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Abstract

Background: The localization of objects of interest is a key initial step in most image analysis workflows. For
biomedical image data, classical image-segmentation methods like thresholding or edge detection are typically
used. While those methods perform well for labelled objects, they are reaching a limit when samples are poorly
contrasted with the background, or when only parts of larger structures should be detected. Furthermore, the
development of such pipelines requires substantial engineering of analysis workflows and often results in case-
specific solutions. Therefore, we propose a new straightforward and generic approach for object-localization by
template matching that utilizes multiple template images to improve the detection capacity.

Results: We provide a new implementation of template matching that offers higher detection capacity than single
template approach, by enabling the detection of multiple template images. To provide an easy-to-use method for
the automatic localization of objects of interest in microscopy images, we implemented multi-template matching
as a Fiji plugin, a KNIME workflow and a python package. We demonstrate its application for the localization of
entire, partial and multiple biological objects in zebrafish and medaka high-content screening datasets. The Fiji

plugin can be installed by activating the Multi-Template-Matching and 1-OpenCV update sites. The KNIME workflow
is available on nodepit and KNIME Hub. Source codes and documentations are available on GitHub (https://github.
com/multi-template-matching).

Conclusion: The novel multi-template matching is a simple yet powerful object-localization algorithm, that requires
no data-pre-processing or annotation. Our implementation can be used out-of-the-box by non-expert users for any
type of 2D-image. It is compatible with a large variety of applications including, for instance, analysis of large-scale
datasets originating from automated microscopy, detection and tracking of objects in time-lapse assays, or as a
general image-analysis step in any custom processing pipelines. Using different templates corresponding to distinct

Classification, Zebrafish, Medaka

object categories, the tool can also be used for classification of the detected regions.
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Background

In microscopy images, objects of interest usually represent
only a fraction of the field of view and are randomly posi-
tioned. Typically, detection of objects in microscopy images
relies on classic intensity-based segmentation techniques
that perform well for the localization of fluorescent objects.
However, these approaches often require the creation of
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complex analysis workflows and the adjustment of multiple
parameters, resulting in highly application-specific solutions
[1-4]. In many cases, such as whole organism imaging,
such methods might not even be applicable when it comes
to the identification of a particular organ or tissue that is
poorly contrasted with the rest of the specimen or that is
non-specifically labelled. Alternatively, methods based on
the detection of edges and shapes (e.g. circular Hough
transform [5]) can perform well with low contrast images,
but they are limited to a given shape or are sensitive to
noise. Machine learning methods offer powerful object-
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detection capacities [6—10]; however, setting up the soft-
ware environment can be overwhelming and training the
machine requires large amounts of annotated data, thus
rendering it often inaccessible to most microscopy users. In
contrast, template-based approaches allow the computation
of the most probable positions of a single template image
within a larger image with negligible manual annotation
and at minimal computational cost [11]. However, using a
single template, the detection capacity is limited, as the
algorithm searches for a single intensity pattern which
might not generalize well to objects with different perspec-
tives or characteristics. To overcome current limitations in
object-recognition, we report a new implementation of
template matching with enhanced detection capacity by
performing the search with multiple template images, thus
improving the range of detectable patterns. The individual
template detections are combined and filtered to keep the
most probable detections using a custom non-maxima
suppression (NMS). To address the current lack of open-
source tools for generic and accessible object-detection in
end-user software, we further present the design and estab-
lishment of previously unavailable multi-template-matching
functionalities in Fiji [12] and KNIME [13] in a user-
friendly manner.

Implementation

Extending on OpenCV functions, we implemented
multi-template matching for end-users as both a Fiji
plugin and a KNIME workflow compatible with images
of any bit depth. To this extent, we developed a python
implementation that can be installed with its depend-
encies like a regular python package via pip (Multi-
Template Matching). The KNIME workflow uses this
python implementation via a python scripting node.
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The Fiji plugins rely on a collection of related Jython
scripts that are automatically installed with the plugins
upon activation of the Multi-Template Matching up-
date site. Additionally, the IJ-OpenCV plugins update
site [14] should be activated to install the OpenCV de-
pendencies in Fiji. The resulting pipelines can be in-
stalled on any system running Fiji or KNIME/Python
(see Additional file 13 for further details and availabil-
ity of source code). A flowchart of the implementation
is provided in Additional file 4: Figure S1.

To predict the position of a template within a target
image (Figs. 1a, 2a), the algorithm first computes a correl-
ation map using the function matchTemplate from
OpenCV (Figs. 1b, 2b). If information about the approxi-
mate position of the object is known a priori, the compu-
tation can be limited to a user-defined rectangular search
region, which significantly speeds up the execution by
reducing image size (Fig. 1a, b; Additional file 7: Figure S4,
Additional file 9: Figure S6, Additional file 11: Figure S8
and Additional file 1: Movie S1). In this case, the image is
first cropped to the search region before the computation
of the correlation map, and the position of the predicted
bounding boxes are recalculated for the initial image
shape.

