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Abstract
Glucocorticoids are routinely used in the clinic as anti-inflammatory and immunosuppressive agents as well as
adjuvants during cancer treatment to mitigate the undesirable side effects of chemotherapy. However, recent studies
have indicated that glucocorticoids may negatively impact the efficacy of chemotherapy by promoting tumor cell
survival, heterogeneity, and metastasis. Here, we show that dexamethasone induces upregulation of ROR1 expression
in ovarian cancer (OC), including platinum-resistant OC. Increased ROR1 expression resulted in elevated RhoA, YAP/
TAZ, and BMI-1 levels in a panel of OC cell lines as well as primary ovarian cancer patient-derived cells, underlining the
translational relevance of our studies. Importantly, dexamethasone induced differentiation of OC patient-derived cells
ex vivo according to their molecular subtype and the phenotypic expression of cell differentiation markers. High-
throughput drug testing with 528 emerging and clinical oncology compounds of OC cell lines and patient-derived
cells revealed that dexamethasone treatment increased the sensitivity to several AKT/PI3K targeted kinase inhibitors,
while significantly decreasing the efficacy of chemotherapeutics such as taxanes, as well as anti-apoptotic compounds
such as SMAC mimetics. On the other hand, targeting ROR1 expression increased the efficacy of taxane drugs and
SMAC mimetics, suggesting new combinatorial targeted treatments for patients with OC.

Introduction
Epithelial ovarian cancers (OCs), of which 70–80% are

high-grade serous ovarian cancer (HGSOC), are the
leading causes of gynecological cancer death in developed
countries1. The standard OC treatment based on tumor
debulking followed by platinum and taxane-based che-
motherapy leads to responses in 60–70% of cases2.
However, relapse due to acquired resistance is very
common and the five-year survival of HGSOC cases is less
than 40%3. Another subtype of epithelial OCs is low-grade

serous ovarian cancer (LGSOC), which is characterized by
slow progression as well as resistance to conventional
chemotherapy4. Therefore, a key therapeutic goal in OC
treatment is to optimize chemotherapy efficacy in order to
eliminate residual tumor cells.
Patients with advanced cancer often suffer major com-

plications, such as the brain, spine, and other edemas, or
severe systemic side effects of chemotherapy. These and
other complications are often mitigated with dex-
amethasone (DEX), a synthetic glucocorticoid that acti-
vates the same nuclear glucocorticoid receptor (GR) as
natural stress hormones, such as cortisol and corticos-
terone5,6. However, glucocorticoids have been shown to
directly impact OC tumor development by decreasing the
efficacy of chemotherapy through inhibition of apoptosis,
indicating that DEX could impair the effectiveness of OC
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chemotherapy7,8. Interestingly, recent transcriptomic and
proteomic analysis of breast cancer models showed that
DEX-mediated GR signaling activation promoted metas-
tasis by upregulating the non-canonical Wnt pathway
highlighted by ROR1 (receptor tyrosine kinase-like
orphan receptor) expression while decreasing the effi-
cacy of paclitaxel9. These findings point toward the exis-
tence of a positive feedback loop between GR signaling
activation and upregulation of ROR1 expression in
metastatic breast cancer cells, prompting us to investigate
this signaling loop in OC models.
The ROR family of proteins belongs to the non-

canonical Wnt pathway and is comprised of two recep-
tors, ROR1 and ROR2 that can bind Wnt5a ligand via
their extracellular domain10. In OC, both ROR1 and
ROR2 are important for cell growth, migration, and
invasion11, while high levels of ROR2 correlated with the
development of platinum resistance12. Furthermore,
ROR1-positive OC cells have stemness properties, as
demonstrated by high levels of ALDH1 or cell surface
expression of cancer stem cell (CSC) markers such as
CD133 and CD4413. Indeed, ROR1 expression is also a
marker for the shorter overall survival of OC patients14.
In this study, we demonstrate that DEX treatment

