG2c

Fcs in a truncated (pdb id 6BHY) or full-length (pdb id 6BHQ) N-glycoform proved similar to

mIgG2b and mIgG2a Fcs with a homodimeric assembly and comparable secondary and ter-

tiary structure elements (Fig 1A) [23, 24, 33]. Maps revealed clear electron density for all por-

tions of the core Cγ2 and Cγ3 domains with one exception: the Cγ2 domain from chain B of

mIgG2c Fc with a full-length N-glycan crystallized in an asymmetric unit without contacts sta-

bilizing the chain B Cγ2 domain and some residues of the BC, DE and FG loops were unre-

solved despite high resolution diffraction (2.05 Å).

Two differences between mIgG2c Fc and mIgG2b Fc emerged upon comparing both mod-

els solved with a full-length N-glycan: a difference in quaternary structure and a difference in

the DE loop. Mouse IgG2c showed a closer approach of the Cγ2 domains and a more open

Cγ2/Cγ3 angle (Table B in S1 File). Though the Cγ2 domains accessed different orientations,

the overall structural similarity was high with a low rmsd for backbone atoms (0.4 Å), though

some differences were evident. The DE loop of mIgG2c Fc N-glycan was shifted 2.0 Å relative

to the same loop for mIgG2b Fc (measured from Y296 in an overlay of the Cγ2 domains; Fig

3). The N-glycans of these Fcs occupied nearly identical interfaces with polypeptide sidechains,

thus restricting the differences between the position of N297 Cα residues to 0.8 Å in an overlay

of the Cγ2 domains. This DE loop displacement was due to the presence of a Leu residue at

position 300 in mIgG2c Fc (mIgG2b I300) that forms van der Waals interactions with Pro271

and shifts the Cα of residue 300 by 0.8 Å and R293 by 1.3 Å further away from the E strand

Table 1. Binding of mIgG2c Fc and mIgG2b Fc to mFcγRIV measured with surface plasmon resonance.

(1)GlcNAc N-glycan Complex-type N-glycan

Kd ± err (nM) Kd ± err (nM)

2b-wt 2800 ±110 18.0 ±0.3

2b-I300L 1800 ±80 15.0 ±0.2

2b-I300L/K326R/D327A 1300 ±970 8.0 ±0.1

2c-wt 600 ±30 12.0 ±0.2

2c-L300I 1000 ±50 9.0 ±0.1

2c-L300I/R326K/A327D 1100 ±70 9.0 ±0.1

https://doi.org/10.1371/journal.pone.0192123.t001
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relative to mIgG2b (Fig 3C). It is also interesting to note van der Waals interactions between

the Y296 sidechain and the (0)Fuc residue in mIgG2c Fc were not observed for mIgG2b.

A model of the mIgG2c Fc truncated to a (1)GlcNAc N-glycan revealed substantial differ-

ences in the Cγ2 conformation and the DE loop (Fig 4). The Cγ2 domains of the mIgG2c Fc

with the complex-type N-glycan and the truncated N-glycans compared with an rmsd of 0.5 Å.

Beta character of the E strand extended by two residues which pulled the (1)GlcNAc residue of

the truncated mIgG2c Fc upwards relative to mIgG2c with a full-length N-glycan, displacing

the DE loop by 5.0 Å and shifting the BC loop by 1.5 Å for residues D269-P271 (Fig 4A). Crys-

tal contacts were formed by DE-loop residues that would prevent the interconversion between

Table 2. Summary of crystallographic data.

mIgG2c Fc N-glycoform

(1)GlcNAc Complex-type

PDB id 6BHY 6BHQ

Wavelength (Å) 1.000 1.000

Resolution range (Å) 44.61–2.04 (2.113–2.04)� 46.08–2.05 (2.123–2.05)

Space group C 1 2 1 P 21 21 21

Unit cell (a b c; Å) 103.233 89.215 69.851 67.735 73.399 118.408

(α β γ;˚) 90.0 132.2 90.0 90.0 90.0 90.0

Total reflections 110252 (9915) 179382 (14723)

Unique reflections 29905 (2977) 37350 (3533)

Multiplicity 3.7 (3.3) 4.8 (4.2)

Completeness (%) 100 (100) 99 (95)

Mean I/σ(I) 9.55 (1.75) 16.9 (1.9)

Wilson B-factor (Å2) 33.22 40.55

R-merge 0.093 (0.553) 0.047 (0.489)

R-meas 0.109 (0.655) 0.052 (0.553)

CC1/2 0.995 (0.756) 0.999 (0.810)

Reflections used for R-free 6.3% 9.9%

R-work 0.2106 (0.2798) 0.2369 (0.3303)

R-free 0.2538 (0.3213) 0.2582 (0.3244)

Number of non-hydrogen atoms 3479 3551

macromolecules 3282 3160

ligands 34 198

water 163 193

protein residues 416 415

RMS bonds (Å) 0.019 0.020

RMS angles (˚) 1.87 2.09

Ramachandran favored (%) 98.0 98.0

Ramachandran allowed (%) 2.2 1.8

Ramachandran outliers (%) 0 0.0

MolProbity Clash score 1.52 8.68

B-factors (Å2)

average 38.4 55.01

macromolecules 38.16 53.94

ligands 58.45 78.14

solvent 39.10 48.8

� values in parentheses refer to the highest resolution shell

https://doi.org/10.1371/journal.pone.0192123.t002
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the two distinct DE loop conformations observed in the crystals, however, based on the

appearance of only one conformation from each glycoform despite screening crystals from

multiple crystal conditions we believe the conformations presented here represent the pre-

dominant DE loop conformations sampled by each glycoform (Fig D in S1 File). Glycan trun-

cation likewise impacted packing of the D strand against the E strand to form a beta sheet.