Template matching performs the search by translation of
the template over the image, i.e. it will find objects that
show a similar orientation as in the template. To maximize
the capacity of object-detection, our implementation allows
to provide a set of templates to be searched (e.g. additional
object perspectives, scales), or initial templates can be trans-
formed by selecting additional flipping and rotation in the
plugin interface. Using templates representing different
objects, simultaneous object-detection for different categor-
ies can be performed, e.g. for classification of the detected

|C 9220950604000

-

09020203 &S000
202020506000
90200020000
30000020000
2020204 AVSOS
2080002000 GS
V2SR AGISO

Fig. 1 Head region detection in oriented zebrafish larvae using single template matching. a Searched image (2048 x 2048 pixels, scale bar: T mm)
with template as inset (188 X 194 pixels), search region in orange (1820 x 452 pixels) and predicted location in blue. The red cross corresponds to
the position of the global maximum of the correlation map (as in b). b Correlation map with global maximum (red cross) indicating the position
of the bounding box in a. The grid area indicates the smaller size of the correlation map compared to the image in which the search is
performed (see also Additional file 13). ¢ Montage of detected head regions within a 96 well plate
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Fig. 2 Multi-template matching and Non-Maxima Suppression for the detection of randomly oriented and positioned medaka embryos. a Image
in which the search is performed (2048 x 2048 pixels - scale bar: 1 mm) and template as inset (400 x 414 pixels). The search was performed with a
set of templates (original template, vertical and horizontal flip, each rotated by 90°, 180° and 270°). Parameters for the detection: score type: O-
mean normalized cross-correlation, N =4 expected objects per image, score threshold: 0.35, maximal overlap between bounding boxes: 0.25. b
One of the derived correlation maps from A: red crosses indicate possible local maxima before Non-Maxima Suppression (NMS). The grid area
indicates the smaller size of the correlation map compared to the image in which the search is performed as explained in Additional file 13. ¢
Bounding boxes associated to the maxima shown in b and overlaid on the searched image. Colours are highlighting overlapping bounding
boxes. The bounding box dimensions are identical to the dimensions of the template used for the search. d, e Preventing overlapping detections
by NMS. Shown are 2 overlapping bounding boxes predicting possible object locations. Each predicted location is associated to a probability
score S to contain an object. The ratio between the intersection (d) and the union (e) area of the bounding boxes (Intersection over Union or
loV) is computed to decide whether the 2 overlapping bounding boxes are likely to predict the location of the same object (loU close to 1) or
the locations of distinct objects that are close to each other (loU close to 0). For a detailed description of Non-Maxima Suppression see
Additional file 13. f Yielded object detections after NMS with a maximal loU of 0.25, to return the N_objects =4 best detections

regions (Additional file 11: Figure S8 and Additional file 12:
Figure S9).

Detection of multiple objects from a single template
search, but especially from multiple consecutive tem-
plate searches can lead to overlapping detections when a
simple ranking of corresponding correlation scores is
performed (Fig. 2c). These redundant detections need to
be recognized and eliminated in order to enable genuine
and robust multi-template matching. To address this, we
developed a custom strategy combining maxima finding
in correlation maps, followed by NMS [15, 16], which
excludes redundant detections based on a user-defined
degree of overlap between predicted bounding-boxes
(Fig. 24, e, f). The detailed procedure for maxima detec-
tion and NMS can be found in Additional file 13.

The parameters for the detection (template rotation/
flipping, expected number of objects, score type and if
N> 1, threshold on the score and maximal overlap be-
tween predicted locations) are specified via a graphical
user interface in both Fiji and KNIME (Additional file 5:
Figure S2A and Additional file 6: Figure S3B). The
detected regions are returned as rectangular regions of

interest (ROI) in Fiji and as part of a mask image in
KNIME, along with a result table listing the name of the
template, the score and the coordinates for each detec-
tion (Additional file 5: Figure S2B and Additional file 6:
Figure S3C). The tools are intuitively accessible and de-
mand no programming experience. Importantly, the Fiji
plugin is macro-recordable, and can thus be readily in-
tegrated in custom image processing workflows (see
Additional file 3 for 2-step template matching).