upregulates ROR1 expression in OC models (cell lines
and patient-derived primary cells—PDCs) including
platinum-resistant cells, cultured in 2D or 3D-spheroid
conditions. We found that the DEX-mediated increase of
ROR1 levels correlated with the upregulation of RhoA
GTPase, Hippo signaling effectors YAP/TAZ as well as
BMI-1 expression, resulting in stemness phenotype and
differentiation of OC tumor cells, including platinum-
resistant samples. Furthermore, high-throughput drug
sensitivity and resistance testing (DSRT, 528 compounds)
identified that DEX enhanced the efficacy for targeted
AKT/PI3K kinase inhibitors and decreased the cytotoxic
effect of conventional chemotherapeutics, taxanes, and
SMAC mimetics. On the other hand, shRNA targeting of
ROR1 expression increased the efficacy of SMAC
mimetics and taxanes. Collectively, our data provide new
evidence for the effect of glucocorticoids on OC disease
biology as well as on drug responses. The impact of DEX
on the OC cells drug responsiveness to clinically relevant
drugs could have implications on clinical disease man-
agement. Targeting ROR1 expression may counter this
effect and provide therapeutic advances.

Materials and methods
Reagents
Cisplatin, paclitaxel, NVP-LCL161, birinapant, and AT-

406 were obtained from Selleckchem (Houston, TX,
USA). Doxycycline, verteporfin, and water-soluble form of
dexamethasone were from Sigma-Aldrich (Merck,
Darmstadt, Germany) and recombinant Wnt5a from Bio-

Techne (Minneapolis, MN, USA). Experimental methods
and related details are summarized in Supplementary
Methods.

Results
Wnt5a-ROR pathway is expressed in platinum-resistant OC
models
Platinum resistance is a major problem associated with

OC therapy outcome, therefore we examined cisplatin
sensitivity in five representatives OC cell lines and five
PDCs (three HGSOC and two LGSOC PDCs). Table 1
provides the diagnosis and clinical characteristics of PDCs
used in this study. Two PDCs (HGSOC/FMOC04 and
LGSOC/FMOC02) were established from patients with
chemoresistant, recurrent disease. The PDCs established
from ascites and tumor tissue samples represent clinically
representative models for predicting drug treatment effi-
cacy, as they may recapitulate sensitivity and resistance
patterns and mechanisms in patients15. We observed
various sensitivities for cisplatin in OC cell lines and
PDCs (Fig. 1a, b). Since OVCAR3 cells were more sensi-
tive to cisplatin, we developed a cisplatin-resistant
OVCAR3 variant (OVCAR3cis, Fig. 1c) to uncover
changes in intracellular signaling associated with cisplatin
resistance. Western blot analysis of the non-canonical
Wnt pathway (Fig. 1d, e) revealed increased Wnt5a-ROR2
expression in OVCAR3cis compared to OVCAR3 par-
ental cells. SKOV3, JHOS2, and Kuramochi cell lines that
showed high inherent primary resistance to cisplatin
showed a high expression of ROR1. Hierarchical cluster-
ing showed that based on the expression of Wnt-pathway
genes, the HGSOC PDCs (1, 2, and 3) clustered together
while, likewise, expression values for LGSOC PDCs were
most similar to each other. In addition, across all samples,
Wnt-pathway genes related to non-canonical Wnt sig-
naling and planar cell polarity (PCP) pathways had higher

Table 1 Diagnosis and clinical characteristics of ovarian
cancer PDCs.

Patient ID Histological

subtype

Stage Disease stage Sample type

FMOC04 HGSOC IVA Recurrent

(peritoneal

metastases)

Ascites

FMOC09 HGSOC IIIC Primary Tissue

FMOC11 HGSOC IVA Primary Tissue

FMOC17 LGSOC IVA Primary Tissue

FM0C02 LGSOC IIIC Recurrent

(peritoneal

metastases)

