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Copyright © 2009 JCBNSummary The hydrogen-bonded guanine tetrad, or G-quartet has been implicated in a variety

of biological roles, including the function of chromosome telomeres. Here effect of the hydroxy-

lation of guanosine at the 8 position on the G-quartet formation was examined. Electrospray

inonization mass (ESI-MS) spectra of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 2'-

deoxyguanosine (dG) were measured in order to know whether or not 8-oxodG forms a tetra-

meric structure as 2'-deoxyguanosine forms in teromeres. The ESI-MS spectra of dG shows

prominent peaks at m/z 290, m/z 557, and m/z 1092, corresponding to [dG + Na]+, [dG2 + Na]+,

and [dG4 + Na]+ in the presence of 0.1 mM NaCl. On the other hand, the ESI-MS spectra of

8-oxodG in the presence of 0.1 mM NaCl shows prominent peaks at m/z 306 and m/z 589,

corresponding to [8-oxodG + Na]+ and [8-oxodG2 + Na]+. The results showed that 8-oxodG

forms a relatively unstable tetrameric structure compared with dG.
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Introduction

DNA and RNA containing runs of consecutive guanine

bases may adopt four-stranded conformations based on the

hydrogen-bonded guanine tetrad, or G-quartet (Fig. 1) [1–3].

The hydrogen-bonded guanine tetrad, or G-quartet are

stabilized by monovalent ions such as sodium and potassium

[4–7]. Such tetraplexes have been implicated in a variety of

biological roles, including the function of chromosome

telomeres [8], the dimerization of the human immuno-

deficiency virus RNA genome [9], the site-specific recombi-

nation of immunoglobulin genes [10], L1 retropositions

[11], promoter regions of DNA such as the triplet repeat

sequence that causes fragile-X syndrome [12–14], the

retinoblastoma susceptibility gene [15], the chicken β-

globulin gene [16], and the insulin gene-linked polymorphic

region (ILPR) [17–20]. Their functional importance is

supported by the isolation of proteins that bind and promote

the formation of tetraplex structure [21, 22].

Fig. 1. The hydrogen-bonded guanine tetrad. R represents 2'-

deoxyribose residue.
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On the other hand, reactive oxygen species, which are

generated in cellular metabolism [23] and ionization radia-

tion [24], produce irreversible modification to DNA. The

damage caused by these reactive free radical species has

been proposed to contribute to aging, cancer, and other age-

related degenerative processes [25, 26]. 8-Oxo-7,8-dihydro-

2'-deoxyguanosine (8-oxodG) was identified in the DNA

exposed to oxygen radicals [27], or γ-irradiation [28], or

peroxyl radicals [29]. The irradiation of UVA has resulted in

the hydroxylation specifically at C-8 of the 5' site of GG

and GGG sequence in DNA in the presence of endogeneous

photosentizers [30–35]. Site-specific oxidation at GG and

GGG sequences in DNA has also been induced by benzoyl

peroxide [36]. Increases in the levels of its oxidation

product, 8-oxodG have been reported in granulocute exposed

to the tumor promoter (tetradeconylphorbolacetate) [37],

mitochondorial DNA [38], mononuclear cells from patients

with both insulin- and non-insulin-dependent diabetes [39,

40], and the urine [41].

In this paper, effect of the hydroxylation of guanosine at 8

position on the G-quartet formation was examined by using

electrospray ionization mass (ESI-MS) spectrometer. ESI-MS

was employed in this study because ESI-MS is a very

powerful technique for the analysis of binding interactions

[7, 42].

Materials and Methods

Materials

2'-Deoxyguanosine (dG) was from NAKARAI

CHEMICALS (Kyoto, Japan). 8-oxodG was purchased

from Sigma (St. Louis, MO). All other chemicals used were

of analytical grade.

HPLC-ESI-MS

The high performance liquid chromatograph-electrospray

ionization-mass spectrometer (HPLC-ESI-MS) consisted of

a model 7125 injector (Reodyne Cotati, CA) with a 5 ml

sample loop, a model L-7100 pump (Hitachi Ltd., Ibaragi,

Japan), and a model M-1200AP LC-MS system with an

electrospray ionization (ESI) (Hitachi Ltd., Ibaragi, Japan).

The operating conditions of the mass spectrometer were:

nebulizer, 180°C; aperture 1, 120°C; N2 controller pressure,

2.0 kgf/cm2; drift voltage, 70 V; multiplier voltage, 1800 V;

needle voltage, 3000 V; polarity, positive; resolution, 48.

