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I M M U N O L O G Y

Machine learning predictions of T cell antigen 
specificity from intracellular calcium dynamics
Sébastien This1,2,3, Santiago Costantino1,4*, Heather J. Melichar1,3,5*

Adoptive T cell therapies rely on the production of T cells with an antigen receptor that directs their specificity 
toward tumor-specific antigens. Methods for identifying relevant T cell receptor (TCR) sequences, predominantly 
achieved through the enrichment of antigen-specific T cells, represent a major bottleneck in the production of 
TCR-engineered cell therapies. Fluctuation of intracellular calcium is a proximal readout of TCR signaling and can-
didate marker for antigen-specific T cell identification that does not require T cell expansion; however, calcium 
fluctuations downstream of TCR engagement are highly variable. We propose that machine learning algorithms 
may allow for T cell classification from complex datasets such as polyclonal T cell signaling events. Using deep 
learning tools, we demonstrate accurate prediction of TCR-transgenic CD8+ T cell activation based on calcium 
fluctuations and test the algorithm against T cells bearing a distinct TCR as well as polyclonal T cells. This provides 
the foundation for an antigen-specific TCR sequence identification pipeline for adoptive T cell therapies.

INTRODUCTION
Adoptive T cell therapies are revolutionizing cancer treatment. In this 
context, T cells are engineered to redirect their specificity toward can-
cer antigens with either a chimeric antigen receptor or a predeter-
mined, tumor-specific T cell receptor (TCR). TCR–T cell therapies 
have the potential to recognize antigens that arise from mutations, 
fusion proteins, and aberrantly expressed regions of the genome, 
thereby increasing the breadth of targets (1, 2). However, the identifi-
cation of tumor-specific TCRs is challenging due, in part, to the need 
to recognize patient-specific tumor antigens presented in the context 
of highly polymorphic major histocompatibility complex (MHC) 
molecules.

Despite recent advances in the field of computational biology, in 
silico prediction of antigen-specific TCR sequences is still ineffective 
(3). Current TCR identification platforms rely on in vitro selection of 
antigen-specific T cells for subsequent TCR sequencing. These tech-
niques often depend on the ability of individual T cells to bind 
peptide-MHC (pMHC) multimers or their capacity to proliferate 
and/or express activation markers after in vitro peptide stimulation 
(4). As such, these methods may introduce biases toward selection of 
high-affinity TCR sequences, which undergo more robust pMHC 
binding and proliferation. In addition, recent work has shown that T 
cells bearing antigen receptors of low and high affinity for a given an-
tigen perform different functions. While T cells bearing high affinity 
antigen receptors may, acutely, be more effective in their antitumor 
activity, they may also be more susceptible to inhibitory receptor me-
diated dysfunction and, potentially, off-target cross-reactivity (2, 5–
12). Thus, it may be important to consider engineering T cells with a 
breadth of TCR affinities for optimal therapeutic efficacy.

In this context, antigen-specific T cell identification based on 
calcium (Ca2+) oscillations downstream of TCR signaling is an 

alternative approach with notable potential. The kinetics of TCR-
dependent increases in intracellular Ca2+ have been well described 
following in vitro and in vivo T cell activation (13). TCR engagement 
induces temporal oscillations in intracellular Ca2+ concentrations, 
with sustained, high intracellular Ca2+ levels associated with strong 
stimulation. The dynamics (amplitude, rate of oscillation, return to 
baseline, etc.) of intracellular Ca2+ fluctuations are dependent on the 
cellular system as well as the characteristics of the interaction between 
the T cells and the antigen-presenting cells (APCs) (duration of inter-
action, costimulation levels, cytokine milieu, etc.) (14–18). Further-
more, increases in intracellular Ca2+ concentrations are a proximal 
readout of TCR activation, occurring within seconds of antigen re-
ceptor stimulation, limiting the potential selection biases induced by 
prolonged interaction with an antigen and expansion of a potentially 
limited number of clones. Genetic reporters for Ca2+ signaling (e.g., 
nuclear factor of activated T cells–green fluorescent protein) have pre-
viously been used for the isolation antigen-specific TCR transduced T 
cells using a microfluidics system (19, 20), but their use for the discov-
ery of antigen-specific TCR sequences from polyclonal T cells has not 
yet been achieved. The complexity of TCR-dependent Ca2+ signals 
and the possibility that TCR-independent processes affect intracellu-
lar Ca2+ levels are hurdles for its widespread use as a marker for TCR 
activation.

The use of supervised machine learning (ML) tools to process 
highly complex phenomena is revolutionizing approaches to clinical 
and fundamental research (21–24). Several studies have shown that 
these methods can be used to characterize T cell antigen specificity 
from microscopy-based image datasets by monitoring the interaction 
of T cells with APCs or the autofluorescence changes that correlate 
with metabolic state (25–27). We propose to use ML algorithms, 
trained to identify TCR-dependent Ca2+ fluctuations, to provide a pre-
diction of antigen specificity at the single-cell level.

Here, we present a proof-of-concept study for predicting T cell an-
tigen specificity based on intracellular Ca2+ dynamics. We took ad-
vantage of TCR-transgenic T cells of known specificity, intracellular 
Ca2+ concentration indicator dyes, and simple imaging techniques to 
train and validate a ML model to accurately and efficiently predict 
antigen-specific T cells based on intracellular Ca2+ dynamics, which 
was then applied to polyclonal T cell responses. We show that 
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convolutional neural networks (CNNs) allow for efficient and accu-
rate prediction of T cell activation from intracellular Ca2+ fluctuations 
at early time points, matching or surpassing other ML approaches. 
This method also demonstrates the feasibility of training algorithms 
on monoclonal TCR-transgenic T cells, stimulated with model pep-
tides, for the prediction of antigen specificity in polyclonal T cell 
responses.

