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Abstract: Chronic rhinosinusitis (CRS) is often treated by functional endoscopic paranasal sinus
surgery, which improves endoscopic parameters and quality of life, while olfactory function was sug-
gested as a further criterion of treatment success. In a prospective cohort study, 37 parameters from
four categories were recorded from 60 men and 98 women before and four months after endoscopic
sinus surgery, including endoscopic measures of nasal anatomy/pathology, assessments of olfactory
function, quality of life, and socio-demographic or concomitant conditions. Parameters containing
relevant information about changes associated with surgery were examined using unsupervised
and supervised methods, including machine-learning techniques for feature selection. The analyzed
cohort included 52 men and 38 women. Changes in the endoscopic Lildholdt score allowed separa-
tion of baseline from postoperative data with a cross-validated accuracy of 85%. Further relevant
information included primary nasal symptoms from SNOT-20 assessments, and self-assessments
of olfactory function. Overall improvement in these relevant parameters was observed in 95% of
patients. A ranked list of criteria was developed as a proposal to assess the outcome of functional
endoscopic sinus surgery in CRS patients with nasal polyposis. Three different facets were captured,
including the Lildholdt score as an endoscopic measure and, in addition, disease-specific quality of
life and subjectively perceived olfactory function.

Keywords: otorhinolaryngology; human olfaction; machine learning; data science; patients

1. Introduction

Chronic rhinosinusitis (CRS) has an estimated prevalence in the European popula-
tion ranging from 6.9 to 27.1% [1]. In addition to nasal discharge, congestion, and facial
pain/pressure, its clinical symptoms often include olfactory dysfunction [2,3]. Two mecha-
nisms have been identified that contribute to the olfactory symptoms. First, olfactory loss in
the CRS subtype with nasal polyps (CRSwNP) has mechanical causes, as polyps, mucosal
edema, or pus can obstruct the olfactory cleft and impede access of odor molecules to the
olfactory epithelium [4]. Second, in both subtypes of CRS, i.e., CRSwNP and CRS without
nasal polyps (CRSsNP), inflammatory processes can extend to the olfactory epithelium
where they cause local sensorineural damage [5,6].

First-line therapies for CRS include nasal irrigation and topical steroids [7]. When this
fails, functional endoscopic nasal sinus surgery is the common treatment for persistent CRS,
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especially in CRSwNP, which has been shown to significantly improve specific symptoms
as well as quality of life [8]. It has also been shown to recover olfactory performance [9,10],
but it has remained unclear whether this is a concomitant benefit or a relevant inherent
component contributing to the improved quality of life reported after surgery [11]. Its
repeatedly demonstrated impact on quality of life under different circumstances [12–14]
does not automatically make olfactory function a criterion by which to evaluate the success
of surgical treatment of CRS. A role of olfactory function was previously indicated in an
analysis of olfactory and quality of life related parameters collected in a sinus surgery
context [15]. However, the regression analysis provided merely statistical significances
of olfactory measures without ranking them clearly among different measures such as
endoscopic scores.

The present study aimed at criteria that characterize the success of surgical treatment
of CRS in a relevant way. Several parameters each (two or more tests) from a total of four
main categories related to (i) nasal anatomy/pathology, (ii) olfactory function, (iii) quality
of life, and (iv) demographic data or relevant concomitant diseases were recorded. To obtain
robust cross-validated results, a data-driven biomedical informatics-based approach [16]
was used to select for each category those parameters that carry most relevant information
that can be used to identify whether a set of parameters has been recorded either before or
after endoscopic sinus surgery. The present approach used machine learning in conjunction
with so-called feature selection methods, i.e., the selection of a subset of relevant variables
for the operation of the algorithms [17].

2. Materials and Methods
2.1. Study Design and Participants

Adopting a prospective open design, this observational cohort study took place at
two consecutive occasions, before the surgery and four months postoperatively. The cohort
included 158 patients with nasal polyps, i.e., 60 men and 98 women, aged 13.9–84.6 years
(mean ± standard deviation: 49.1 ± 14.8 years), who were preparing for endoscopic sinus
surgery at the Department of Otorhinolaryngology, St. Johannes Municipal Hospital,
Dortmund, Germany. Measurements took place between May 2018 and August 2019.
Patients were diagnosed according to the EPOS guideline [18]. Inclusion criteria were
absence of pregnancy, absence of disorders that are strongly associated with olfactory loss
such including neurodegenerative disorders such as Parkinson’s or Alzheimer’s disease, or
advanced renal dysfunction. The study was conducted in accordance with the Declaration
of Helsinki on Biomedical Studies Involving Human Subjects. It was approved by the
Ethics Committee at the Dresden University Hospital (approval number EK14502017).
All participants gave informed written consent and in the case of minors their parents’
informed written consent was additionally obtained. The sample size was defined to
be twice that of a positive study of the correlation of measured olfactory function with
self-assessments of olfaction in n = 80 patients with nasal polyposis [19]. A formal sample
size estimate was not performed.

2.2. Data Acquisition

Data collected included (i) endoscopic measurements of nasal anatomy/pathology,
(ii) assessments of olfactory function, (iii) quality of life questionnaire responses, and
(iv) sociodemographic and concomitant disease-related information. The exact methods
used to collect this information are described below.

2.2.1. Assessment of Nasal Anatomy/Pathology
Visual Scoring of Pathological Conditions in the Nose and Paranasal Sinuses

Endoscopic examination of the nasal cavity was performed by two experienced oto-
laryngologists (PP, JP). First, the presence and severity of potential polyps, edema, dis-
charge, scarring, and crusting were each scored between 0 and 2, assessed for each side,
and summed to the Lund–Kennedy score [20]. No significant findings on endoscopic
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evaluation are concluded from a Lund–Kennedy score of <2 [21]. Second, polyp size was
evaluated separately for each side and then summed to the Lildholdt score [22]. The coding
was 0, no polyps; 1, polyps not reaching the inferior turbinate; 2, polyps not reaching the
inferior edge of the inferior turbinate; 3, polyps reaching below the inferior edge of the
inferior turbinate.

Assessment of Eosinophilia in Nasal Tissue

The presence or absence of eosinophilia was determined in the histologic specimen by
a trained clinical pathologist. Tissue (polyps, mucosa) collected during nasal surgery was
examined histologically in all patients similar to the methods of Bachert and Holtappels [23].
Eosinophilia in the tissue is indicative of a Th2 inflammatory pattern associated with
frequent recurrences of polyposis and asthma [23,24].

2.2.2. Assessment of Olfactory Function
Clinical Testing of Olfactory Functional Performance

Olfactory function was quantified using a validated and reliable clinical test (“Sniffin’
Sticks”, Burghart Instruments, Wedel, Germany) [25,26], which evaluated three sensory
dimensions of odors comprising olfactory threshold (to phenylethyl alcohol), odor discrim-
ination (16 pairs of odors), and odor identification (16 odors). From the sum score, the
olfactory functional diagnosis was obtained as either functional anosmia (further termed
“anosmia”; score < 16.5), hyposmia, (16.5–30.5), or normosmia (>30.5) [27]. Regardless of
this olfactory diagnostic classification, an improvement in olfactory function is subjectively
perceived as such when the TDI increases by ≥5.5 points [28].

Self-Ratings of the Perceived Olfactory Function

Participants rated their olfactory function in two ways on two different Likert-type
scales. Rating scale #1 was an 8-point scale, with each point being labeled as 0 = “no smell
perception”, 1 = “extremely bad”, 2 = “much worse than normal”, 3 = “worse than normal”,
4 = “normal sense of smell”, 5 = “better than normal”, 6 = “much better than normal”, and
7 = “excellent”. Rating scale #2 was a discrete scale, with labels only at endpoints of the
scale, with 10 data points on which subjects rated their olfactory function from 1, “not
present” to 10, “excellent”.

The inclusion of self-assessments of olfactory function has been the subject of intense
debate in the planning of the study data analysis, as the scientific value of these queries can
be judged differently. On the one hand, self-assessments of olfactory function have been
shown to provide only a limited estimate of olfactory function quantified by a validated
clinical test [29]. On the other hand, they have been reported to be highly informative in the
clinical setting of nasal polyposis [19,30]. As a result of this discussion, baseline ratings and
tests of olfactory function were analyzed for 157 subjects, with the separately published
finding that olfactory self-ratings proved informative for assigning categorical olfactory
diagnosis [31].