For the analyses of a mixture of NaCl with dG (or 8-

oxodG), the HPLC was performed at flow rate of 50 μl/min

without a column. The mobile phase used was water. Three

hundred microliter of aqueous solution of 0.1 mM NaCl

with 1.0 mM dG (or 1.0 mM 8-oxodG) was injected to the

HPLC-ESI-MS.

For the analyses of a mixture of KCl with dG (or 8-

oxodG), the HPLC was performed with a column (150 mm

long × 4.6 mm i.d.) packed with TSKgel ODS-120T

(TOSOH Co., Tokyo, Japan) at flow rate of 50 μl/min. The

mobile phase used was 0.1 mM KCl aqueous solution. One

milliliter of a mixture of 0.1 mM KCl with 1 mM dG (or

1 mM 8-oxodG) was injected to the HPLC-ESI-MS. The

HPLC fraction of dG (or 8-oxodG) was introduced to the

HPLC-ESI-MS. Thus, Na+ ions contaminated in a mixture of

Fig. 2. Electrospray inonization mass (ESI-MS) spectra of mixtures of 8-oxodG [or 2'-deoxyguanosine (dG)] with NaCl. HPLC-ESI-

MS conditions are as described in Materials and Methods. A, an ESI-MS spectrum of a mixture of 8-oxodG with NaCl; B, an

ESI-MS spectrum of a mixture of dG with NaCl.
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KCl with dG (or 8-oxodG) were replaced by K+ ions.

For the analyses of 1 mM 2'-deoxyguanosine (or 8-

oxodG) with various concentrations of NaCl, the HPLC was

performed at flow rate of 50 μl/min without a column. One

milliliter of acetonitrile solutions of 1 mM dG (or 1 mM 8-

oxodG) with various concentration of NaCl were injected to

the HPLC-ESI-MS. The one milliliter acetonitrile solutions

contained 50 μl of water.

Results and Discussion

ESI-MS spectra of the solutions of 8-oxodG with NaCl or

dG with NaCl (or KCl) were measured in order to know

whether or not 8-oxodG forms a tetrameric structure as dG

forms in teromeres.

The ESI-MS spectra of the mixture of dG with NaCl

showed prominent peaks at m/z 290, m/z 557, and m/z 1092

(Fig. 2B), corresponding to [dG + Na]+, [dG2 + Na]+, and

[dG4 + Na]+. On the other hand, ESI-MS spectra of the

mixture of 8-oxodG with NaCl showed prominent peaks

at m/z 306 and m/z 589 (Fig. 2A), corresponding to [8-

oxodG + Na]+ and [8-oxodG2 + Na]+.

The ESI-MS spectra of the mixture of dG with KCl

showed prominent peaks at m/z 306, m/z 573, and m/z 1108

(Fig. 3B), corresponding to [dG + K]+, [dG2 + K]+, and

[dG4 + K]+. On the other hand, ESI-MS spectra of the

mixture of 8-oxodG with KCl showed prominent peaks at

m/z 322 and m/z 605 (Fig. 3A), corresponding to [8-

oxodG + K]+ and [8-oxodG2 + K]+.

The analyses of 1 mM dG (or 8-oxodG) with various

concentrations of NaCl were performed (Fig. 4). Relative

peak heights of m/z 1092, [dG4 + Na]+ were much larger

than those of m/z 1156, [8-oxodG4+Na]+ throughout this

experiments.

8-OxodG seems to be difficult to form a tetrameric

structure as dG does. The equilibrium of 8-oxodG lies so far

to the 8-keto form (Fig. 5) [43]. The N (7) nitrogen atom of

8-oxodG may be difficult to participate in the hydrogen

bonds.

Fig. 3. Electrospray inonization mass (ESI-MS) spectra of a mixture of 8-oxodG [or 2'-deoxyguanosine (dG)] with KCl]. HPLC-ESI-

MS conditions are as described in Materials and Methods. A, an ESI-MS spectrum of a mixture of 8-oxodG with KCl; B, an

ESI-MS spectrum of a mixture of dG with KCl.

Fig. 4. Relative intensities of m/z 1092, [dG4 + Na]+ or m/z 1156,

[8-oxodG4 + Na]+ observed in the mixtures of 1 mM dG

or 1 mM 8-oxodG with various concentration of NaCl.

HPLC-ESI-MS conditions are as described in Materials

and Methods. (closed circle), m/z 1092, [dG4+Na]+; (open

circle), m/z 1156, [8-oxodG4 + Na]+.
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Since the site-specific hydroxylation at GG and GGG

sequences in DNA has been induced by various oxygen

stresses [30–36], the hydrogen-bonded guanine tetrad, or G

quartet, which is related to a variety of biological roles, is

possibly disintegrated by the oxygen stresses in the

biological systems.
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