RESULTS
In vitro T cell activation model to track intracellular 
Ca2+ dynamics
For the purpose of training an ML algorithm that predicts T cell an-
tigen specificity based on Ca2+ dynamics, we developed a simple im-
aging and analysis pipeline (Fig. 1A). To generate a widely applicable 
and more physiologically relevant in vitro system, we chose to de-
velop an assay that uses peptide rather than pan–T cell stimulation 
(e.g., anti-CD3ε/CD28 antibodies or phytohaemagglutinin). With 
this method of stimulation, polyclonal T cells are poorly suited for 
training ML algorithms due to the very low frequency of antigen-
specific T cells and the inability to know a priori the antigen reactivity 
of individual cells. Standard ML training requires labeled ground-
truth data and balanced datasets, with a similar number of positive 
and negative cells. Therefore, we used murine monoclonal OT-I and 
P14 TCR-transgenic naïve CD8+ T cells in combination with lipo-
polysaccharide (LPS)–matured bone marrow–derived dendritic cells 
(BMDCs), loaded with chicken ovalbumin (OVA) 257-264 peptide 
(fig. S1). CD8+ T cells are labeled with a ratiometric Ca2+ indicator 
dye, Indo-1, where the ratio between Ca2+-free and Ca2+-bound 
emission wavelengths is indicative of relative intracellular Ca2+ con-
centration. Unless otherwise noted, both OT-I and P14 T cells are 
cocultured in the same well at a 1:1 ratio; a vital cytoplasmic stain, 
CellTrace Far Red (CTFR), was used to label either OT-I or P14 T 
cells before Indo-1 staining to differentiate the two populations. 
Images for both Indo-1 and CTFR were captured over a period of 
2 hours, beginning a few minutes after the start of the coculture, to 
monitor intracellular Ca2+ dynamics. An in silico analysis pipeline 
was generated to automatically identify each cell, track it over time, 
measure the fluorescence of Indo-1 at each time point, and assign a 
genotype based on CTFR fluorescence. Thus, we can measure the dy-
namics of intracellular Ca2+ concentration for individual cells and 
know their antigen specificity.

For initial validation of the in vitro assay, we assessed T cell activa-
tion using well-established flow cytometric analysis of early (TCRβ 
down-regulation and CD69 up-regulation) and late (4-1BB expres-
sion) markers of T cell activation 3 and 15 hours after coculture initia-
tion. For OT-I transgenic T cells, we find TCRβ down-regulation after 
3 hours to be a high-fidelity readout of activation (Fig. 1B and fig. S2). 
This down-regulation reflects the internalization and degradation of 
the TCRαβ complex following strong affinity pMHC interaction, as 
previously described (fig. S2) (28). CD69 and 4-1BB expression, how-
ever, show slower kinetics; they not only require more time to be ro-
bustly expressed, but there is also evidence of TCR-independent 
CD69 expression possibly driven by cytokines and LPS in the culture, 
as has been previously documented (29–32). The distribution of Ca2+ 
concentration values, considering either all individual time points for 
all cells (left) or the average of each cell over the entire movie (right), 
shows a noticeable elevation in Ca2+ concentration only for antigen-
specific T cells (Fig.  1C), while nonspecific T cells display baseline 

intracellular Ca2+ concentrations. Together, these results show that 
both the in vitro system and the analysis pipeline are appropriate.

Not all antigen-specific T cells up-regulate intracellular Ca2+ dur-
ing the 2-hour imaging window. Because the development of an effec-
tive ML classifier, in principle, requires a high-quality training dataset, 
these non-activated antigen-specific T cells could potentially interfere 
with the performance of a predictive model. Therefore, we manually 
labeled the Ca2+ signals of each cell in the dataset as antigen-reactive 
or nonreactive based on visual inspection of the Indo-1 fluorescence 
ratio. Four independent evaluators blindly classified each cell based 
on its relative Ca2+ levels over time, and a majority vote determined 
the final assignment of reactivity status; 68.4% of all antigen-specific T 
cells and 4.11% of nonspecific T cells were labeled as antigen-reactive 
in the training datasets (Fig. 1D). This suggests that some Ca2+ fluc-
tuation occurs in nonspecific T cells, although this would not ulti-
mately result in productive activation (Fig. 1B). Using manual labeling 
as a method to classify T cell antigen specificity, we show a false dis-
covery rate (FDR), i.e., the fraction of nonspecific T cells within all 
cells labeled as antigen-reactive, of 6.26% (Fig.  1E). Two unimodal 
distributions of average Ca2+ concentrations are observed on the basis 
of manual assignment of cell status as antigen-reactive or nonreactive. 
However, nonspecific cells manually labeled as antigen-reactive dis-
play an intermediate Ca2+ concentration distribution (Fig. 1F); while 
difficult for human evaluators to differentiate from antigen-specific T 
cells, it is possible that nonspecific cells with intracellular Ca2+ levels 
above baseline have Ca2+ fluctuation dynamics distinct from bona 
fide antigen-specific T cells. Appropriately trained ML algorithms 
should thus be able to distinguish these signaling events from TCR-
dependent Ca2+ fluctuations. Last, we show a positive correlation be-
tween the activation efficiency of each independent culture well, 
determined by manual assignment of Ca2+ traces and molecular acti-
vation markers measured by flow cytometry, both at early (TCRβ: 
Pearson correlation coefficient, ρ = 0.976) and later (4-1BB: Pearson 
correlation coefficient, ρ = 0.649) time points (Fig. 1G), further vali-
dating the manual labeling process.

Increases in intracellular Ca2+ downstream of TCR engagement 
induce migration arrest (13, 33–36). Given the importance of migra-
tion patterns in other approaches to identify T cell activation (25, 26, 
33), we computed the average speed of all cells for each movie. We 
show that cells manually labeled as antigen-reactive are slower, on av-
erage, than those labeled as nonspecific (fig. S3A). In addition, at time 
points where Ca2+ concentration is low on antigen-reactive T cells 
(before activation), the average and instantaneous velocity is identical 
to or above that of nonspecific T cells (fig. S3, B and C).