Further Olfaction-Related Information

In addition to the testing or rating of the general olfactory acuity, the presence or
absence of specific symptoms comprising parosmia [32] and phantosmia [33] was queried
from the patients with reference to a validated questionnaire [34].

2.2.3. Assessment of the Quality of Life
Assessment of Disease-Specific Quality of Life Related Parameters

The SNOT-20 questionnaire [35] was used as a well-established questionnaire to quan-
tify sinonasal symptoms and assess to treatment outcomes in chronic rhinosinusitis. It
consists of 20 questions categorized into 5 different domains (rhinologic symptoms, ex-
tranasal rhinologic symptoms, ear/face, psychological dysfunction, sleep dysfunction),
which are rated on a Likert scale from 0 = “no problem” to 5 = “it can’t get any worse”.



J. Clin. Med. 2021, 10, 4245 4 of 26

In addition to the general sum score, three different subscores are derived from subsets
of responses to the SNOT-20 questionnaire to address specific facets of quality of life.
This includes the subscore “general quality of life” that contains the individual questions
about dizziness, problems with waking up at night, fatigue during the day, diminished
performance, poor concentration frustration/restlessness/irritability, sadness, and em-
barrassment of the disease symptoms. It is calculated as ∑(rating#11, 13, . . . , 20)/45·100,
where the value of 45 accounts for the maximum sum of individual response to nine
questions and the numbers #11, . . . refer to the item numbers of the SNOT-20. The subscore
“primary nasal symptoms” combines the questions about nasal obstruction, sneezing,
constant nasal secretion, thick mucus nasal secretion, and olfactory impairment, which are
transferred into the subscore as ∑(rating#1, 2, 3, 5, 10)/25·100. The subscore “secondary
nasal symptoms” combines the questions about secretion flowing into the throat, clearing
of the throat, cough, feeling of pressure on the ears, ear, and facial pain, and feeling of pres-
sure in the face, which are transferred into the subscore as ∑(rating#4, 6, . . . , 9, 12)/30·100.
No to minor symptoms are inferred from a total sum score < 12 or from general quality of
life < 14, primary nasal symptoms < 12, or secondary nasal symptoms < 10.5 [36].

Assessment of Non-Disease-Specific Quality of Life Related Parameters

In addition, quality of life before and after surgery was surveyed using the German
version [37] of the Short Form Survey (SF) 36 [38–40] as a widely used self-administered
questionnaire for this purpose [41,42]. From 35 questions, an 8-scale profile of physical and
mental health measures is calculated by combining responses to selected questions (see,
for example, Figure 1 in reference [40]). These subscores cover eight dimensions of health,
including (i) physical functioning, (ii) role limitations due to physical health problems,
(iii) physical pain, (iv) general health perception, (v) vitality, (vi) social functioning, (vii) role
limitations due to emotional problems, and (viii) mental health. In addition, two summary
measures addressing (i) physical health (PCS) and (ii) mental health (MCS) are obtained
by weighting and averaging the eight subscores. For comparability, U.S. scores were
used [43,44]. The SF-36 contains a single further item asking about perceived change in
health status, which was queried to fully apply the questionnaire but was not analyzed
because its reference point would have been unclear in the baseline survey.

2.2.4. Acquisition of Sociodemographic and Concomitant Disease-Related Information

Sociodemographic parameters included the patient’s age, sex, and body mass in-
dex (BMI). Information related to concomitant diseases included (i) the degree of tissue
eosinophila, (ii) the triple combination of asthma, pseudoallergy to acetylsalicylic acid
and nasal polyps, or pseudoallergy to acetylsalicylic acid or asthma alone, and allergies
relevant to nasal or olfactory function. In addition, the use of steroids was recorded as a
further binary variable (yes/no).

2.3. Data Analysis

A schematic overview of the data analysis workflow can be found in Figure 1. The data
analysis was designed to identify from the acquired information those parameters that best
captured the changes induced by the endoscopic surgery. Following data preprocessing,
the first analysis step focused on descriptive and exploratory analyses, such as statistical
assessment of significant changes from baseline to postoperative time point and associated
effect sizes. Second, unsupervised data analyses were performed that used data projection
methods to identify structures in the data that support a change from the pre- to the post-
surgery state. Third, supervised methods including machine-learned classifiers were used
to determine the individual parameters that contained relevant information to the changes
brought about by the operation. The idea behind this analytical step was to train machine-
learning algorithms to identify an individual set of the d = 37 parameters (Table 1) as being
recorded from the respective patient before or after surgery and to analyze which specific
parameters the algorithms needed to successfully perform this task [45]. By focusing
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on relevant information about changes caused by surgery, specific parameters should be
identified that could serve as criteria to evaluate the outcome of functional endoscopic sinus
surgery. This relates to, but is not identical to, analysis of significant changes in selected
parameters after surgery. The latter was expected because of the selection of parameters
that have been shown to improve after surgery.

Figure 1. Flow chart showing the number of patients and data analysis steps. Major steps in data analysis reached from
preprocessing to unsupervised and supervised analyses until variables relevant to capturing the effect of endoscopic
endonasal surgery were identified and internally validated. The figure has been created using Microsoft PowerPoint®

(Redmond, WA, USA) on Microsoft Windows 11 running in a virtual machine powered by VirtualBox 6.1 (Oracle Corporation,
Austin, TX, USA).
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Table 1. Basic descriptive statistics of d = 37 parameters of four categories related to (i) nasal anatomy, (ii) olfaction,
(iii) quality of life, and (iv) demography or concomitant diseases and allergies affecting nasal function. If acquired
before or after the surgery, differences were explored using Wilcoxon–Mann–Whitney U tests for interval or ordinal
variables and χ2 tests for binary (yes/no) or categorial variables. Only p-values are shown for these explorative analyses.

Parameter
Category

Test
Bat-
tery

Parameter
Mean ±

SD/n
Baseline

Range
Baseline

Mean ±
SD/n

Post-Surgery

Range
Post-Surgery

Wilcoxon/χ2

p-Value

Nasal
anatomy/
pathology

Lildholdt score 3.08 ± 1.32 1–6 0.58 ± 0.96 0–4 9.115× 10−25

Lund–Kennedy
score 7.41 ± 3.22 1–18 5.76 ± 4.16 0–18 0.0002092

Eosinophilia in
nasal tissue 1.39 ± 1.11 0–3 same -

Olfactory

Sniffn
Sticks

TDI sum score 17.84 ± 9.66 2–35.5 22.8 ± 8.24 5–41.75 0.0006678
Olfactory threshold (T) 0.59 ± 0.74 0–2.3 0.97 ± 0.77 0–2.69 0.0003911

Odor discrimination (D) 7.83 ± 4.15 0–16 9.48 ± 3.42 1–16 0.004951
Odor identification (I) 7.54 ± 4.36 0–15 9.8 ± 3.68 1–15 0.0004697

Olfactory self-rating
scale #1 1.88 ± 1.64 0–7 3.48 ± 1.72 0–7 4.367 × 10−9

Olfactory self-rating
scale #2 3.53 ± 2.51 1–10 5.91 ± 2.77 1–10 3.669 × 10−8

Parosmia 6 4 0.7449

Phantosmia 7 4 0.5337

Quality of
life

SNOT-
20

Primary nasal
symptoms 56.44 ± 18.15 4–92 26.62 ± 17.55 0–76 3.331× 10−18

Secondary nasal
symptoms 31.44 ± 18.69 0–80 18.26 ± 15.04 0–63.33 9.597 × 10−7

General life quality 33.98 ± 19.94 0–88.89 18.81 ± 15.98 0–62.22 1.838 × 10−7

SNOT-20 sum score 38.83 ± 16.05 5–84 20.6 ± 13.66 1–62 1.516× 10−12

SF-36

Physical functioning
(PF) 77.61 ± 22.49 10–100 86.56 ± 19.13 10–100 0.0005252

Role-physical (RP) 70 ± 38.62 0–100 84.44 ± 31.93 0–100 0.004417
Bodily pain (BP) 72.83 ± 24.68 10–100 82.56 ± 24.8 0–100 0.002408