This is evident from the carbonyl of D295 that is in hydrogen bond distance (3.0 Å) of the

S298 amide. This distance increases to 3.8 Å and shifts the geometry away from a favorable

hydrogen bond interaction in the structure containing the complex-type N-glycan. The trun-

cated mIgG2c Fc glycoform also formed hydrogen bonds between E268, R293, and D295 fur-

ther stabilizing the DE loop by coupling it to the BC loop.

This substantial reorganization was accompanied by a separation of the N-glycan from the

stabilizing intramolecular interactions. The (1)GlcNAc residue and N297 sidechain rotated

180˚ relative the position found in mIgG2c with the full-length N-glycan. The low B-values (46

Å2) and resolution of this region are surprising (Fig 4D); the same (1)GlcNAc residue of

hIgG1 Fc with the same truncation does not reorient, is less resolved and is characterized by

higher B values (105 Å2) [34]. This comparison in conjunction with the NMR data above indi-

cates that mIgG2c Fc contains a sequence motif that provides more interactions to stabilize

this critical region than are present in hIgG1 Fc, however, the rearrangements upon trunca-

tion, including the extension of the E strand, likely do not promote receptor binding as

mIgG2c is more sensitive to glycan truncation than human IgG1 Fc (50-fold and 11-fold

reduction, respectively; Table 1).

mIgG2b Fc mutations increase FcγRIV binding and affect N-glycan

environment

Only three amino acid differences at residues 300, 326 and 327 distinguish the BC, DE and FG

loop regions of mIgG2c Fc from mIgG2b Fc and these likely contribute to the mFcγRIV bind-

ing interface (Fig 1E). Indeed, the FcγRIV binding affinities are similar but mIgG2c binds with

greater affinity than mIgG2b in either Fc glycoform studied here (Table 1). Residue I300 of

mIgG2b Fc is positioned to perturb the DE loop organization and potentially reduce mIgG2b

Fc affinity relative to mIgG2c. The two other differences at residues 326 and 327 do not appear

to impact geometry of the FG loop backbone but may contribute to BC and DE loop motion

by sidechain-mediated interactions (Fig 3D). The mIgG2b I300L mutation increased binding

to FcγRIV by 1.2 to 1.6-fold for the truncated and complex-type glycoforms, respectively

(Table 1). The inclusion of two FG loop mutations (mIgG2b I300L/K326R/D327A) increased

binding from 2.2 to 2.3-fold.

Changes in binding affinity mirrored NMR spectra of the mIgG2b Fc proteins, following

N-glycan truncation (Fig 5). These spectra show the movement of anomeric peaks in an

HSQC spectrum along a line towards the position of the same peak from the mIgG2c Fc pro-

tein. The reciprocal pattern of peak changes was observed with spectra of mIgG2c and the cor-

responding single L300I and triple L300I/R326K/A327D mutants, though the difference

between single and triple mutants was less pronounced for the IgG2c mutations when com-

pared to mIgG2b. The mutations decreased mIgG2c Fc binding by 1.8-fold for the truncated

N-glycoform, and showed no difference for the complex-type N-glycoform outside of the

Fig 4. Truncating the mIgG2c Fc N-glycan alters the DE loop conformation. A-B) Comparison of mIgG2c Fc models with a complex-type N-glycan (orange ribbon)

with a truncated (1)GlcNAc N-glycan (green ribbon). C-D) Electron density of the DE loops show significant displacements in the loop conformation (contoured to 1.5

σ). E-F) Electron density of the N-glycans show the usual contacts in the case of full length glycan, and a 180˚ rotation of the (1)GlcNAc residue in the truncated

glycoform (contoured to 1.5 σ).

https://doi.org/10.1371/journal.pone.0192123.g004
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error of the measurements (Table 1; on and off-rates for binding of the complex-type glyco-

forms are reported in Table A in S1 File).

It is worth noting that the FG loop mutations are at least 16 Å from the (1)GlcNAc residue,

indicating changes to the FG loop affect the environment experienced by the N-glycan. Such

interactions likely involve contacts between the loops that transfer structural information

along a non-bonded network. These data demonstrate the partial interconversion of mIgG2b

and mIgG2c structure and receptor binding affinity, and confirm the link between NMR spec-

tra features, in particular the anomeric correlation spectra, and loop stabilizing interactions.