Deep learning approaches perform better than conventional 
methods for the classification of T cell activation based on 
Ca2+ fluctuations
We systematically tested a non-exhaustive list of ML models that 
have been extensively used for the classification of one-dimensional 
(1D) datasets. We divided all experiments into training and evalua-
tion datasets, balancing the number antigen-specific and nonspecific 
T cells, as well as the number of cells manually labeled as antigen-
reactive and nonreactive. Despite having confirmed that CTFR stain-
ing of either OT-I or P14 did not affect the critical parameters of this 
coculture setup (fig. S4), we also balanced the amount of movies with 
both CTFR staining conditions to prevent models from learning spe-
cific features of either condition (table S1). While the training data
sets only contain cocultures of TCR-transgenic cells together with 
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Fig. 1. In vitro T cell activation model for the study of intracellular Ca2+ dynamics. (A) Schematic representation of the analysis pipeline. (B) Flow cytometry assess-
ment of surface TCRβ down-regulation, CD69 expression, and 4-1BB expression, 3 or 15 hours after coculture with OVA peptide. Error bars indicate SD (n = 6 to 10 inde-
pendent wells over four independent experiments; Mann-Whitney U test). (C) Distribution of intracellular Ca2+ concentration for all time points (left) or the average Ca2+ 
concentration over the entire time lapse (right) according to antigen specificity assignment (n = 7173 antigen-specific and n = 7564 nonspecific T cells over eight inde-
pendent experiments). a.u., arbitrary units. (D) Frequency of T cells manually labeled as antigen-reactive. Horizontal lines show the median and numbers below show the 
average. Individual fields of view are represented in gray (n = 111 fields of view over eight independent experiments). (E) Proportion of antigen-specific and nonspecific 
cells among those manually labeled as antigen-reactive. (F) Distribution of the average intracellular Ca2+ concentration according to manual assignment and genotype 
(n = 5038 OT-I and n = 347 P14 cells labeled as antigen-reactive; n = 9351 cells labeled as nonreactive over eight independent experiments). (G) Correlation between the 
frequency of cells manually labeled as antigen-reactive and the frequency of cells down-regulating surface TCRβ or expressing 4-1BB, as measured by flow cytometry, 
after 3 or 15 hours of incubation. For each well, data for antigen-specific and nonspecific T cells are shown, and the frequency of manual labeling for all fields of view per 
well is averaged. Error bars indicate SEM, full line shows linear regression on antigen-specific T cells, and dotted lines show 95% confidence interval [TCRβ: n = 13 inde-
pendent wells over four independent experiments, coefficient of determination (R2) = 0.9534, ρ = 0.9764; 4-1BB: n = 21 independent wells over six independent experi-
ments; R2 = 0.442, ρ = 0.649]. OT-I, antigen-specific; P14, nonspecific. [Ca2+]i, intracellular calcium concentration. **P < 0.01 and ***P < 0.005.
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BMDCs presenting OVA, the test datasets consist of cocultures with 
either OVA or lymphocytic choriomeningitis virus gp33 (gp33-41) 
peptides to prevent overfitting and optimize the applicability of this 
model to a broader peptide repertoire. As expected, Ca2+ fluctuation 
of P14 T cells in gp33 cocultures is up-regulated as compared to their 
nonspecific OT-I TCR-transgenic counterparts (fig. S5). In addition, 
the manual labeling of the Ca2+ dynamics associated with gp33-
stimulated T cell cocultures shows a similar FDR to the OVA cocul-
tures (fig. S5).

To benchmark the algorithms and choose an optimal architec-
ture, we computed the efficiency (fraction of cells correctly pre-
dicted as antigen-specific) and FDR (fraction of mispredicted 
cells) for each model. Assuming that a subset of antigen-specific T 
cells has not been activated, the model efficiency is calculated by 
comparing the prediction to the manual labels, rather than the 
genotype of the cell (OT-I or P14). This allows for evaluation of the 
efficiency of the ML model to predict antigen specificity indepen-
dently of the efficiency of the in  vitro model used to activate 
antigen-specific T cells. On the other hand, to generate a model 
that best predicts whether a T cell is antigen-specific, the FDR 
compares the prediction to the genotype (i.e., nonspecific T cells 
predicted as antigen-specific) for a measurement of accuracy. To 
compare models, the efficiency and accuracy metrics for both 
OVA and gp33 datasets are used to compute an ad hoc weighted 
performance metric, allowing a choice of the relative importance 
of accuracy over efficiency (see Materials and Methods); the mod-
el that maximizes this metric is chosen as optimal.

We first evaluated the use of a simple thresholding approach to 
classify each cell as either antigen-specific or nonspecific based on 
relative intracellular Ca2+ concentration. Setting a first threshold on 
intracellular Ca2+ levels separating time points with high ([Ca2+]hi) 
and low ([Ca2+]lo) average Ca2+ concentrations, we computed the 
time each cell spent in each Ca2+ state. A second threshold is then set; 
any cell spending more than this amount of time in the [Ca2+]hi state 
was classified as antigen-specific (fig. S6A). For all possible pairs of 
thresholds, we computed the efficiency and accuracy of this method 
on the training dataset. The pair of thresholds that maximized the 
performance metric was then used to perform classification for the 
evaluation dataset (fig.  S6B). This approach has high efficiency 
(95.2%) but relatively poor accuracy (FDR = 12.7%) for OVA cocul-
tures (fig. S6C). Furthermore, this method is poorly applicable to co-
cultures where gp33 is used; despite good accuracy (FDR = 1.48%), a 
high percentage of antigen-specific cells were not predicted (70.4% 
efficiency), likely due to differences in average intracellular Ca2+ con-
centration between OVA- and gp33-specific TCR-transgenic T cells 
(fig. S6, C and D).