General health (GH) 56.22 ± 19.86 5–100 61.11 ± 20.67 15–100 0.1172
Vitality (VT) 51.83 ± 19.39 10–100 60.56 ± 17.13 25–95 0.001698

Social functioning (SF) 79.31 ± 20.28 12.5–100 88.47 ± 15.81 37.5–100 0.001161
Role-emotional (RE) 78.89 ± 37.54 0–100 87.41 ± 29.38 0–100 0.1271
Mental health (MH) 72.76 ± 16.26 36–100 76 ± 15.39 32–100 0.201
Physical component

summary (PCS) 64.34 ± 23.99 8.4–102.58 75.34 ± 23.42 4.56–108.72 0.0004798

Mental component
summary (MCS) 68.69 ± 21.89 0.95–97.86 73.62 ± 19.91 −1.53–104.69 0.1335

Demographic/
concomitant

disease-
related

Age 50.5 ± 14.92 13.9–82.5 50.83 ± 14.92 14.6–82.83 -
Body mass index (BMI) 27.37 ± 4.88 20.42–44.08 same -

Sex 52/38 same -
Steroid use 71 same -

Allergy to house dust 8 same -
Allergy to early

bloomers 1 same -

Allergy to hay fever 17 same -
Allergy to grasses 3 same -

Allergy to cat 2 same -
Asthma, pseudoallergy
to acetylsalicylic acid

and nasal polyps
6 same -

Pseudoallergy to
acetylsalicylic acid 9 same -

Asthma 26 same -
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The programming work was performed in the R language [46] using the R software
package [47], version 4.1 for Linux, which is available free of charge in the Comprehensive
R Archive Network (CRAN) at https://CRAN.R-project.org/ (accessed on 16 September
2021). Analyses were performed on 1–26 cores of an Intel Core i9-7940X®(Intel Corporation,
Santa Clara, CA, USA) computer with 128 GB of random-access memory (RAM), up
to about 60% of which was used during feature selection, running on Ubuntu Linux
20.04.2 LTS (Canonical, London, UK). Parallel processing was programmed using the
implementation of the “parallel” R library provided with the R base environment [47].

2.3.1. Data Preprocessing

Preprocessing of the data included (i) examination of the distribution of the variables,
possibly followed by data transformation, (ii) detection and removal of outliers, and
(iii) imputation of missing values. Different possible transformations along Tukey’s ladder
of powers [48] were evaluated and the resulting distributions of the variables compared
with the normal distribution using quantile-quantile plots and Kolmogorov–Smirnov
tests [49]. This supported logarithmic transformation of olfactory thresholds, which was
consistent with the geometric scaling of odorant dilution applied during their acquisition.
Outliers were detected by applying Grubbs tests [50] and replaced with missing values. The
procedure was iteratively repeated for each variable as long as significant results of Grubbs
tests were obtained, using R library “outliers” (https://cran.r-project.org/package=outliers
(accessed on 16 September 2021) [51]). Missing values were imputed separately for the four
main types of parameters, i.e., nasal-anatomical, olfactory, life quality or sociodemographic
and disease-related variables, using median or random forests [52,53] based imputation;
the latter implemented in the R library “mice” (https://cran.r-project.org/package=mice
(accessed on 16 September 2021) [54]). For further analyses, binary (yes/no) or nominal
variables were one-hot recoded with assigning missing values to the zero condition.

2.3.2. Explorative Analyses

Differences between pre- and postoperative values were analyzed using paired tests,
which were χ2-statistics [55] or Wilcoxon–Mann–Whitney U tests [56,57]. The α-level was
set at 0.05. Because this was an exploratory analysis, no correction for multiple testing was
made, but p-values are reported accurately so that this can be done at any time.

Effect sizes of the changes associated with the surgery were qualified using the
non-parametric effect size measure “Impact” [58] because it is applicable to the differ-
ent types of variables as analyzed in the present data set, including interval and ordinal
scale variables and on-hot transformed nominal variables. As shown previously, in cases
where Cohen’s d [59] is defined as a commonly used effect size measure, Impact pro-
vides comparable effect sizes [58]. In the present analysis, effect sizes were calculated
1000 times for data sets randomly drawn from the original data set using bootstrap re-
sampling [60]. The 95% confidence intervals (CI) of the effect sizes were determined
as the range between the 2.5th and 97.5th percentiles of the respective values during
the 1000 runs. These calculations were performed using our R library “ImpactEffect-
size” (https://cran.r-project.org/package=ImpactEffectsize (accessed on 16 September
2021) [58]).

2.3.3. Unsupervised Identification of Data Structures Supporting Pre- to Post-Surgery Changes

Whether the data contained a structure that reflected changes from before to after
surgery was examined after projecting the high-dimensional 37 × 180 (d × 2n) sized data
space D = {xi|xi ∈ X, i = 1 . . . n} onto a low-dimensional plane. Specifically, this data
space was composed of the information contained in d = 37 variables collected from the
90 patients at baseline and after surgery who had reported for the two scheduled sessions
(for the recovery rate of patients, see the Results section). Variables unchanged between
the two acquisitions were included for possible subgroup differences.

https://CRAN.R-project.org/
https://cran.r-project.org/package=outliers
https://cran.r-project.org/package=mice
https://cran.r-project.org/package=ImpactEffectsize
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Data projection was performed by means of factor analysis for mixed data (FAMD [61])
that combined principal component analysis (PCA [62,63]) for interval (or ordinally) scaled
variables with multiple correspondence analysis (MCA [64,65]) as the corresponding
technique for binary (categorical) variables in the data set. Variables suitable for the
PCA component were scaled to comparable variances and centered according to the R
libraries’ defaults. Dimensions with eigenvalues > 1 [66,67] were retained. Analyses
of the FAMD projection focused on dimensions on which significant separations were
observed between the two tests (before–after) and between the relevant outcomes related
to the disease-specific quality-of-life scores identified in the previous step of data analysis,
using Wilcoxon–Mann–Whitney U tests [56,57]. The analyses were done using the R library
“FactoMineR” (https://cran.r-project.org/package=FactoMineR (accessed on 16 September
2021) [68]). The projection-relevant variables in the focused dimensions were selected as
suggested in the R library “factoextra” (https://cran.r-project.org/package=factoextra
(accessed on 16 September 2021) [69,70]), which was based on the expected value if the
contributions were uniform.

2.3.4. Supervised Identification of Parameters That Carry Relevant Information about
Surgery-Related Changes

The above-mentioned data space was completed with the information about the time
of acquisition of each data set instance, i.e., baseline or after surgery, at which a respective
data set was acquired from a patient. This provided a labeled 37 × 180 ((d + 1) × 2n) sized
data space D = {(xi, yi)|xi ∈ X, yi ∈ Y, i = 1 . . . n} that in addition to the composition
mentioned with the unsupervised analyses comprising the input space xi contained an
output data space, yi, that included the test occasion before or after the surgery as a
class information.

In this data space, feature selection methods [17] including supervised algorithms
from machine learning were used to identify variables that contain relevant information
about changes from before to after the surgery; a comparable approach has been published
previously [45,71]. That is, different algorithms were trained with 2/3 of the data to
identify a data set as acquired either at baseline or post-surgery. The trained algorithms
were then put to identify the acquisition time of a data set from the 1/3 of the data not
available during training, and the accuracy by which this assignment was performed was
quantified. Subsequently, the variables were left out one by one from training, and the
decrease in assignment accuracy was kept as a quantitative measure of variable importance,
i.e., ∆Acc = Acccomplete − Accreduced, where Acccomplete denotes the accuracy of the test data
subset obtained with the complete set of variables, and Accreduced denotes the accuracy
obtained with one variable omitted. The most relevant variables were then selected by
applying an item categorization technique implemented as a computed ABC analysis [72],
which divides each set of positive numeric items into three non-overlapping subsets named
“A”, “B”, and “C” [73]. Subset “A” contains the “important few” and its member variables
were retained. The algorithm was then re-trained with only the retained variables. If it
then assigned cases to the correct acquisition time with the same accuracy as the algorithm
trained with the full set of variables, it could be concluded that all relevant information
had been preserved in the selected variables.