Results

We successfully tested our pipelines with whole organism
screening datasets, e.g. for the detection of organs like head,
trunk and eyes in oriented zebrafish larvae [17, 18] (Fig. 1,
Additional file 7: Figure S4, Additional file 9: Figure S6 and
Additional file 11: Figure S8, Additional file 1: Movie S1), or
for the localization of multiple randomly oriented and posi-
tioned medaka embryos [19, 20] (Fig. 2, Additional file 10:
Figure S7 and Additional file 2: Movie S2). The speci-
ficity of template matching for head detection in
aligned zebrafish larvae was tested within full frame
images and within a search region (Additional file 7:
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Figure S4). The implemented method performs ro-
bustly in the presence of experimental variability, such as
slight changes of specimen morphology (Additional file 7:
Figure S4C, e.g. well C7), altered orientation (Additional file 7:
Figure S4C, e.g. well B8), partial occlusion (Additional file 7:
Figure S4C, e.g. well E10) or noise (Additional file 8:
Figure S5). In contrast, detection of comparably small
structures by template matching within large
heterogenous images can be challenging due to the
increased likelihood of false detections. This can be
largely improved using search regions (Additional file 9:
Figure S6), or by successive template matching detec-
tions to first robustly detect an object and then the
subregions within the object. For example, we illustrate
the robust localization of zebrafish eye regions within
previously detected head region using a custom 2-step
template matching Fiji macro (Additional file 9: Figure
S6B, C, Additional file 3).

Our implementation relies on the OpenCV library
which provides a rapid computation of the correlation
map (about 0.45s/image in Fiji with a 188 x 194 tem-
plate and 2048 x 2048 image) on a laptop with an intel
i7-7500U CPU (2.7GHz) and 16 Gb of RAM. This com-
putation can be even faster if a search region is provided
(0.06 s/image with a 1820 x 452 pixels search area as in
Fig. 1a, b, see also Additional file 7: Figure S4D and
Additional file 9: Figure S6D).

In contrast to other template matching implementa-
tions, multi-template matching enables the robust
detection of multiple objects displaying different in-
tensity patterns by searching for several templates
(e.g. additional geometrical transformations or differ-
ent object categories) (Fig. 2, Additional file 10: Fig-
ure S7). The corresponding searches are consecutively
executed for each template; thus, accuracy is achieved
at the expense of computation time (Additional file 9:
Figure S6B, S6D and Additional file 10: Figure S7B,
S7C). Using templates representing different objects,
simultaneous object-detection for different categories
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e.g. for classification of the detected regions can be
performed. For instance, the multi-template approach
could be used to score certain organ and tissue-
specific phenotypes in whole-organism screening, as
demonstrated by the categorization of zebrafish em-
bryonic kidney phenotypes in a benchmark dataset
[21, 22] (Additional file 12: Figure S9).

Previous implementations of template matching [14,
23, 24] do not allow to use different templates for object
detections, neither do they provide a way to prevent
multiple detections of the same object, which motivated
our implementation of a NMS strategy. A comparison to
previous template matching tools available in common
end-user bioimage analysis software is given in Table 1.
Importantly, we aimed at keeping our implementation
simple and accessible to researchers of any background.
Therefore, we limited the number of parameters to a
minimum, and provide extensive documentation in the
form of a wiki and online video tutorials (see links in
Additional files 1 and 2). For the python implementa-
tion, we host several jupyter notebook tutorials on
GitHub that can be executed directly in a web-browser
without any installation using Binder [26].

Discussion

Template matching for object-localization is easy to han-
dle and understand by non-experts. It relies on normal-
ized grey level comparisons between a template image
and successive image patches from a sliding window. It
considers the full intensity pattern of the template image
that usually includes object and surrounding context
information. This intensity signature has a powerful dis-
criminative power, even upon occlusion of the object or
noise in the image, and the normalized score renders the
detection robust against shifted illumination conditions
(Additional file 7: Figure S4 and Additional file 8: Figure
S5). However, template matching is limited to searching
for a single intensity pattern, rendering it sensitive to
changes in orientation or perspective of objects. In our

Table 1 Comparison of end-user implementations of template matching, available in common bioimage analysis software

Name Availability Open  Doc. Multiple Non-Maxima  Search Transformations  Multiple Reference
source detections  Suppression  region(s) templates
Template matching Fiji v X X X X X [14]
MatchTemplate CellProfiler v v X X X X X [25]
Template Matching Image) v v v X X X X Link
cvMatch_Template Image) v v v X X X X [24]
Pattern Matching NI Vision Development X v v ? v v X Link
Multi-Template Matching  Fiji, Python, KNIME v v v v v v v This paper

The table lists and compares available implementations and associated functionalities of template matching in common end-user software (Doc.: Documentation
available,). The column Transformations corresponds to optional search with additional templates, generated by geometric transformation (e.g. flipping, rotations)
of the initial templates. Link 1: https://imagej.nih.gov/ij/plugins/template-matching.html - Link 2: http://www.ni.com/example/30594/en/
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approach, we overcome this limitation of existing imple-
mentations by combining results from multiple tem-
plate images to increase the range of detectable
intensity patterns. We then used a custom NMS strat-
egy based on the degree of overlap between predicted
bounding boxes to prevent redundant detections of a
given object. Using the overlap for NMS is the most
generic way to filter detections by bounding boxes of
possibly different sizes and aspect-ratios.