To find a more suitable approach for identifying antigen-specific 
cells based on intracellular Ca2+ levels, we tested a multitude of mod-
els for accuracy and efficiency, going from simpler to more complex 
architectures and assessing the need of preprocessing and data aug-
mentation (Fig. 2A and table S2). Using the performance metric to 
choose an optimal model, we show that deep learning algorithms 
were generally superior to other ML approaches. In particular, CNN-
based architectures performed much better than any other method 
with this dataset (fig. S6E), especially when the structure and training 
parameters are optimized (see Materials and Methods). The opti-
mized CNN model using manually labeled cells as ground truth per-
forms the best and is used for the rest of this study; it is referred to as 
optCNNman.

This systematic approach revealed several important insights. 
Normalization of calcium concentration across independent experi-
mental days (see Materials and Methods) is a critical factor, improv-
ing the efficiency of prediction of gp33 time lapses by over 28% 
(table S2). Reevaluating the thresholding method with data normal-
ization shows an improved performance to non-normalized data but 
still lags behind CNN (fig. S6F). Second, in this in vitro setup, as op-
posed to other similar studies, the addition of positional data (i.e., in-
stantaneous cell speed) did not improve classification (table S2). Last, 
we observed that models trained with either the manual labels (T cells 
labeled as antigen-reactive versus labeled as nonreactive), the geno-
type (antigen-specific versus nonspecific T cells), or a combination of 
both (antigen-specific T cells labeled as antigen-reactive versus the 
rest) as ground truth, all perform relatively well (table S2). When the 
training parameters are optimized (table S3), all three models show a 
very similar performance (fig. S6F), and their predictions overlap for 
94.5% of the cells in the evaluation dataset (12,421 of 13,145 cells) 
(fig. S6G). Hence, it appears, for this application, that this architecture 
is not very sensitive to contamination of the dataset by negative (non-
activated OT-I) cells.

For each individual cell, optCNNman provides a prediction proba-
bility; a threshold on this probability was used to determine the clas-
sification (Fig.  2B). The distribution of the probability of being 
antigen-specific (Pantigen-spe) for all individual cells is bimodal, but 
classification of the rare cells that lie in between can markedly change 
the performance metrics. By varying the Pantigen-spe threshold, above 
which cells are predicted as antigen-specific, we show that the opti-
mized architecture performs best when using the Pantigen-spe threshold 
of 0.47 (Fig. 2B).

The receiver operating characteristic curve shows the high sensi-
tivity and specificity of the model with an area under the curve 
(AUC) of more than 0.95 (Fig. 2C). More specifically, optCNNman 
has high efficiency for both OVA and gp33 cocultures (94.1 and 
88.6%, respectively) and low error rates (6.26 and 2.90%, respec-
tively) (Fig. 2D). To further facilitate comparisons of performance 
between datasets, we used the metric efficiency × (1 − FDR) for each 
individual field of view; this metric shows an overall performance 
that is nearly identical for both conditions (Fig. 2D). Furthermore, 
these predictions are similar to the predictions made by the human 
evaluators (Fig.  2E). The intracellular Ca2+ concentration of the 
nonspecific cells mispredicted as antigen-specific overlaps with 
those of nonspecific T cells manually labeled as antigen-reactive 
(Fig.  2F). Given the low prediction probability assigned to these 
cells (Fig.  2G), using a more restrictive threshold on Pantigen-spe 
would likely remove a large number of the false positive predictions, 
at the cost of reduced efficiency.

In an effort to validate the prediction algorithm at the single-cell 
level, i.e., by correlating the dynamics of Ca2+ fluctuation with indica-
tors of T cell activation, we investigated motility changes in T cells 
predicted or not to be antigen-specific and as they relate to intracel-
lular Ca2+ concentration. Using individual T cell trajectories from the 
analysis pipeline (Fig. 1A), we computed the instantaneous (between 
two frames) and the average (over the entire movie) velocity and com-
pared cells predicted as antigen-specific to those predicted to be non-
specific. We show that, on average, antigen-specific T cells predicted 
as antigen-specific are slower than those predicted as nonspecific, as 
expected given their increased intracellular Ca2+ concentration 
(fig. S7, A and B) (33–36). At the single-cell level, we show that intra-
cellular Ca2+ concentration and speed are inversely correlated, and a 
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decrease in cell motility is detected as the cells presumably encounter 
cognate antigen (fig.  S7C). We collated all 2443 cells predicted as 
antigen-specific by optCNNman and where we could identify the ini-
tial spike in intracellular Ca2+ concentration when this occurred dur-
ing the imaging period. Comparing cell velocity with respect to this 
time point, we show that cell arrest is associated with an initial spike 
in intracellular Ca2+ concentration in cells predicted to be antigen-
specific (fig. S7D).

Biological validation of the Ca2+-based deep learning 
algorithm to predict antigen specificity
We next sought to validate optCNNman using an alternative approach. 
By altering the parameters of the BMDC:T cell coculture to modulate 
activation efficiency, we investigated how efficiently optCNNman can 
predict activation in suboptimal conditions. To manipulate the 
antigen availability in each culture condition, we mixed antigen-
presenting (OVA- or gp33-loaded) BMDCs and BMDCs presenting 
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only endogenous peptides at different ratios. The lower absolute num-
ber of peptide-loaded APCs should lead to an increase in the time 
required for T cells to find cognate antigen, which translates, given the 
short imaging window, into a smaller fraction of activated cells. Using 
TCRβ down-regulation as well as CD69 and 4-1BB up-regulation af-
ter 3 and 15 hours of incubation as indicators of activation, we show a 
positive correlation between the cells predicted as antigen-specific by 
optCNNman and the frequency of cells expressing these activation 
markers (Fig.  3A). Furthermore, we show, as anticipated, a dose-
dependent relationship between the frequency of T cells predicted as 
antigen-specific and antigen availability (Fig. 3B). Similarly, decreas-
ing the number of BMDCs in the coculture will reduce the probability 
of BMDC–T cell encounter and also leads to a reduction in the num-
ber of T cells predicted as antigen-specific (Fig. 3B).