The above workflow was run in a 1000-fold cross-validation scenario as advised for
example in [74], using Monte-Carlo [75] resampling to split the data set class-proportionally
into two disjoint subsets, of which 2/3 of the original data served as the training data
subset and the remaining 1/3 served as the test data subset. The size of the final set of
variables (features) selected corresponded to the most frequent size of subsets “A” in
the 1000 runs, and its members were the variables most frequently placed in the ABC
subset “A” in the 1000 runs, in descending order of their occurrence in the retained
sets. These calculations were performed using our R package “ABCanalysis” (https:
//cran.r-project.org/package=ABCanalysis (accessed on 16 September 2021) [72]) and
the R library “sampling” (https://cran.r-project.org/package=sampling (accessed on 16
September 2021) [76]).

https://cran.r-project.org/package=FactoMineR
https://cran.r-project.org/package=factoextra
https://cran.r-project.org/package=ABCanalysis
https://cran.r-project.org/package=ABCanalysis
https://cran.r-project.org/package=sampling
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Class assignment performance was assessed by calculating standard performance
measures [77–80], balanced accuracy for unequal class sizes [81], and area under the
AUC-ROC. These calculations were performed using the R libraries “caret” (https://
cran.r-project.org/package=caret (accessed on 16 September 2021) [82]) and “pROC”
(https://cran.r-project.org/package=pROC (accessed on 16 September 2021) [83]). The 95%
confidence intervals (CI) of the classification performance parameters were determined
from the results of the 1000 runs as described above.

A variety of algorithms were used in these analyses, including (i) random forests [52,53]
as a generally well-performing ensemble learning classifier that uses a tree-based struc-
ture and is implemented in the R library “randomForest” (https://cran.r-project.org/
package=randomForest (accessed on 16 September 2021) [84]) and (ii and iii) binary
logistic regression as a classical statistical technique routinely used in similar analyses
of biomedical datasets and implemented in two different variants of R libraries “nnet”
(https://cran.r-project.org/package=nnet (accessed on 16 September 2021) [85]) or the
“stats” package from the R base environment. Furthermore, (iv) support vector machines
from the R library “e1071” (https://CRAN.R-project.org/package=e1071 (accessed on
16 September 2021) [86]) were used as another usually well-performing classifier. These
are based on finding hyperplanes as an optimal decision surface that can separate the
data points of one class from those belonging to another class in the high-dimensional
feature space [87]. In addition, (v) a k-nearest neighbors (kNN) classifier [88] was used
as a prototype based classifier that uses a similarity measure, presently implemented
with the Euclidean distance and k = 7 and performed using the R package “KernelKnn”
(https://cran.r-project.org/package=KernelKnn (accessed on 16 September 2021) [89]).
Finally, (vi) a naïve Bayesian classifier was used as a probabilistic classifier based on the
Bayes theorem [90]. These calculations were performed using the R library “e1071”. This
selection of classifiers provided a heterogeneous set of algorithms to ensure that the results
were not due to properties or implementations of a given type of classifier or its potential
problems with the mixed dataset. By using two implementations of logistic regression,
the aim was to check whether their results agreed, which was only partially the case, as
it was similarly observed with two types of tree-based rules generating classifiers (CART
and C5.0). To obtain a unique set of variables selected for final interpretation, the variables
selected during the runs of the eight algorithms were combined in a weighted manner
that took into account (i) the certainty with which each variable was part of the final set,
quantified by the number of memberships in ABC set “A” during the 1000 runs described
above, (ii) the performance of each classifier, as judged by its median classification accuracy
or balanced accuracy in the case of unbalanced class sizes, and (iii) the uncertainty of the
classification, quantified by the distance of the lower limit of the 95% CI of the classification
accuracy to the level of pure guessing of 50%. The sums of these weighted memberships in
ABC set “A” for each variable across all classifiers were again subjected to ABC analysis and
set “A” was retained. As before [91], feature selection was repeated with the parameters
not selected until classification accuracy reached the level of guessing.

To control for possible overfitting, i.e., rote learning that achieves perfect classification
accuracy with a single data set but cannot classify similarly structured new data, the
classification algorithms were first tuned with respect to the available hyperparameters.
For example, the number of k in kNN was tested between 3 and 9 and the best performing
variant was chosen. Similarly, the number of trees in the Random Forest was evaluated
between 100 and 1600 and after it was determined that the out-of-bag error remained at a
minimum of 0.02 starting at 200 trees, it was decided to use 1500 trees since, as has been
shown elsewhere [92], there is no penalty for “too many” trees. SVM was used with a linear
kernel since alternatives such as a radial kernel provided lower classification performance.
Second, the analyses were performed in 1000 cross-validation runs, as described above.
Third, a negative control condition was created by permuting the variables in the training
data set. A classification that is better than chance when trained with permuted data would

https://cran.r-project.org/package=caret
https://cran.r-project.org/package=caret
https://cran.r-project.org/package=pROC
https://cran.r-project.org/package=randomForest
https://cran.r-project.org/package=randomForest
https://cran.r-project.org/package=nnet
https://CRAN.R-project.org/package=e1071
https://cran.r-project.org/package=KernelKnn
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indicate possible overfitting. Fourth, several different classifiers were applied to avoid
relying on a single method for the analysis, where overfitting occasionally occurred.

2.3.5. Statistical Assessment of Changes in Relevant Parameters Related to Surgery Outcomes

To obtain an interpretation of the surgery-associated changes across all parameters
identified as informative, the parameters selected in the previous step of data analysis were
further evaluated. First, correlations in the changes between relevant parameters were
assessed by calculating Spearman correlation coefficients ρ [93] of the differences between
baseline and postoperatively recorded values and also for raw postoperative values for
comparison. Second, patients with a postoperative reduction in CRS-related symptoms
according to the relevant parameters identified in the previous analysis steps were sought
from the directions of change.

The sign of change from before to after surgery was coded as (1, 0, 1) for improved,
unchanged, or worsened, respectively. After standardizing the signs of improvement or
deterioration across all parameters, the agreement of the direction of change between
parameters was assessed using χ2 statistics [55]. The coded signs were summed for each
subject, and from these marginal (row) sums of the sign-parameter matrix, those patients
were identified for whom surgery had no consistent overall effect with respect to the
relevant parameters or for whom its overall effects tended toward worsening. Third, the
values of parameters identified as informative for changes after surgery, indicating no or
mild symptoms, were used to count patients who could be considered healthy after surgery
in terms of CRS symptomatology.

3. Results

Of the patients enrolled at baseline before surgery, one woman was excluded from data
analysis because of lack of testing in most parameters and baseline and absence from the
second test. Baseline data collected from the remaining n = 157 patients included 3611 num-
bers in ordinal- or interval-scale variables, of which 60 were missing, and 1256 values in
nominal variables, of which 129 were missing. A total of 90 patients returned to the study
at the postoperative session and provided a data set that included 1800 numbers in ordinal-
or interval-scale variables, of which 32 were missing, and 180 values in nominal variables,
of which 4 were missing. The reasons for the non-return of the other 67 are not known.
After data preprocessing with outlier removal, imputation and one-hot transformation, the
data space was complete and comprised 6840 numbers in 37 variables of which 1 was the
test occasion.

The analyzed cohort comprised 52 men and 38 women (recovery rate 69.6%) aged
50 ± 14.92 (mean ± standard deviation) and a BMI of 27.4 ± 4.9 kg/m2. A summary of the
main descriptive statistics of the d = 37 parameters together with the p-values obtained in
exploratory comparisons between the two test occasions is shown in Table 1. Almost all
variables differed significantly between the two test occasions. Effect sizes are shown in
Figure 2.

3.1. Data Structures Reflecting Changes from the Pre- to the Post-Surgery State

Unsupervised analyses of a data structure that would support a change from the
pre- to the post-surgery state and implemented as factor analysis for mixed data to
project the 37 × 180 (d × 2n) sized data space (Figure 3B), containing the information
about d = 37 variables that were recorded before and after surgery or did not change be-
tween the two time points and acquired from n = 90 patients, yielded 12 dimensions with
eigenvalues >1. The two test occasions before and after surgery were already significantly
separated (Wilcoxon W = 1800, p = 1.29 × 10−10; Figure 3A) in the first dimension that
explained 23.8% of the total variances in the data set (Figure 3D). Their separation in the
second dimension, which explained 12.8% of the variance, only narrowly missed statistical
significance (Figure 3C). Variables most relevantly contributing to the data projection onto
the first two dimensions (Figure 3E,F) included the complete SNOT-20 score derived pa-
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rameters, the olfactory parameters, as well as anatomical and pathological parameters of
the nasal cavity.