Template images are typically generated by cropping
objects of interest from source images, but we also
provide the automated generation of additional tem-
plates through geometrical transformations. To ensure
user-friendliness, we restricted the optional template
transformations to flipping and rotation, which repre-
sent the common object-transformations expected in
microscopy images. However, the tool accepts an ar-
bitrary number of template images representing other
potential transformations such as scaling or distortion.
While our implementation accepts discrete rotation
angle values, rotational search should be balanced
with required detection efficiency to keep the overall
number of generated templates and thus computation
time low. In this study, image examples originating
from zebrafish screening studies [17] were obtained
using sample mounting strategies to constrain the ro-
tational orientation of specimen [18], thus preventing
the need for rotational search and providing datasets
that can be rapidly profiled with template matching
approaches. A number of methods have been reported
in the literature to prevent repeated searches with ro-
tated templates [27-32]. However, the complexity of
these approaches limits their usability by non-experts,
or their implementation is not publicly available.

Template matching can also be used for supervised
classification, e.g. for nearest-neighbour search based on
a set of annotated templates. This method has the ad-
vantage that it does not require any pre-processing of
the image, or computation and selection of features.
However, the quality of the classification depends heavily
on the choice of the templates, and the method is rota-
tion and scale sensitive.

Besides the number of templates, the computation
time is a function of image and template sizes. As illus-
trated in the result section (Additional file 7: Figure
S$4D, Additional file 9: Figure S6D, Additional file 11:
Figure S8D and Additional file 1: Movie S1), the pro-
cessing speed can be drastically increased by limiting
the analysis to a search region in which the object of
interest is expected. Alternatively, the search could be
performed with downscaled versions of the image and
templates followed by rescaling and placement of
bounding boxes. Yet, because downscaling degrades
the searched intensity pattern, this approach may lead
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to non-specific and potentially shifted detections;
therefore, we do not provide this option in the Fiji and
KNIME versions. However, advanced users can refer to
the online tutorial of the python implementation for
an example of how to use downscaling to accelerate
the detection (see Additional file 13).

The current implementation is mainly targeted to-
wards analysis of single channel grayscale images. RGB
image data can be used as input but is automatically
converted to grayscale average projections. Further
major developments would be required to expand the
tool to also consider colour information of objects of
interest. The template matching originates from ma-
chine vision applications for the automated inspection
of two-dimensional image data. Nevertheless, for cer-
tain applications it could also be used to search for the
most probable XYZ positions of an object in volumet-
ric data, provided that objects can be robustly discrim-
inated between single z-slices.

Conclusion

We demonstrate a novel implementation of template
matching for object-localization in 2D images using
multiple template images, thus drastically improving
overall sensitivity and applicability of the method. Our
implementation requires only few parameters and is
easy to handle by non-expert users via an intuitive
graphical interface in Fiji and KNIME. Advanced users
are provided with a dedicated python implementation
to create custom workflows. We demonstrate the utility
of multi-template matching for the detection and pos-
sible classification of entire or partial biological specimen
in microscopy images. Multi-template matching is highly
flexible and can be used as a general image-analysis step
for a multitude of applications and samples, as its detection
potential mainly depends on the choice of appropriate
template image. The usage of multiple template images for
the search typically improves detection capacity but
increases the computation time accordingly. To
improve computing efficiency, the parallelization of
template searches or GPU computing with OpenCV
could be explored. Finally, the demonstrated template
matching tools could also facilitate feedback micros-
copy applications by interfacing it with the control
software of automated microscopes, thus enabling the
automated acquisition of ROI for tracking or auto-
mated zooming-in on target structures without man-
ual intervention [21, 23].

Availability and requirements
Project name: Multi-Template Matching

Project home page: https://multi-template-matching.
github.io/Multi- Template-Matching/

Operating system(s): Platform independent
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Programming language: Python

Other requirements: Fiji with minimum Image 1.520,

IJ-OpenCV 1.2.1
License: GPL v3.0

Any restrictions to use by non-academics: Any de-

rived work should be under GPL-compatible license

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512859-020-3363-7.
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Additional file 1: Movie S1. Installation and single object detection.
Available on YouTube at https://youtu.be/KizIgSG5XBU.

Additional file 2: Movie S2. Multiple object detection. Available on
YouTube at https://youtu.be/-PoZihjJljQ.

Additional file 3: Macro. 2step-TemplateMatching.ijm, available on the
GitHub repository at https://github.com/multi-template-matching/Multi
TemplateMatching-Fiji/blob/master/Fijiapp/scripts/Plugins/Multi-Template-
Matching/2step-TemplateMatching.ijm . See Supplementary Material pdf and
Supplementary Figures.pdf for further information.