Given that the training dataset was generated with a TCR-pMHC 
pair with high affinity (Kd = 3.7 ± 0.7 nM) (37), we sought to evaluate 
the effectiveness of optCNNman for predicting the antigen specificity 

of T cells activated by lower affinity TCR-pMHC interactions. We 
stimulated naïve OT-I T cells with OVA (N4) altered peptide ligands 
(APLs; Q4 and T4) of decreasing affinity for the OT-I TCR 
(N4>Q4>T4) and keeping peptide concentration constant. We de-
tected activation of OT-I T cells via flow cytometry, as indicated by 
CD69 and 4-1BB up-regulation after 3 and 15 hours, respectively 
(fig. S8A). As seen for stimulation of P14 T cells with gp33 (fig. S5A), 
lower avidity TCR engagement does not induce strong TCRβ down-
regulation (fig. S8A). Despite subtle differences in the average intra-
cellular calcium levels (fig. S8B), optCNNman efficiently and accurately 
predicts antigen specificity over a wide range of physiologically rele-
vant TCR-pMHC interactions (Fig. 3C).

Because it is not possible to know a priori the antigen specificity of 
individual naïve polyclonal CD8+ T cells, the validation of the model 
on polyclonal responses to antigenic peptides is challenging without 
extensive experimental confirmation. Thus, we used a mixed lympho-
cyte reaction (MLR) that typically leads to a larger fraction of T cells 
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being activated in a polyclonal fashion as compared to antigen-
specific T cells. We cocultured C57BL/6J CD8+ T cells with MHC-
matched C57BL/6J (autologous) or MHC-mismatched BALB/c 
(allogeneic) BMDCs (Fig. 4A). Using molecular markers of activation 
measured by flow cytometry after 3 and 20 hours, we show that allo-
geneic culture conditions lead to a higher fraction of T cells express-
ing activation markers than in autologous conditions. Although 
apparent as early as 3 hours, monitoring of activation by flow cytom-
etry is more efficient after 20 hours of coculture (Fig. 4B and fig. S9). 
Cell surface TCRβ down-regulation is not an obvious marker of T cell 
activation in the MLR setting (Fig. 4B). Using optCNNman to predict 
T cell activation based on Ca2+ fluctuations in this polyclonal system, 
we also show that T cells cultured in allogeneic culture conditions 
have a higher frequency of cells predicted as antigen-specific than 
when T cells are cultured with autologous BMDCs (Fig. 4C). In addi-
tion, there is a strong correlation between the ML predictions and the 
flow cytometry markers of activation, particularly after 20 hours of 
culture, confirming the accuracy of prediction (Fig. 4D). The distribu-
tion of intracellular Ca2+ concentrations in polyclonal T cells predicted 
as antigen-specific in the MLR is much wider than that of the 
monoclonal T cell populations used earlier (Fig. 4E), with an average 
calcium concentration closer to that of Q4-stimulated OT-I; this may 

be due to the wider range of affinities in the polyclonal T cell reper-
toire and differences in alloreactive TCR-pMHC binding biomechan-
ics (38).

Together, these data show the applicability of optCNNman, trained 
on monoclonal T cells responding to a single high-affinity peptide, for 
the prediction of responses to additional peptides as well as polyclonal 
T cell responses. Thus, simple models of T cell activation can be used 
to train ML architectures to recognize general features of Ca2+ fluc-
tuation, which are common to T cell responses across a wider range of 
TCR-pMHC affinities.

DISCUSSION
The rapid identification of antigen-specific T cells from naïve poly-
clonal T cells presents a unique challenge due to the lack of reliable 
early markers of TCR-specific T cell activation before proliferation. 
Here, we demonstrate the feasibility of using the time-dependent fluc-
tuations of intracellular Ca2+ concentration in individual T cells, a 
TCR-proximal readout, as a means to identify their antigen specifici-
ty. While increases in intracellular Ca2+ may not be strictly TCR-
specific, we propose that ML algorithms, trained on T cells of known 
specificity and activated in an antigen-specific manner, can learn the 
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features of Ca2+ fluctuation associated with TCR-pMHC engagement. 
We show that, once trained on monoclonal T cell responses, this 
model can be applied to predict activation of T cells over a relatively 
broad range of TCR-pMHC affinities and polyclonal T cells. We be-
lieve that this approach could be used to predict the antigen specific-
ity of polyclonal T cells activated with specific peptides or peptide 
pools. The performance of deep learning models, once trained, is in-
dependent of the frequency of the event being predicted, i.e., antigen 
specificity predictions for T cells at a 1:1 antigen-specific:nonspecific 
ratio (as shown here) will be as efficient as at the much lower ratio of 
antigen-specific T cells in the polyclonal T cell population.

As compared to other methods of antigen-specific T cell identifi-
cation, we suggest that the monitoring of intracellular Ca2+ signaling 
is a much faster and simpler approach to the identification of antigen-
specific T cells. Although they do not require T cell stimulation, 
thereby bypassing the delay in the modulation of activation marker 
expression, multimer pMHC-based enrichment requires the engi-
neering of a new reagent for each peptide and every individual pep-
tide/MHC combination, some of which may be problematic to 
manufacture (39). Early T cell activation is also challenging to mea-
sure by flow cytometry due to the absence of appropriate markers. 
We show that, while early (3 hours) surface TCRβ down-regulation 
and CD69 expression are useful for select TCRs in the in vitro model 
used here, they were not useful in the more physiologically relevant 
polyclonal MLR cultures and for lower avidity TCR-pMHC interac-
tions. 4-1BB, although more specific, appears to be up-regulated 
much later and only maximally after some proliferation has oc-
curred, limiting its usefulness for early isolation of antigen-specific T 
cells and biased by preferential expansion of high-affinity T cell 
clones. In comparison, increases in intracellular Ca2+, a very early 
indicator of the TCR signaling pathway, allows for rapid, within a 
2-hour time frame, and accurate identification of antigen-specific T 
cells. The simple nature of the coculture setup, commonly used for 
antigen-specific T cell activation, allows for flexibility in the target 
antigen (e.g., cancer antigens) loaded and MHC/HLA-restriction, by 
varying the source of APCs. It is important to point out that the dy-
namics of Ca2+ fluctuations generated observed with this coculture 
system are not necessarily representative of those observed with 
physiological models (e.g., lower peptide concentration or in vivo ac-
tivation). The decision to use high concentrations of peptides was 
based on the goal of optimizing antigen-specific T cell discovery 
rather than mimicking physiological Ca2+ dynamics; high concen-
trations of peptide, particularly in the case of low affinity interac-
tions, allow for broader activation of T cells.