Figure 2. Effect sizes of the changes from baseline to the data acquired after endoscopic nasal
surgery, sorted for decreasing magnitude. Non-parametric effect sizes were implemented as the
Impact effect size measure [58]. The effect sizes are shown as black lines while the brown bars
indicate the 95% confidence intervals obtained from 1000 repetitions of effect size calculation on
data randomly drawn from the original data set using bootstrap resampling [60,94]. House dust,
cat, grasses, and early bloomers denote allergy to the respective items. The figure has been created
using the R software package (version 4.1 for Linux; https://CRAN.R-project.org/ (accessed on
16 September 2021). (R Development Core Team, 2008)) and the library “inspectdf” (https://CRAN.
R-project.org/package=inspectdf (accessed on 16 September 2021) [95]).

3.2. Parameters Containing Relevant Information about Operation-Related Changes

After determining that the data space reflected changes induced by surgery, feature
selection methods using eight different supervised algorithms and item categorization
implemented as computed ABC analysis identified parameters that carried the relevant
information about changes from baseline to the post-surgery examination (Figure 4). The
procedure of selecting the features, i.e., the training and test parameters, quantifying the
importance of each variable for the correct functioning of the algorithm, and selecting the
relevant elements by ABC analysis, was carried out in three repetitions, omitting in the

https://CRAN.R-project.org/
https://CRAN.R-project.org/package=inspectdf
https://CRAN.R-project.org/package=inspectdf
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next repetition the category from which the most relevant features were selected in the
previous step. Thus, the first analysis started with the whole set of d = 37 parameters.

Figure 3. Results of factor analysis for mixed data (FAMD) of the d = 37 variables acquired before and after the surgery.
(A–C) Data structure in the input space of d = 37 variables acquired from the patients before and four months after endoscopic
nasal sinus surgery. The data structure has been obtained by means of data projection via FAMD. The plot associated with
this analysis shows the sample separation in the first and second dimension of the projection (Dim.1 versus Dim.2). The
marginal distribution plots show the segregation of the test occasions along the first principal and second dimensions.
The p-values are the results from a Mann–Whitney U-test [56,57]. (D) Bar chart of the fraction of variance explained by
the dimensions of the FAMD projection, sorted in descending order of magnitude. (E,F) Barplot of the contribution of
parameters to dimensions 1 and 2 of the data projection. The dashed horizontal reference line corresponds to the expected
value if the contribution where uniform. House dust, cat, grasses, and early bloomers denote allergy to the respective items.
The figure has been created using the R software package (version 4.1 for Linux; https://CRAN.R-project.org/ (accessed on
16 September 2021) [47]) and the R packages “ggplot2” (https://cran.r-project.org/package=ggplot2 (accessed on 16
September 2021) [96]) and “FactoMineR” (https://cran.r-project.org/package=FactoMineR (accessed on 16 September
2021) [68]).

https://CRAN.R-project.org/
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=FactoMineR
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Figure 4. Results of the feature selection process aimed at variables providing relevant information on changes from
before to after endoscopic sinus surgery. (A–C) Bar plots showing the number at which an item categorization technique
implemented as a computed ABC analysis [72] placed the respective variables in ABC subset “A”, i.e., among the most
relevant items, during the 1000 cross-validation runs on randomly selected disjoint training and test data sets, analogously
to the analyses reported in [71]. The blue bars show the finally selected items based on their occurrence in the relevant subset
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and on the most frequent size of ABC subset “A”. The results are only shown for support vector machines (SVM) as
an example for the feature selection process. (D,F,H) Matrix heatplot color-coding the number of runs, from the 1000
cross validations, during which the respective variable was placed in ABC subset “A”, i.e., selected as relevant for the
respective algorithm to identify whether a data set instance has been acquired before or after the surgery. The feature
selection was performed in three steps where in each subsequent step the parameter category from which in the previous
step the relevant variables were selected was left out. More intense and darker blue colors indicate higher importance
scores (for details see methods section). The bar charts above the heat matrix show the sum of placements of a variable
in ABC subset “A” across all algorithms. The blue bars indicate the finally selected variables used to train the algorithm.
(E,G,I) Boxplots of the performance of different types of machine-learning algorithms in the assignment of data set
instances as acquired either before or after the surgery, using the features shown in the matrix heat plot at the left of
the respective plots. The boxes have been constructed using the minimum, quartiles, median (solid line within the box),
and maximum. The whiskers add 1.5 times the interquartile range (IQR) to the 75th percentile or subtract 1.5 times the
IQR from the 25th percentile. The arithmetic means are additionally shown as yellow dots. House dust, cat, grasses,
and early bloomers denote allergies to the respective items. The figure has been created using the R software package
(version 4.1 for Linux; https://CRAN.R-project.org/ (accessed on 16 September 2021) [47]) and the R packages “ggplot2”
(https://cran.r-project.org/package=ggplot2 (accessed on 16 September 2021) [96]).

The Lildholdt score was ranked first-line among the most important information
by all algorithms to identify whether parameters were collected from a patient before or
after surgery (Figure 4). With the Lildholdt score alone, median classification accuracies
up to 86.7% (regression analyses) in the chosen cross-validation scenario were attained
(Table 2). Moreover, the simple CART-derived rule “IF Lildholdt ≥ 1 THEN data has been
acquired before the surgery ELSE data has been acquired after surgery” created once using
80% of the data provided 85% accuracy (95% CI 73.8–95%) for correctly identifying the
acquisition time in a 1000 bootstrap resampling experiment performed on the remaining
20% of the data.

Omitting the endoscopic parameters and repeating the above analyses with the re-
maining d = 34 parameters, the second-line feature capturing changes in clinical signs
or symptoms associated with surgery was the “primary nasal symptoms” derived from
the SNOT-20 questionnaire. However, the regression algorithms had problems because
they selected age as a relevant feature, with which they then failed to distinguish between
baseline and postoperative data but succeeded when “primary nasal symptoms” was used
as the majority vote across all algorithms. Thus, for primary nasal symptoms, all algorithms
were again able to identify whether the parameters were collected from a patient before or
after surgery with better than guesswork accuracy, i.e., accuracies including the lower limit
of the 95% CIs > 50%; however, performance was not as good as for the Lildholdt score
(Table 2).

Omitting the parameters related to quality of life and repeating the above analyses
with the remaining d = 20 parameters, the third-line feature capturing changes in clinical
signs or symptoms related to surgery was the 10-point self-rating scale #2, i.e., the scale
on which subjects rated their olfactory function from 1, “not present” to 10, “excellent”.
The decision between the two self-rating scales was narrow, i.e., both were placed on
top by half of the algorithms. Only the performance of algorithms using rating scale #2
was decisive for the majority vote for this scale, as described in the methods section for
the weighted combination of the results across algorithms. With the olfactory self-rating
scale #2, all algorithms were able to detect whether the parameters had been recorded by
a patient before or after surgery with better-than-guessing accuracy, i.e., accuracy > 50%
including the lower limits of the 95% CIs (Table 2). However, performance approached the
50% threshold, and therefore, analyses were stopped at this point and no further relevant
variables were sought among the remaining variables.

https://CRAN.R-project.org/
https://cran.r-project.org/package=ggplot2


J. Clin. Med. 2021, 10, 4245 15 of 26

Table 2. Classification performance measures for correctly identifying whether a record was acquired before or after endoscopic sinus surgery are obtained when training different
classifiers, i.e., random forests (RF), logistic regression in two implementations (logReg, binReg), support vector machines (SVM), k-nearest neighbors (kNN), naïve Bayes, classifi-
cation and regression trees (CART), and a hierarchical rule based C5.0 classifier with the information from d = 37 variables used in Table 1. The results represent the medians and
95% confidence intervals of the performance measures obtained during 1000 runs using a class-proportional random sampling of the data set into disjoint training (2/3 of the data set) and
test data subsets (1/3). The classifiers were trained with the full information in d = 37 variables and with the features identified as informative for the task to identify whether a data set
instance had been acquired before or after the surgery (Lildholdt score only, primary nasal symptoms only, or olfactory self-rating scale #2 values only; see Figure 4). Note that class sizes
were equal; therefore, accuracy and not balanced accuracy is adequate.