Additional file 4: Figure S1. Flowchart of the implemented muilti-
template matching. The chart illustrates the sequential execution of the
tool, for correlation-based score. For difference-based score, the pipeline
is identical except that a difference map is computed, minima are
detected instead of maxima and the lowest minima are returned. (loU:
Intersection over Union).x

Additional file 5: Figure S2. Implementation in Fiji. (A) Graphical user
interface for the plugin “Template Matching Image” with: (1) Dropdown
menu to select the template image of the object of interest. The
template must be smaller than the image specified in 2, (2) dropdown
menu to select an image (or stack of images) in which to search for the
template, (3) tick-boxes to optionally generate additional templates by
horizontal/vertical flipping of the initial template, (4) input field for
rotation angles to generate additional templates by rotations of the initial
and, if selected, flipped templates. The angles are specified in degrees
with clockwise orientation and must be separated by commas, (5)
dropdown menu to choose the score used for the computation of the
score map (normalised square-difference, normalised cross-correlation or
0-mean normalised cross-correlation), (6) input field to specify the
number of objects expected in the image, (7) input field to enter a score-
threshold in the range 0-1. If the normalised square-difference is
selected, only local minima with values below the threshold are returned.
While for cross-correlation scores, maxima above this value are returned,
(8) input field to specify the maximum value in range 0-1 for the
intersection over union (loU) between a pair of overlapping bounding
boxes (Non-Maxima Suppression), (9) tick-box to select if the detected
Regions Of Interest (ROI) should be added to Fiji ROl Manager, (10) tick-
box to specify if the result table should be displayed at the end of the
execution. Parameters 7 and 8 are only required if several objects are
expected in each image. (B) Outputs of the plugin with (1) result table
with each row containing the names of the image and template, the
prediction score and coordinates of the top left corner and centre of the
predicted bounding box, and (2) the detected ROI appended to the ROI
Manager and highlighted on the image (yellow).

Additional file 6: Figure S3. Implementation in KNIME. (A) Screenshot
of the KNIME workflow. The template and images are provided in the
Image Reader nodes on the left side, the processing happens in the
central metanode called ‘Multi-Template Matching’ containing a python
node calling the python implementation. The parameters for multi-
template matching can be configured via a graphical user interface (see
B) by right clicking on the node. The predicted locations can be
visualised in the Interactive Segmentation View node on the right side (as
shown in Q). A result table containing the bounding box position,
dimension and correlation score is also returned (Table view node,
output not shown). (B) Graphical user interface of the central ‘Multi-Tem-
plate Matching' metanode for the configuration of the detection

parameters, similarly to the Fiji implementation (see Additional file 5:
Figure S2A). (C) Predicted locations as viewed in the Interactive
Segmentation View node. The predicted locations are composed into a
mask and overlaid on the image.

Additional file 7: Figure S4. Template matching for head region
detection in oriented zebrafish larvae. (A) Single template (188 x 194
pixels, no additional transformation) and image (2048 x 2048 pixels, scale
bar: 1 mm) in which the search is performed. The orange rectangle
shows the optionally used restricted search region (1820 x 452 pixels).
Parameters for the detection: score type: O-mean normalised cross-
correlation — N=1 expected object per image. (B) Result of the detection
for N=96 images, with and without search region (both 100% detection
rate). (C) Montage of detected zebrafish larval head regions within a 96
well plate (as in Fig. 1¢). (D) Mean computation time per image (error
bars show standard deviation) for the different conditions as in B using
the same computing hardware as in the main text. Prior information
about the position of the sample within the field of view (e.g. due to
standardized sample mounting) can be used to specify a search region,
drastically accelerating the computation and reducing the chance of
incorrect predictions.

Additional file 8: Figure S5. Multi-template matching is robust to
noise. (A) Original image (2048 x 2048 pixels). (B) Image as in A corrupted
with artificial noise (normally distributed random noise — mean:0,
standard deviation:50). (C, D) Result of multi-template matching for
respectively A and B. The template used is a crop of the specimen in the
middle of image A (hence a correlation score of 1 for the first row of
Table C). Parameters for the detection: rotation of the template: 90,180° -
score type: 0-mean normalised cross-correlation - N =4 expected objects
per image - score threshold: 0.3 — maximal overlap between bounding
boxes: 0.3.