Recent studies have also investigated the use of imaging-based 
technologies and ML to predict antigen specificity, analyzing either 
the dynamics of interaction between antigen-specific T cells and 
APCs or the changes in metabolic state associated with pan–T cell 
activation (25–27). With an AUC of more than 0.95, the performance 
of the approach presented here is similar to, if not better than, these 
previously published studies. In addition, the stimulation of naïve 
CD8+ T cells with peptide-loaded BMDCs, rather than pan T cell 
stimulation, ensures that the ML models learn features of Ca2+ fluc-
tuation, which are generated during TCR engagement. This study also 
demonstrates the ability to predict T cell reactivity across a range of 
TCR-pMHC affinities.

In terms of experimental complexity, the use of simple, inexpensive, 
and widely accessible fluorescent dyes and labware for conventional 
fluorescence microscopes are the only requirements and represent a 

low cost of entry for using this technology for downstream applica-
tions. The use of the ratiometric Indo-1 dye rather than genetically 
encoded reporters facilitates the application of these technique to a 
much wider variety of monoclonal T cell models and translation to 
the human system. Extraction of Ca2+ fluctuations from these mov-
ies and the training of the 1D ML network also has the major advan-
tage of requiring very little computing power and can be replicated 
with any desktop computer. Here, we made use of naïve T cells for 
the evaluation of Ca2+ fluctuations. Naïve T cells, as opposed to 
antigen-experienced T cells, are not restricted in their TCR reper-
toire as may be the case after clonal expansion and may allow for the 
identification of TCRs with a wider range of affinities for a peptide 
of interest. Furthermore, naïve and antigen-experienced T cells and 
even different antigen-experienced T cell subsets display distinct 
Ca2+ fluctuation patterns in response to TCR stimulation (40, 41). 
The use of purified naïve T cells, although themselves heterogeneous 
in nature (42), should allow for a more homogenous and reproducible 
Ca2+ response to TCR stimulation, compared to antigen-experienced 
T cells.

In this proof-of-concept study, we demonstrated that performant 
ML algorithms can be trained on Ca2+ fluctuations in activated 
monoclonal T cells to predict polyclonal T cell responses, using a lim-
ited amount of data (~10,000 cells). Substantially increasing the size of 
the dataset with additional time lapses or through AI-assisted meth-
ods may further improve model performance, especially when it 
comes to differentiating the distinct pattern of Ca2+ fluctuation asso-
ciated with nonspecific T cells mispredicted as antigen-specific from 
bona fide antigen-specific T cells (43–45). Furthermore, it has been 
previously demonstrated that Ca2+ oscillations contain information 
about the affinity of TCR-pMHC interactions; lower affinity TCR en-
gagement will typically lead to more transient Ca2+ fluctuations and 
distinct early activation dynamics (14–16). Using a similar approach, 
we postulate that generating Ca2+ fluctuations from monoclonal T 
cells following TCR stimulation with pMHC of varying affinity at 
lower peptide concentrations should enable training of ML models to 
recognize specific features of Ca2+ fluctuation associated with low 
versus high affinity TCR binding to antigen. It has already been shown 
that an ML model, trained on the dynamics of cytokine release by T 
cells following stimulation over several weeks, can predict the antigen 
affinity of individual T cells (46). The use of intracellular Ca2+ dynam-
ics would fast-track and simplify this approach. Notably, in the ex-
periments presented here, we observed only modest differences in 
Ca2+ fluctuations when OT-I T cells were activated with APLs. How-
ever, it is important to note that the high peptide concentration used 
in this study, while optimizing the identification of low affinity 
antigen-specific cells, may mask differences in Ca2+ fluctuations be-
tween different stimulation conditions.

Combining ML approaches for the identification of antigen-
specific T cells with technologies for their isolation will allow for the 
isolation of T cells of interest for downstream single-cell TCR-
sequencing, identifying clinically relevant TCR sequences for use in 
adoptive therapy. Few methods allow for the isolation of single cells 
of interest following microscopy-based observations in a high-
throughput and automated fashion. A few studies have demonstrated 
the use of microfluidics, micropipettes, and/or a microraft apparatus 
for the isolation of antigen-specific T cells that may also be challeng-
ing to manufacture and are relatively low-throughput technologies 
(19, 47–50). However, we and others have recently described methods 
to tag and/or isolate cells with high specificity under the microscope 
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using the targeted illumination of cells of interest (51–55). Particular 
attention will need to be paid to the compounding of errors at the 
various steps of the pipeline (tracking, ML prediction, and barcoding) 
to avoid contamination by nonspecific TCR sequences, which would 
increase the time required for downstream biological validation of 
identified TCR sequence. The weights weff and wFDR used in the per-
formance metric, used to select the optimal model for antigen-specific 
T cell prediction, can be adjusted to choose optimal models to reduce 
FDR or increase the efficiency of identification, depending on the 
downstream applications. However, the advent of fast and reliable 
in vitro and in silico pipelines for TCR-pMHC screening mitigates 
this risk (56, 57). Furthermore, the possibility to identify TCR se-
quences with a specific affinity, fine-tuned either for acute antitumor 
activity (high affinity) or for longer-lasting, broader immune-
surveillance, with reduced side effects (lower affinity) could facilitate 
improvement in the quality of care to patients requiring adoptive T 
cell therapy (7, 9).