Classifier RF logReg

Feature set Full Lildholdt only Primary nasal
symptoms only

Olfactory self-rating
scale #2 only Full Lildholdt only Primary nasal

symptoms only
Olfactory self-rating

scale #2 only
Sensitivity, recall 83.3 (69.9–96.7) 86.7 (80–100) 76.7 (60–90) 76.7 (50–93.3) 83.3 (66.7–96.7) 86.7 (80–96.7) 80 (66.7–93.3) 63.3 (50–80.1)

Specificity 86.7 (73.3–96.7) 83.3 (60–93.3) 76.7 (53.3–93.3) 53.3 (36.7–73.3) 83.3 (66.7–96.7) 83.3 (73.3–93.3) 80 (66.7–90) 70 (53.3–80)
Positive predictive

value, precision 85.7 (74.3–96) 83.9 (71.4–93.3) 76.9 (64.5–91.3) 62.8 (54.8–71.9) 83.9 (73–95.8) 84.4 (77.1–93.3) 80.8 (70.3–90) 66.7 (56.5–77.8)

Negative predictive
value 83.9 (73.3–96) 87.1 (79.3–100) 76.7 (66.7–88.5) 70.6 (55.6–88.9) 83.9 (71.9–96.2) 87.1 (79.3–96.3) 80 (70.7–92.3) 65.6 (56.3–77.4)

F1 84.2 (74.6–91.8) 85.7 (78.7–93.1) 76.7 (66.7–85.2) 69.4 (55.2–78.9) 83.9 (73.1–91.8) 86.2 (79.3–93.3) 80 (71.2–88.5) 65.5 (54.5–76.7)
Accuracy 85 (75–91.7) 85 (78.3–93.3) 76.7 (66.7–85) 65 (55–75) 83.3 (73.3–91.7) 86.7 (78.3–93.3) 80 (71.7–88.3) 66.7 (56.7–76.7)

ROC-AUC 92.1 (85.2–97.5) 92.8 (87–97.6) 84.3 (75.4–92.7) 69.8 (58.6–80.2) 86.4 (76.8–92.9) 93.4 (88.2–97.5) 87.7 (79.4–94.6) 73.3 (62.8–83.7)

Classifier binReg SVM

Feature set Full Lildholdt only Primary nasal
symptoms only

Olfactory self-rating
scale #2 only Full Lildholdt only Primary nasal

symptoms only
Olfactory self-rating

scale #2 only
Sensitivity, recall 83.3 (63.3–93.4) 86.7 (80–96.7) 80 (66.7–93.3) 63.3 (50–80.1) 86.7 (66.7–96.7) 86.7 (56.7–100) 80 (66.7–93.3) 66.7 (50–83.3)

Specificity 83.3 (66.7–96.7) 83.3 (73.3–93.3) 80 (66.7–90) 70 (53.3–80) 86.7 (70–96.7) 83.3 (56.7–96.7) 80 (66.7–90) 66.7 (50–80)
Positive predictive

value, precision 83.3 (71.4–95) 84.4 (77.1–93.3) 80.8 (70.3–90) 66.7 (56.5–77.8) 84.8 (74.3–95.8) 84.8 (69.8–96.3) 80.6 (69.7–89.7) 66.7 (56.8–77.8)

Negative predictive
value 82.1 (69.7–93.6) 87.1 (79.3–96.3) 80 (70.7–92.3) 65.6 (56.3–77.4) 85.2 (73.5–96.3) 87.1 (68.4–100) 80.6 (70.3–92.3) 66.7 (57.1–79.2)

F1 82.6 (70.6–90.3) 86.2 (79.3–93.3) 80 (71.2–88.5) 65.5 (54.5–76.7) 84.8 (75–92.3) 85.7 (69.4–93.3) 80 (70.6–88.9) 66.7 (54.9–76.9)
Accuracy 83.3 (71.7–90) 86.7 (78.3–93.3) 80 (71.7–88.3) 66.7 (56.7–76.7) 85 (75–91.7) 85 (75–93.3) 80 (71.7–88.3) 66.7 (58.3–76.7)

ROC-AUC 86.4 (76.7–93.8) 93.4 (88.2–97.5) 87.7 (79.4–94.6) 73.3 (62.8–83.7) 85 (75–91.7) 85 (75–93.3) 80 (71.7–88.3) 66.7 (58.3–76.7)
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Table 2. Cont.

Classifier kNN Naïve Bayes

Feature set Full Lildholdt only Primary nasal
symptoms only

Olfactory self-rating
scale #2 only Full Lildholdt only Primary nasal

symptoms only
Olfactory self-rating

scale #2 only
Sensitivity, recall 76.7 (60–90) 83.3 (56.7–100) 76.7 (63.3–93.3) 70 (43.3–93.3) 76.7 (43.3–96.7) 86.7 (80–96.7) 80 (66.7–93.3) 66.7 (50–86.7)

Specificity 73.3 (56.7–86.7) 83.3 (56.7–100) 80 (56.7–93.3) 60 (40–80) 73.3 (43.3–93.3) 83.3 (73.3–93.3) 80 (66.7–90) 66.7 (50–80)
Positive predictive

value, precision 73.5 (62.9–84.4) 83.9 (68.2–100) 78.6 (65.8–92) 64 (53.3–75.9) 74.3 (60.9–90) 84.4 (77.1–93.3) 81.3 (70.6–89.7) 66.7 (56.5–76.9)

Negative predictive
value 74.6 (63.3–88) 84.4 (68.8–100) 77.4 (67.7–90.3) 67.9 (53.1–86.4) 75.9 (59.5–95) 87.1 (79.3–96.3) 80 (71–92) 66.7 (56.7–81.8)

F1 74.2 (63–83.9) 83.3 (69.4–91.8) 77.5 (67.9–86.2) 67.7 (49.1–78.3) 75 (54.9–85.2) 86.2 (78.7–93.3) 80 (71.4–88.9) 66.7 (54.5–77.6)
Accuracy 73.3 (63.3–83.3) 83.3 (71.7–91.7) 78.3 (68.3–86.7) 65 (53.3–75) 75 (61.7–85) 86.7 (78.3–93.3) 80 (71.7–88.3) 66.7 (56.7–76.7)

ROC-AUC 80.1 (70.3–89.4) 90.3 (79.7–96.3) 84.5 (75.6–92.5) 67.5 (55.4–78.9) 82.6 (70.4–91.3) 93.4 (88.2–97.5) 87.7 (79.4–94.6) 73.3 (62.8–83.7)

Classifier CART C5.0

Feature set Full Lildholdt only Primary nasal
symptoms only

Olfactory self-rating
scale #2 only Full Lildholdt only Primary nasal

symptoms only
Olfactory self-rating

scale #2 only
Sensitivity, recall 83.3 (66.7–96.7) 86.7 (76.7–100) 76.7 (59.9–93.3) 83.3 (46.7–93.3) 85 (70–96.7) 90 (63.3–100) 76.7 (56.7–96.7) 86.7 (49.9–96.7)

Specificity 83.3 (70–93.3) 83.3 (56.7–93.3) 80 (53.3–96.7) 53.3 (36.7–73.3) 83.3 (66.7–96.7) 80 (53.3–93.3) 76.7 (50–96.7) 53.3 (36.7–73.3)
Positive predictive

value, precision 82.8 (72.4–93.3) 83.9 (69.8–93.1) 79.3 (65.8–95) 63 (55.5–72) 83.3 (72.2–95.7) 80.6 (68.1–92.3) 78.1 (64.1–94.7) 63.4 (55.8–72.2)

Negative predictive
value 83.9 (71.4–95.8) 87.1 (78.8–100) 76.7 (67.5–90.9) 75 (55.6–90.5) 84.6 (73–96) 89.3 (71.8–100) 77.1 (67.5–93.8) 77.8 (56.4–92.9)