Additional file 9: Figure S6. Multi-template matching for eye-region
detection in oriented zebrafish larvae. (A) Templates (108 x 76 pixels) and
image in which the search is performed (2048 x 2048 pixels, scale bar: 1
mm). Orange rectangle indicates optional search region (1820 x 452
pixels), and blue dotted rectangle the head-region template used for 2-
step template matching (see B and D). Parameters for the detection:
Vertical flipping of the templates (only if FlipV indicated), score type: 0-
mean normalized cross-correlation, N =2 expected objects per image,
score threshold: 0.5, maximal overlap between bounding boxes: 0.25. For
2-step template matching the search region in orange is used for the 1st
step (head-detection with a single head template, N =1 expected object),
then a single eye template is used with flipping for the detection of the
eyes within the previously detected head region. (B) Result of the
detections for N =94 images. 2 eyes/1 eye/No eyes in figure legend refer
to the outcome of eye-region detection in each larva. Vertical flipping of
the templates readily increases the number of genuine matches. The 2-
step template matching approach (search of template within a previously
identified ROI) offers the best results and is recommended for more
challenging template images (see Additional file 3). (C) Montage of the
eye regions detections (yellow) for the 2-step matching approach as in B
and D. Specimen in well B8 and F7 are excluded from the count in B as
they are not dorsally oriented. (D) Mean computation time per image
(error bars show standard deviation) for the different conditions (as in B)
using the same hardware as in the main text.

Additional file 10: Figure S7. Multi-template matching for the
localization of randomly oriented and positioned medaka embryos. (A)
Initial template (410 x 420 pixels) and one of the images in which the
search is performed (2048 x 2048 pixels, scale bar of 1 mm). The yellow
bounding boxes indicate predicted locations when only the original
template in A is used for the search, the green boxes indicate predicted
locations when using a set of templates (original, horizontal and vertical
flipping, rotation of the original and flipped templates by 90°,180° and
270°). Parameters for the detection: score type: 0-mean normalized cross-
correlation, N = 4 expected objects per image, score threshold:0.35,
maximal overlap between bounding boxes:0.25. (B) Result of the
detections for 10 images each containing 4 embryos (i.e. 40 embryos in
total) See detected region in D. (C) Mean computation time per image
(error bars show standard deviation) for the different conditions using
the same hardware as in the main text. The computation time for each



https://doi.org/10.1186/s12859-020-3363-7
https://doi.org/10.1186/s12859-020-3363-7
https://youtu.be/KlzIqSG5XBU
https://youtu.be/-PoZihjJIjQ
https://github.com/multi-template-matching/MultiTemplateMatching-Fiji/blob/master/Fiji.app/scripts/Plugins/Multi-Template-Matching/2step-TemplateMatching.ijm
https://github.com/multi-template-matching/MultiTemplateMatching-Fiji/blob/master/Fiji.app/scripts/Plugins/Multi-Template-Matching/2step-TemplateMatching.ijm
https://github.com/multi-template-matching/MultiTemplateMatching-Fiji/blob/master/Fiji.app/scripts/Plugins/Multi-Template-Matching/2step-TemplateMatching.ijm

Thomas and Gehrig BMC Bioinformatics (2020) 21:44

image scales with the number of templates. (D) Montage of the detected
regions for 10 images similar to A, each containing 4 embryos (1
column/image). The montage corresponds to the benchmark “1
Template + transformations” as in B and C. Yellow bounding boxes
indicate the 2 detections classified as Partial in B.

Additional file 11: Figure S8. Multi-template matching for
simultaneous head and trunk region detection in oriented zebrafish
larvae. (A) Head (188 x 194 pixels) and trunk region (264 x 192 pixels)
templates. Image (2048 x 2048 pixels, scale bar: 1 mm) in which the
search is performed. The orange rectangle shows the optionally used
restricted search region (1820 x 452 pixels). Parameters for the detection:
Vertical flipping of the templates - score type: 0-mean normalised cross-
correlation — N =2 expected objects per image - score threshold: 0.6 —
maximal overlap between bounding boxes: 0.35. (B) Result of the
detection for N =96 images, with and without search region. (C) Montage
of the detected head regions in 96 zebrafish larvae when the search
region is used. The head region was not detected in 3 specimens, 2 of
them were not properly dorsally aligned. (see. Additional file 7: Figure
S4C). (D) Montage of the detected trunk regions in 96 zebrafish larvae
when the search region is used. When 2 trunks were detected in one
image (instead of one trunk and one head), the trunk with the best score
was used for the montage. Prior information about the position of the
sample within the field of view (e.g. due to standardized sample
mounting) can be used to specify a search region, drastically accelerating
the computation and reducing the chance of incorrect predictions. (E)
Mean computation time per image (N =96 - error bars show standard
deviation) for the different conditions as in B using the same computing
hardware as in the main text.