Discussion

Here we demonstrate that mouse IgG2b and 2c have similar Fc structures for the complex-

type N-glycoforms, however mIgG2c Fc binds FcγRIV with greater affinity. Differences in

BC, DE and FG loop interactions account for the majority of the affinity difference. It is likely

that other residues, not studied here including those at the Cγ2/Cγ3 interface and hinge, con-

tribute to the difference in binding between the triple mutant protein IgG2b and wild-type

IgG2c Fc. Surprisingly, mIgG2c formed a stable and well-resolved structure once the N-glycan

was truncated to a single asparagine-linked (1)GlcNAc residue, unlike other Fcs investigated

to date. Without a structure of the mIgG:FcγRIV complex it is impossible to know which
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Fig 5. 1H-13C HSQCs of anomeric (1)GlcNAc correlations from mouse IgG2b and mouse IgG2c Fc show near interconversion with amino acid substitution.

https://doi.org/10.1371/journal.pone.0192123.g005
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conformation is more relevant for receptor binding, however it is likely the conformation

observed with the tighter-binding mIgG2c Fc displaying a complex-type N-glycan is the more

relevant conformation.

The effect of residue swaps on FcγRIV binding and the physical environment encompass-

ing the anomeric (1)GlcNAc moiety highlights the link between DE loop stability and antibody

function. Our group previously demonstrated that stabilizing the homologous loop in hIgG1

Fc on the μs-ms timescale increased receptor binding [18, 20]. Mouse IgG2c Fc encodes a

structure that is more conducive to tighter receptor binding in both N-glycoforms studied

here. Based on the structural features, similarity of NMR and binding analyses it is likely

mIgG2c interactions restrict DE loop motion, preorganizing the Fc for receptor binding. Our

data do not directly address the amplitude or timescales of motion present in the Fc DE loops

of N-glycans.

A comparison of structures from orthologous antibodies has the potential to identify the

range of structural solutions selected through evolutionary processes. In addition to the basic

understanding of structure/function/evolution relationships, a complete understanding of these

mechanisms will aid development of antibodies with superior therapeutic properties. It is curi-

ous that hIgG1 Fc binds CD16A with lower affinity than these mouse Fcs bind the orthologous

mouse receptor FcγRIV. Though the overall organizations of the molecules are comparable and

expected given the common origin, substantial differences in specific features emerged (Table B

in S1 File). The C’ strand of hIgG1 Fc (comparable to the D strand in mouse; Fig 1E) forms

fewer stabilizing interactions with the E strand, resulting from distortion caused by a Pro resi-

due at position 291 (Fig 6B). The distance between the 290 carbonyl oxygen and 303 amide

nitrogen increased from 2.7 Å to 4.6 Å in human IgG1 Fc due to the Pro residue. The proline

also shifts the register of the strand that is restored through a bulge at mIgG2c D295. Surpris-

ingly, one reported model of mIgG2a forms a kink at position 291 similar to that of human

IgG1 Fc [23] and another 2a model as well as 2b do not [24, 33]. The apparent structural plastic-

ity of mIgG2a is surprising because the D strand sequence is identical to mIgG2c, suggesting

other factors may contribute to structural differences in this area (Fig 1E).

More differences between hIgG1 Fc and mIgG2c Fc are found in the interactions between

the BC, DE and FG loops. The impact of FG loop mutations on NMR spectra of the N-glycan

clearly indicate a role for loop interactions in the mIgG2 Fc structures (Fig 5). Mouse IgG2c Fc

shows a different organization around L300, including Van der Waals interactions with P271

and an ionic interaction between E268 and R293 (Fig 6C). The corresponding position in

hIgG1 Fc (Y300) interacts with H268, P271, R292, R293 and E294 (Fig 6D). Human IgG1 Fc

H268 is positioned to form an ionic interaction with E294 that is similar to the E268:R293

bridge in mIgG2c, though the protonation state of the H268 sidechain is not known. Numer-

ous single mutations to the hIgG1 hinge, BC, C’E and FG loops are reported at positions 265,

267, 270, 297, 298 327, or 329 that reduced CD16A binding (reviewed in [35]). Some hIgG1 Fc

combinations mutants bind CD16A with greater affinity than the wild type sequence and

include variations in the C’E and FG loops, including G236A/S293A/A330L/I332E [36] and

F243L/R292P/Y300L/V305I/P396L [37]. It is, however, unclear what the effect of each amino

acid substitution, in particular Y300L found in mIgG2c, is on receptor binding.

It is unclear if the hIgG1 Fc C’ strand destabilization is advantageous in the context of the

human immune system, perhaps permanent stabilization through amino acid-amino acid con-

tacts impedes the capacity for stabilizing intramolecular interactions between N-glycan and

polypeptide residues to impact immune system function. For example, extending the hIgG1 Fc

N-glycan increases intramolecular interactions between polypeptide and carbohydrate resi-

dues to reduce N-glycan motion, stabilize the C’E loop and increase receptor binding affinity

[18, 20, 27]. There is ample evidence to implicate changes in hIgG1 N-glycan composition in
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multiple diseases and these data indicate composition may be actively monitored and modified

by the body to tune immune system function [38–44]. Though Würher and coworkers recently

described the mouse antibody N-glycome, comparable studies linking glycan composition

with immune system response are not available as of this writing [45].
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