MATERIALS AND METHODS
Mice
C57BL/6J (RRID:IMSR_JAX:000664) and BALB/c (RRID:IMSR_
JAX:000651) mice were purchased from the Jackson Laboratory 
(Bar Harbor, ME, USA). C57BL/6J-Tg(OT-I)-Rag1<tm1Mom> 
(OT-I, RRID:IMSR_JAX:003831) mice were obtained through the 
National Institute of Allergy and Infectious Diseases Exchange Pro-
gram, National Institutes of Health (Bethesda, MD, USA) (58, 59). 
P14 TCR Tg mice were provided by M. Richer (McGill University, 
Montreal, Canada) and crossed onto a TCRα knockout (KO) (the 
Jackson Laboratory, stock no. 002116) background (RRID:MMRRC_
037394-JAX) (60, 61). All mice were bred and maintained in spe-
cific pathogen–free animal facilities at the Maisonneuve-Rosemont 
Hospital Research Centre and the Comparative Medicine and Ani-
mal Resource Center at McGill University. Both male and female 
mice 6 to 12 weeks of age were used. All animal protocols have been 
approved by the Animal Care Committee at the Maisonneuve-
Rosemont Hospital Research Centre and McGill University. Experi-
ments were performed in accordance with the Canadian Council on 
Animal Care guidelines.

In vitro T cell coculture assay
Bone marrow cells (1 × 106), harvested from the indicated mice 
(male and female, 6 to 12 weeks old), are plated in six-well adherent 
plates for 7 days in 4 ml of 10% fetal bovine serum (HyClone, cata-
log no. SH30396.03), 100 mM Hepes (Multicell, catalog no. 
330-050-EL), 100 IU of penicillin/streptomycin (Multicell, catalog 
no. 450-201-EL), 1 mM sodium pyruvate (Multicell, catalog no. 
600-110-EL), 0.1 mM MEM nonessential amino acids (Gibco, cata-
log no. 11140-050), and 2 mM l-glutamine RPMI 1640 (Multicell, 
catalog no. 350-000-CL). Culture medium is supplemented with 
1000 U of murine granulocyte-macrophage colony-stimulating fac-
tor per well (BioLegend, catalog no. 576302) and a predetermined 
dose of P815-IL4 supernatant. Supplemented medium (2 ml) is 
replaced after 2 and 3 days of culture. At day 6, 4 μM OVA N4 (OVA 
257-264; AnaSpec Inc., catalog no. AS-60193-5), gp33 (gp33-41; 
AnaSpec Inc., catalog no. AS-61669), OVA Q4 (OVA 257-264 Q4 
variant; AnaSpec Inc., catalog no. AS-64402), or OVA T4 (OVA 257-
264 T4 variant; AnaSpec Inc., catalog no. AS-64403) peptide and 
LPS (1 μg/ml) are added to the culture. At day 7, 8, or 9, BMDCs are 

harvested from culture and enriched using a 14.7% Histodenz 
(Sigma-Aldrich, catalog no. D2158) gradient.

For T cell isolation, cellular suspension is harvested via physical 
dissociation from OT-I and P14 spleen and lymph nodes (male 
and female, 6 to 12 weeks old). Naïve CD8+ T cells are further 
isolated using a magnetic enrichment kit according to the manu-
facturer’s specifications (STEMCELL Technologies, catalog no. 
19858). OT-I or P14 cells are stained with 2 μM CTFR (Invitrogen, 
catalog no. C34572) at 106 cells/ml for 15 min at 37°C and rested 
15  min at 37°C, 5% CO2 before being pooled. Unless otherwise 
stated, OT-I and P14 are mixed at a 1:1 ratio. The cell suspension is 
then stained with 10 μM Indo-1 for 30  min at 37°C and rested 
30 min at 37°C, 5% CO2. The isolation and staining procedure are 
identical for C57B/6J and BALB/c naïve CD8+ T cells, but the T 
cells are kept separate at all times and are not stained with 
CTFR. For MLR experiments, sex-matched T cells and BMDCs 
are cocultured to avoid anti-Sex determining Region Y (SRY) im-
mune responses.

Right before imaging, unless otherwise specified, 2 × 105 
BMDCs and 2 × 105 T cells are pooled in phenol red–free imag-
ing medium [10% fetal bovine product (HyClone, catalog no. 
SH30109.03) and 100 IU of penicillin/streptomycin)] and plated 
onto fibronectin-coated (2 μg/cm2; Sigma-Aldrich, catalog no. 
F2006) 18-well slides (ibidi, catalog no. 81816) for imaging. 
Wide-field epifluorescence images of Indo-1 (405 and 447 nm) 
and CTFR (698 nM) are captured every 30 s (Indo-1) or 10 min 
(CTFR) for 2 hours on a Nikon Eclipse Ti2, under a stage top 
incubator, with mercury lamp illumination. After imaging, slides 
are kept in an incubator before harvesting for flow cytometric 
analysis.