F1 83.3 (72.7–90.3) 85.2 (78.7–92.1) 76.9 (67.8–86.2) 71.2 (52.6–80) 83.6 (74.2–91.2) 84.5 (73.5–90) 76.9 (67.9–84.7) 72.9 (54.5–80)
Accuracy 83.3 (73.3–90) 85 (76.7–91.7) 76.7 (68.3–86.7) 66.7 (55–76.7) 83.3 (75–91.7) 83.3 (75–90) 76.7 (68.3–85) 68.3 (56.7–76.7)

ROC-AUC 85 (73.2–93.4) 89 (76.7–96.9) 80 (70–91.6) 68.3 (58.3–77.8) 91.6 (83.2–96.8) 83.3 (75–95.2) 76.7 (68.3–85) 68.3 (58.3–76.7)
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Across all classifiers, when training was performed with permuted features, none of
the classifiers outperformed guessing with a classification accuracy of about 50%. This sug-
gests that overfitting was probably not behind these observations. Moreover, the selected
variables were among those that contributed to the 1st dimension of the FAMD projection
of the data set, in which the test occasions were significantly separable (Figure 3C). Further-
more, the parameters chosen by the machine-learning-based feature selection were those
with the largest effect sizes between the two study occasions (Figure 2), which provides a
further internal validation of the results.

3.3. Changes in Relevant Parameters

Supervised analyses to select parameters that provide relevant information to detect
changes associated with endoscopic paranasal sinus surgery identified three parameters
of successive importance, starting with the first, i.e., the endoscopic Lildholdt score, and
as second- and third-ranked parameters, primary nasal symptoms as a disease-specific
measure of quality of life, and subjectively perceived function of one’s sense of smell. These
parameters were examined to assess if they represented the same information and if they
could serve as subgroup criteria for the outcome of the surgery.

Changes in self-assessment of olfactory function were negatively correlated with
disease-specific quality of life, which is in line with expectations as the parameters are
inversely scaled. Thus, a lower value for primary nasal symptoms indicates a better quality
of life, and olfactory function follows this direction (Figure 5 lower triangle). However,
a value of ρ2 = 0.226 indicates a very weak correlation if any [97], which argues against
the olfactory function simply being redundant to the parameters found in the first two
searches. Furthermore, changes in olfactory function did not correlate with changes in the
Lildholdt score although in the raw values acquired after the surgery, an again very weak
correlation was observed (Figure 5 upper triangle).

Changes in anatomic, quality of life, or olfaction-related parameters identified as
carrying relevant information about the changes associated with the surgery were mostly
in the desired direction of improvement (Figure 6). This was consistently observed in the
Lildholdt score, which improved in 84 patients (93.3%) while remaining unchanged in the
other 6, and in quality of life (primary nasal symptoms), which improved in 86 patients
(95.6%) while worsening in 4. Olfactory function was the least affected, i.e., 62 patients
(68.8%) reported that their sense of smell had improved, while 24 patients had no such
perception and 4 even reported a worsening. For the three main parameters characterizing
changes associated with the surgery, only two patients had no overall positive effect, i.e., the
parameters were unchanged or their changes for better or worse balanced each other, and
changes for worse predominated in two other patients. However, because of this small
number, it was not possible to perform a subgroup analysis to determine the reasons for the
lack of overall improvement following surgery. An attempt to analyze baseline parameters
informative of subjective olfactory function improvement using the same feature selection
approach as above was completely unsuccessful.

After surgery, 59 patients had a normal Lildholdt score, corresponding to a significant
increase in the number of symptom-free patients from baseline in this sign (χ2 = 8.7111, df
(degrees of freedom) = 1, p = 0.003163). Regarding primary nasal symptoms, the number of
symptom-free patients (n = 24 after surgery) did not increase significantly (χ2 = 0.86403,
p = 0.3526). There is no clear cut-off value for subjectively assessed olfactory function;
therefore, symptom freedom was also checked in the TDI sum score of the olfactory
tests. While at baseline this indicated 43 patients with anosmia, 37 with hyposmia, and
10 patients with normal olfactory function, after the surgery these figures changed to 20,
55, and 15 patients, respectively (χ2 = 11.902, p = 0.0005606). Regardless of the category of
olfactory diagnosis, the TDI sum score improved in 66 patients, whereas it decreased in
22 patients. In 15 patients, the increase was ≥ 5.5 points, which should be perceptible [28],
but only in 2 of them this also coincided with normosmia after surgery.
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Figure 5. Correlation scatterplot matrix of the parameters selected as informative for the changes accompanying en-
doscopic nasal sinus surgery. The lower triangle shows the correlation of the differences between baseline and post-
surgery assessments. The upper triangle shows the correlations between raw data acquired after the surgery. The
regression lines (and 95% confidence intervals) are added for visual guidance; however, statistical evaluations consisted
of the calculation of non-parametric Spearman’s correlation coefficients ρ, which are provided in the panels along with
indicators of statistical significance: ***: p < 0.001, **: p < 0.01, *: p < 0.05, .: p < 0.1. The figure has been created
using the R software package (version 4.1 for Linux; https://CRAN.R-project.org/ (16 September 2021) [47]) and the
libraries “ggplot2” (https://cran.r-project.org/package=ggplot2 (accessed on 16 September 2021) [96]) and “GGally”
(https://CRAN.R-project.org/package=GGally (accessed on 16 September 2021) [98]).

https://CRAN.R-project.org/
https://cran.r-project.org/package=ggplot2
https://CRAN.R-project.org/package=GGally
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Figure 6. Subset of d = 6 variables found during the machine learning-based feature selection (Figure 4) to be, out
of d = 37 variables, those carrying relevant information about whether a dataset instance has been acquired before or
after endoscopic nasal sinus surgery. (A–C) Individual data points are shown as dots; please note that they may overlap
for ordinally scaled variables. Individual measurements are connected by straight lines between baseline and postoperative
values, colored blue for changes towards improvement of the respective parameters and colored green if signs or symptoms
worsened after surgery. The points are plotted on violin plots showing the probability density distribution of the variables
and are overlaid with boxplots showing more basic descriptive statistics. The boxes have been constructed using the
minimum, quartiles, median (solid line within the box), and maximum. The whiskers add 1.5 times the interquartile range
(IQR) to the 75th percentile or subtract 1.5 times the IQR from the 25th percentile. (D) Matrix heat plot color-coding the
direction of change in each of the six variables in panels (A–C) from before to after surgery. The signs were adjusted to
indicate improvement (blue) or no improvement (green) across all parameters. Marginal sums are shown as barplots. The
figure has been created using the R software package (version 4.1 for Linux; http://CRAN.R-project.org/ (16 September
2021) [47]), and the R libraries “ggplot2” (https://cran.r-project.org/package=ggplot2 (accessed on 16 September 2021) [96]),
“ggforce” (https://cran.r-project.org/package=ggforce (accessed on 16 September 2021) [99]) and “ComplexHeatmap”
(https://bioconductor.org/packages/release/bioc/html/ComplexHeatmap.html (accessed on 16 September 2021) [100]).

4. Discussion

In this data-driven analysis, criteria were identified that were informative, in clear rank
order, for changes in various clinical signs and symptoms of CRS patients associated with
functional endoscopic sinus surgery. The analyses indicated that changes associated with

http://CRAN.R-project.org/
https://cran.r-project.org/package=ggforce
https://bioconductor.org/packages/release/bioc/html/ComplexHeatmap.html
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this surgery can be summarized quite comprehensively by the Lildholdt score. A simple
trained algorithm can detect with about 90% accuracy whether the score was taken before
or after surgery. Even when a simple decision rule, created from a fraction of the data, is
applied to data that has been completely removed from all analyses until it is only used to
check predictive quality of that rule, 80% accuracy is achieved. However, the Lildholdt
score is an endoscopic measure and may be too technical a piece of information for non-
ENT specialists and unlikely to be appropriate or sufficient to be the only communication
to a patient when discussing the success of surgery. In those cases, more information
is needed, but this information should not repeat the Lildholdt score in other terms but
should convey relevant further important effects of the surgery. Hence, the present complex
feature selection approach that singled out parameters that meet these criteria.