Additional file 12: Figure S9. Using multi-template matching for
phenotypes classification. (A) Manually annotated templates used for the
classification of phenotypes of embryonic zebrafish kidneys. (B) Example
of image to classify and (C) resulting correlation-scores for the 3 classes.
In this case, the image is correctly classified as cystic. (D) Confusion matrix
depicting the results for the classification of 167 annotated images (50
normal, 52 cystic, 65 long). The class Cystic and Normal are particularly
well predicted. A number of Long were classified as Cystic, this can be
expected as those 2 morphologies show similar elongated regions.

Additional file 13. Supplementary information. Supplementary Material
for Multi-Template Matching: a versatile tool for object-localization in
microscopy images.

Abbreviations
Doc: Documentation; loU: Intersection over Union; NMS: Non-Maxima
Suppression; ROI: Region of Interest

Acknowledgements

We thank Franz Schaefer, Jens Westhoff (Children’s Hospital, Heidelberg), and
Jochen Wittbrodt (COS, Heidelberg) for general support, Jakob Gierten (COS,
Heidelberg) for sharing image data and Gunjan Pandey (Children’s Hospital,
Heidelberg) for proof-reading the manuscript. We are also grateful to the Fiji
and KNIME communities for the support on their respective forum.

Authors’ contributions

LT wrote the code and developed the tool. LT implemented and maintains
the tool in Python, Fiji and KNIME. LT wrote the user documentation. LT and
JG benchmarked, tested the software, and developed examples. LT and JG
conceived the tools. JG designed and supervised the project. LT and JG
wrote the manuscript. All authors read and approved the final manuscript.

Funding

This project has received funding from the European Union's Horizon 2020
research and innovation program under the Marie Sklodowska-Curie grant
agreement No 721537 “ImagelnLife”. The funding body did not play any role
in the design of the study, the collection, analysis, and interpretation of data
nor in the writing of the manuscript.

Availability of data and materials

The image datasets used for this study are available on Zenodo (links below).

Page 7 of 8

- Dataset used for Fig. 1, Additional file 7: Figure S4, Additional file 9: Figure
S6 and Additional file 11: Figure S8.

Gehrig, Jochen. (2019). 3dpf zebrafish larvae, 96 well plate, Tg (wWt1b:EGFP),
dorsal view, ACQUIFER Imaging Machine [Data set]. Zenodo. https://doi.org/
10.5281/zen0do.2650162 -.

- Dataset used for Fig. 2, Additional file 8: Figure S5 and Additional file 10:
Figure S7.

Gierten Jakob & Gehrig Jochen. (2019). 102 hpf medaka embryos in 96 well
plate (4 embryo/well) - brightfield - 2X magnification - ACQUIFER Imaging
Machine (Version 1) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.
2650147

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
Both authors are employees of ACQUIFER, a division of DITABIS Digital
Biomedical Imaging Systems AG.

Author details

'Acquifer is a division of Ditabis, Digital Biomedical Imaging Systems AG,
Pforzheim, Germany. *Centre of Paediatrics and Adolescent Medicine,
University Hospital Heidelberg, Heidelberg, Germany.

Received: 22 July 2019 Accepted: 13 January 2020
Published online: 05 February 2020

References

1. Teixido E, KieBling TR, Krupp E, Quevedo C, Muriana A, Scholz S. Automated
morphological feature assessment for zebrafish embryo developmental
toxicity screens. Toxicol Sci. 2019;167(2):438-49.

2. Vogt A et al. Automated image-based phenotypic analysis in zebrafish
embryos. Dev Dyn. 2009;238(3):656-63.

3. Spomer W, Pfriem A, Alshut R, Just S, Pylatiuk C. High-throughput screening
of Zebrafish embryos using automated heart detection and imaging. J Lab
Autom. 2012;17(6):435-42.

4. Gehrig J, et al. Automated high-throughput mapping of promoter-enhancer
interactions in zebrafish embryos. Nat Methods. 2009;6(12):911-6.

5. Marcato D, et al. An automated and high-throughput photomotor response
platform for chemical screens; 2015. p. 7728-31.

6. Gallego J, et al. Glomerulus classification and detection based on
convolutional neural networks. J Imaging. Jan. 2018;4(1):20.

7. Waithe D, Brown JM, Reglinski K, Diez-Sevilla |, Roberts D, Eggeling C. Object
detection networks and augmented reality for cellular detection in
fluorescence microscopy acquisition and analysis. bioRxiv. 2019. https://doi.
org/10.1101/544833.

8. FalkT, et al. U-net: deep learning for cell counting, detection, and
morphometry. Nat Methods. 2019;16(1):67-70.

9. LiuW, et al. SSD: single shot multibox detector. arXiv:1512.02325 [cs]. 2016;
9905:21-37.

10.  Girshick R, Donahue J, Darrell T, Malik J. Region-based convolutional
networks for accurate object detection and segmentation. IEEE Trans
Pattern Anal Mach Intell. 2016;38(1):142-58.