Flow cytometric analysis
Flow cytometry analysis of mouse surface antigens was performed 
with the following antibodies: anti-CD3ε (145-2C11, catalog no. 
100328, RRID:AB_893318, 1:100), anti-CD8α (53-6.7, catalog no. 
100714, RRID:AB_312753, 1:400), anti-CD11c (N418, catalog 
no. 117308, RRID: AB_313776, 1:1600), anti-CD45.2 (104, catalog no. 
109822, RRID:AB_493731, 1:100), anti-CD80 (16-10A1, catalog no. 
104722, RRID:AB_2291392, 1:400), anti–MHC class II (I-A/I-E) 
(M5/114.15.2, catalog no. 107630, RRID:AB_2069376, 1:1600), anti-
TCRβ (H57-597, catalog no. 109224, RRID:AB_1027648, 1:100), anti-
NK1.1 (PK136, catalog no. 108706, RRID:AB_313393, 1:200), 
anti-CD19 (6D5, catalog no. 115505, RRID:AB_313641, 1:200), anti-
CD11b (M1/70, catalog no. 101206, RRID:AB_312788, 1:200), anti-
TCRγδ (N418, catalog no. 117306, RRID:AB_313775, 1:200), 
anti-CD44 (IM7, catalog no. 103012, RRID:AB_312962, 1:200), anti-
CD69 (H1.2F3, catalog no. 104522, RRID:AB_2260065, 1:100), anti-
CD137 (17B5, catalog no. 106105, RRID:AB_2287565, 1:200), 
anti-TCR Vα2 (B20.1, catalog no. 127807 RRID:AB_1134184, 1:100), 
anti-TCR Vβ5 (MR9-4, catalog no. 139507, RRID:AB_2566021, 
1:100), and Zombie Aqua (catalog no. 423101) or Green fixable viabil-
ity dye (catalog no. 423111) (BioLegend). Staining was performed for 
20 min at 4°C. Flow cytometry analyses were performed on a LSR 
Fortessa X20, and data were analyzed using FlowJo software (BD 
Biosciences).

Prediction of T cell antigen specificity
All the code used for the prediction of T cell specificity was coded 
using MATLAB (MathWorks).
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In silico analysis pipeline
From raw images, segmentation and tracking of T cells are made by 
adapting previously published methods (62–64). Briefly, in each 
frame, the centroid of each T cell is localized from the sum of the In-
do-1 images using a combination of edge detection and watershed 
segmentation methods. On the basis of the position of all cells at each 
time point, we calculate individual T cell trajectories using particle 
tracking–based methods, adapted for our particular application. Fil-
tering of tracks based on length (at least half of the duration of the 
movie) ensures that all cells in a time lapse are independent from each 
other. The distance traveled by a cell between two frames is reported 
as instantaneous speed. Manual quality control on the tracking is 
made to remove mistracked cells.

For each cell, at each time point, the fluorescence intensity of both 
Indo-1 emission wavelengths is calculated by integrating pixel inten-
sity values in a disk (60% of the cell’s diameter) around the centroid. 
The intensity background (calculated locally for each cell) is subtracted 
to the fluorescence intensity before calculating the ratio of both 
wavelengths (405/447 nm). Assembling the ratio for each cell across 
all time points allows us to generate the intracellular Ca2+ dynam-
ics. For genotype assignment, the fluorescence of CTFR is obtained 
12 times throughout the imaging period for each cell; cell type is as-
signed if, at least eight time points, the cell appears positive or nega-
tive for CTFR.

For manual labeling, four independent evaluators were shown the 
intracellular Ca2+ dynamics of all cells and were asked to classify them 
as antigen-reactive or nonreactive. A majority vote between evalua-
tors was used to determine the final label of each cell.
Training and evaluation of the ML algorithms
For all individual models, training was made on the training data-
set using the 1D intracellular Ca2+ signal as input and the geno-
type of each cell, their manual label, or a combination of both 
(antigen-specific T cells manually labeled as antigen-reactive) as 
ground truth. When indicated, Ca2+ dynamics were complement-
ed either with the derivative of the Ca2+ dynamics, approximated 
by the absolute value of the difference in Ca2+ levels between two 
consecutive time points, or with the instantaneous cell speed, ap-
proximated by the euclidean distance between the same cell at two 
consecutive time points. Evaluation of the model was made on the 
evaluation dataset by predicting antigen specificity for each indi-
vidual time lapse (field of view).
Performance metric
For each time lapse, the model efficiency, overall efficiency, and FDR 
were measured as follows

All throughout, the performance metric (pM) uses the average 
model efficiency (eff) and the average FDR across all time lapses in 
the evaluation dataset. The optimal model is the one that maximized 
the formula

weff and wFDR are variable parameters that modulate the impor-
tance attributed to the error rate or the efficiency for each particular 
application. For this study, we use weff = 1 and wFDR = 5.
Data normalization
When indicated, Ca2+ concentration of each cell was normalized to 
the average value of “resting” intracellular Ca2+ concentration. Briefly, 
for each time lapse, two Gaussian distributions are fitted to the probabil-
ity distribution function of intracellular Ca2+ calcium concentration. 
The mean of each Gaussian distribution is used as the average value 
Ca2+ concentration in the low ([Ca2+]lo) and high ([Ca2+]hi) state for 
this movie. For each cell at each time point, we divide its Ca2+ concen-
tration by the average [Ca2+]lo value to compute the “fold change” of 
Ca2+ concentration over the resting state, as a means to reduce inter-
experiment variability.
Data augmentation procedure
When indicated, data augmentation was performed by artificially 
generating in silico Ca2+ fluctuations from real in vitro fluctuations. 
This is achieved by a combination of repeating existing data, adding 
noise to the existing data, shifting the start of Ca2+ fluctuation for-
ward or backward (in time) and increasing or decreasing the levels of 
the Ca2+ in the existing data.
Hyperoptimization
For each parameter to be optimized, i.e., number of neurons, kernel 
size, optimizer, and mini batch size, a range of possibilities was deter-
mined according to commonly used values for that parameter in the 
literature. A model was trained and evaluated as previously described 
for each combination of these four parameters, across all the ranges. 
All the models were then evaluated using the weighted performance 
metric; the hyperoptimized model is the one maximizing the perfor-
mance metric.

Statistical analysis
Unless otherwise stated, a two-sample nonparametric Mann-Whitney 
U test was performed using Prism (GraphPad).

Supplementary Materials
This PDF file includes:
Figs. S1 to S9
Tables S1 to S3
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