Functional endoscopic nasal sinus surgery was found to influence three main cate-
gories of variables, i.e., endoscopic markers of the nasal cavity, quality of life, and sense of
smell. However, among several available choices in these categories, the present analyses
selected those that contained relevant information not already included in other parameters.
This showed that quality of life did not change broadly and nonspecifically, as the items
of the SF-36 questionnaire appeared to be uninformative, as did the general quality of
life subscores of the SNOT-20 disease-specific questionnaire. In contrast, the subscore
“primary nasal symptoms” of the disease-specific SNOT-20 questionnaire appeared to be
more informative of changes in patients’ quality of life. However, SF-36 scores improved to
a statistical extent after surgery for some items, except for the emotional and psychological
subscores and the subscore indicating general health. This is roughly consistent with
previous observations in CRS patients [101], up to the detail that emotional role function
does not appear to be a particular facet that was improved by nasal sinus surgery, as in the
referenced work a p-value of 0.03 would not have passed α correction (see Table 2 in [101]).

In the analyses, the sense of smell was also selected as a carrier of relevant information
about the effects of surgery, especially its subjectively perceived acuity. Although olfactory
function and quality of life were not completely uncorrelated, a sufficient level of nonredun-
dancy is presumed in the only very weak correlations between the three parameters finally
selected. However, the significant p-values of the correlations at the 0.01 or 0.001 levels
(Figure 5) might suggest a discussion of some degree of interdependence of the selected
parameters in addition to the endoscopic findings. Both other informative parameters
reflect patients’ subjective perceptions rather than clinical test results. Of the two variants
of olfactory function self-assessment, both seemed to provide fairly similar information, as
the vote across the algorithms was 50/50 and only a weighting by classification success
steered the decision toward scale #2. For example, SVM selected scale 1# before scale #2
(Figure 4). In the separate analyses, a combination of both scales provided better assign-
ment of olfactory diagnostic categories [31]; however, this was not an aim in the present
analyses. As separately analyzed in the n = 157 subjects in the present cohort in whom
olfactory function had been assessed at baseline [31], self-ratings mirror olfactory function
assessed with a clinical test; however, the correlation between the two is weak and, if
any, stronger in women than in men. Similarly, the correlation with overall quality of life
is rarely significant when the analyses are separated by olfactory diagnostic categories
and patient gender. Thus, olfactory self-assessment reflects a subjective dimension of the
sense of smell that cannot be attributed to a general better feeling or to measured olfactory
function. This dimension seemed to be most informative for the changes associated with
the present surgery. Nevertheless, the inclusion of olfaction accounts for the observation
that its dysfunction is very common in CRS, with up to 78% [2,3]. In the present data set,
as many as 89% of CRS patients had below-normal olfactory function at baseline, which
decreased only to 83.3% after surgery but the number of subjects with anosmia was more
than halved. Another indication of an importance of the sense of smell as a symptom
in its own was the difference observed twice between the outcome groups of patients,
although, as stated in the results section, this must be viewed with great caution because
of statistical weakness. Nevertheless, better outcome seemed to be associated with better
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sense of smell after surgery. Given the higher information value of subjective ratings, which
were preferred to changes in olfactory acuity measured by a clinical test in the present
feature selection procedure, it should be kept in mind that this subjectivity may involve
a bias depending on patients’ expectations of improvement after surgery. However, the
associated increase in TDI score as a result of a clinical test is reassuring that olfaction
was indeed an important parameter that improved after surgery. As discussed above, the
preference to a particular parameter does not mean that other parameters did not change as
well; they just did not provide relevant information to determine whether a record instance
was acquired before or after surgery in addition to the information already provided by
the selected parameters. On the other hand, clinical tests are not free from biases, such as
variability due to intranasal airflow changes [102].

The present analyses aimed at information reduction, i.e., from d = 37 variables that
were selected because they had previously been shown to change after sinus surgery and
had indeed changed significantly in most cases, and d = 3 variables from three different
categories were selected that should be sufficient to convey the relevant information about
the success of this type of surgery. Thus, the analysis was “greedy,” i.e., it stopped when
the included parameters provided enough information and did not exhaustively include
other significant parameters because the minimal further information gain did not balance
the increasing costs of more complex models. For the clinical setting, this means that if
a minimalist approach is preferred, the Lildholdt score may be sufficient as an outcome
marker of endoscopic nasal polyposis surgery, but if more complex information is desired,
the SNOT-20 questionnaire and the perception of olfactory function should be included.
The latter two emphasize the subjective component of the success of surgery, which may
be important to the patient, rather than endoscopic or olfactory test results, which are
meaningful to experts in the field but remain technical to others. Nevertheless, while the
analysis included d = 37 variables that had been chosen to capture many clinical factettes
of CRS associated with nasal polyposis associated with its surgical treatment. The pre-
dominantly data-driven approach to identifying relevant parameters that characterize the
outcomes of endoscopic nasal surgery in an informative manner was largely unbiased, i.e.,
without a particular focus on specific variables preselected by the surgeon’s expectations.
This contrasts with the ultimately too small sample size, which, although comparable to
previous work [24], proved to be too low to determine parameters present at baseline
before the surgery that might be meaningful to advise a patient for or against endoscopic
surgery. Of note, both the unsupervised and supervised methods applied to analyze the
present data set were designed to allow subgroup analyses.

The present analyses included unsupervised and supervised statistical and machine-
learning methods, with the latter dominating because prior classification of data into those
collected before and those collected after surgery was the main goal of the analysis. An
overview of machine learning in olfactory research has been published elsewhere [103]. As
mentioned in the methods section, unsupervised methods aim at pattern recognition by
detecting structures in the data that could lead to clinically relevant subgroups. They have
been repeatedly applied to olfaction-related data by us [104,105] and others [106].

Their use in the CRS context has been reviewed previously [107], but with a more
limited focus on cluster analysis and with a restriction to hierarchical and non-hierarchical
methods, of which Ward’s clustering method [108] and k-means clustering [109] are proto-
types. More modern methods of cluster detection include emergent self-organizing maps
of artificial neurons [110], hierarchical density-based spatial clustering of applications with
noise (DBSCAN) [111], adaptive density peak clustering [112], and others. In the present
dataset, detection of new structures was not the main focus, but an exploratory analysis
using a combination of the above classical clustering methods according to the workflow
proposed in [69] indicated a relevance of subjectively perceived olfactory function for
subgrouping; however, since this did not lead further than the presently reported results,
it was abandoned. In contrast, the present analyses were dominated by supervised algo-
rithms, i.e., classification algorithms that are trained with a subset of the data, including
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class information, i.e., information about when a record instance was acquired, to learn the
class label assignment from the provided information. The class assignment performance
is monitored during learning, since it is known in the training data set and the algorithms
can thus be corrected during training. The subsequent task for a trained algorithm is then
to apply the learned rules for assigning a class label from given information to new data
that does not have a class label. The latter was only subsequently used to measure the
classification performance reported here. As unsupervised methods, supervised methods
of machine learning have been repeatedly applied to olfaction-related data by us [104,113]
and others [114].

5. Conclusions

The present analyses provided a ranked proposal of criteria against which to evaluate
the consequences of functional endoscopic sinus surgery in CRS patients with nasal polypo-
sis. The criteria capture three different facets of this clinical setting. The most informative
criterion was the Lildholdt score as an endoscopic measure. If the success of surgery is
measured by this criterion alone, complete remission of symptoms can be expected in
65.6% of patients. However, if it is considered that it is not sufficient to tell the patient that
the relevant endoscopic score is now normal, the overall benefit of endoscopic surgery
for nasal polyposis has additional components that have a subjectively perceived impact
on patients’ daily lives. That is, further relevant information comes from responses to a
disease-specific quality of life questionnaire (SNOT-20) and patients’ perceptions of their
own sense of smell. Patients cannot expect a complete return to normal on all relevant
parameters, but may be left with residual symptoms such as impaired quality of life or
lower than normal olfactory function as measured by a clinical test. Overall, endoscopic
sinus surgery resulted in improvement of relevant clinical signs and symptoms in 95% of
patients, while worsening was very rare and occurred in 2% of patients.
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