11. Brunelli R. Template matching techniques in computer vision: theory and
practice. Chichester: Wiley; 2009.

12. Schindelin J, et al. Fiji: an open-source platform for biological-image
analysis. Nat Methods. 2012,9(7):676-82.

13. Berthold MR, et al. KNIME - the Konstanz information miner: version 2.0 and
beyond. ACM SIGKDD Explorations Newsl. 2009;11(1):26.

14. Dominguez C, Heras J, Pascual V. 1J-OpenCV: combining ImageJ and
OpenCV for processing images in biomedicine. Comput Biol Med.
2017,84:189-94.

15.  Alexe B, Deselaers T, Ferrari V. Measuring the objectness of image windows.
IEEE Trans Pattern Anal Mach Intell. 2012;34(11):2189-202.

16.  Felzenszwalb PF, Girshick RB, McAllester D, Ramanan D. Object detection
with discriminatively trained part-based models. IEEE Trans Pattern Anal
Mach Intell. 2010;32(9):1627-45.


https://doi.org/10.5281/zenodo.2650162
https://doi.org/10.5281/zenodo.2650162
https://doi.org/10.5281/zenodo.2650147
https://doi.org/10.5281/zenodo.2650147
https://doi.org/10.1101/544833
https://doi.org/10.1101/544833

Thomas and Gehrig BMC Bioinformatics (2020) 21:44 Page 8 of 8

17. Gehrig J. 3dpf zebrafish larvae, 96 well plate, Tg (wt1b:EGFP), dorsal view,
ACQUIFER imaging machine: Zenodo; 2019. https://doi.org/10.5281/zenodo.
2650162.

18. Wittbrodt JN, Liebel U, Gehrig J. Generation of orientation tools for
automated zebrafish screening assays using desktop 3D printing. BMC
Biotechnol. 2014;14(1):36.

19. Gierten J, et al. Automated high-throughput heart rate measurement
in medaka and zebrafish embryos under physiological conditions.
bioRxiv. 2019. https://doi.org/10.1101/548594.

20. Gierten J, Gehrig J. 102 hpf medaka embryos in 96 well plate (4
embryo/well) - brightfield - 2X magnification - ACQUIFER imaging
machine: Zenodo; 2019. https://doi.org/10.5281/zenodo.2650147.

21, Pandey G, Westhoff J, Schaefer F, Gehrig J. A smart imaging workflow for
organ-specific screening in a cystic kidney zebrafish disease model. Int J
Mol Sci. 2019;20(6):1290.

22. Westhoff JH, et al. Development of an automated imaging pipeline for the
analysis of the zebrafish larval kidney. PLoS ONE. 2013;8(12):e82137.

23. Peravali R, et al. Automated feature detection and imaging for high-resolution
screening of zebrafish embryos. BioTechniques. 2011,50(5):319-24.

24. Tseng Q, et al. A new micropatterning method of soft substrates reveals
that different tumorigenic signals can promote or reduce cell contraction
levels. Lab Chip. 2011;11(13):2231.

25. Carpenter AE, et al. CellProfiler: image analysis software for identifying and
quantifying cell phenotypes. Genome Biol. 2006;7:11.

26. Forde J, et al. Binder 2.0 - Reproducible, interactive, sharable environments
for science at scale, Presented at the python in science conference, Austin,
Texas; 2018. p. 113-20.

27. Choi M-S, Kim W-Y. A novel two stage template matching method for
rotation and illumination invariance. Pattern Recogn. 2002;35(1):119-29.

28. Marimon D, Ebrahimi T. Efficient rotation-discriminative template
matching, Progress in pattern recognition, image analysis and
applications; 2007. p. 221-30.

29.  Kim HY, De Aratjo SA. Grayscale template-matching invariant to rotation,
scale, translation, brightness and contrast. In: Pacific-rim symposium on
image and video technology; 2007. p. 100-13.

30. PhD Thesis, Series of Publications A, Report A-2001-3. Helsinki; 2001. p. 139.
ISSN 1238-8645, ISBN 952-10-0009-0.

31.  Fredriksson K, Makinen V, and Navarro G. Rotation and lighting invariant
template matching. Information and Computation. 2007;205:1096-113.
https://doi.org/10.1016/jic.2007.03.002.

32. Fageot J, Uhlmann V, Plspoki Z, Beck B, Unser M, Depeursinge A.
Principled design and implementation of steerable detectors. arXiv:1811.
00863 [eess, stat]. 2018.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions . BMC



https://doi.org/10.5281/zenodo.2650162
https://doi.org/10.5281/zenodo.2650162
https://doi.org/10.1101/548594
https://doi.org/10.5281/zenodo.2650147
https://doi.org/10.1016/j.ic.2007.03.002

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Results
	Discussion
	Conclusion
	Availability and requirements
	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note