Ascites
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Fig. 1 Analysis of cisplatin sensitivity and the expression of Wnt5a, ROR1, ROR2, and NR3C1 in OC cell lines and PDCs. a, b The sensitivity of
OC cell lines a OVCAR3, JHOS2, SKOV3, Kuramochi, Ovsaho, and patient-derived primary cells (PDCs) b to cisplatin was tested with cell viability assay
after 72 h incubation with various cisplatin concentrations as indicated. The bars represent mean ± SD. c The sensitivity of OVCAR3 and OVCAR3cis to
cisplatin was measured by cell viability assay after 72 h incubation with various concentrations of cisplatin. The bars represent mean ± SD. OVCAR3cis
showed high resistance to cisplatin cytotoxicity. d, e Western blot analysis of Wnt5a, ROR1, ROR2, and NR3C1 expression in OC cell lines (d) and PDC
(e) cell lysates. β-tubulin was used as a loading control. f Hierarchical clustering of expression of KEGG defined Wnt-pathway genes47. Values are
presented as log2 transformed transcripts per kilobase million (TPM) from RNA-Seq from five PDCs; (blue = low; red = high). HGSOC high-grade
serous ovarian cancer, LGSOC low-grade serous ovarian cancer.
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levels of expression than those more associated with
Frizzled binding (Fig. 1f). Furthermore, all HGSOC PDCs
showed high ROR1 levels (Fig. 1e, f), whereas ROR2
expression was detected most strongly in FMOC04
(derived from a chemoresistant patient), corroborating a
previous gene expression analysis showing high expres-
sion of ROR1 in HGSOC samples compared to other OC
subtypes13. Moderate expression of Wnt5a could be seen
in some PDCs, notably FMOC02. All OC cell lines and
PDCs showed a high expression of NR3C1 (GR), indica-
tive of active glucocorticoid signaling.

Glucocorticoids upregulate of Wnt5a-ROR signaling in OC
models
Next, we sought to investigate whether glucocorticoids

could modulate ROR1 expression in OC as recently
demonstrated in breast cancer preclinical models9. We
treated OC cell lines for 72 h with 100 nM DEX, a con-
centration corresponding to plasma levels of DEX when
administered to cancer patients6, followed by western blot
and flow cytometry analysis. Our results show that DEX
treatment enhanced ROR1 expression in JHOS2, Ovsaho,
and Kuramochi cells (Fig. 2a and Supplementary Fig.
S1B). We also observed a DEX-mediated increase in
downstream ROR1 signaling mediators such as RhoA
GTPase, Hippo effectors YAP/TAZ, and polycomb ring-
finger oncogene BMI-1 protein levels, with variation in
every cell line. Both YAP/TAZ and BMI-1 are regulators
of self-renewal, differentiation, and tumor initiation of
CSCs, indicating that glucocorticoids could induce ROR1-
associated stemness phenotype in OC cells10,16,17. More-
over, a marked increase in BMI-1 and pAKT levels were

detected in DEX-treated OVCAR3 cell lysates (Supple-
mentary Fig. S1C), despite the lack of changes in ROR1/
ROR2 levels. DEX-mediated activation of pAKT was
previously observed in some OC cell lines18.
Furthermore, we addressed the effect of glucocorticoids

on the ROR1 level in cultured PDCs ex vivo (Fig. 2b). As
expected, ROR1 and its downstream effectors RhoA,
YAP/TAZ, and BMI-1 levels were enhanced by DEX
treatment in FMOC04, FMOC09, FMOC11, and
FMOC17, whereas a modest increase in DEX-mediated
Wnt5a levels was detected in FMOC17 and FMOC02.
ROR2 levels were also upregulated by DEX treatment in
FMOC04, suggesting that both ROR receptors are sus-
ceptible to DEX-mediated expression modulation in
PDCs. Elevated levels of pAKT were also detected in
DEX-treated FMOC04 and FMOC17 compared to
untreated samples. Interestingly, we observed a modest
increase in Wnt5a and BMI-1 levels following DEX
treatment of FMOC02 lacking ROR1 or ROR2 expression,
but no DEX-mediated changes in YAP/TAZ, RhoA, or
pAKT levels.

Wnt5a-ROR1 signaling directly modulates YAP/TAZ
expression in OC cells
Previous studies have indicated the existence of a

crosstalk between activation of ROR1 and YAP/TAZ
signaling leading to stemness and chemoresistance10,19,
which prompted us to investigate this feedback loop in
DEX-treated OC cells. Stable expression of doxycycline-
inducible shRNA targeting ROR1 in JHOS2 cells effec-
tively downregulated ROR1 levels compared to shRNA
control samples (Fig. 3a) and abolished DEX-mediated
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was used as a loading control. b OC PDCs were cultured ex vivo and untreated or treated with 100 nM DEX for 72 h, followed by western blot analysis
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upregulation of YAP1, RhoA, and BMI-1 levels in cells
lacking ROR1 expression. Downregulation of RhoA, BMI-
1, and YAP/TAZ was also observed upon ROR1 knock-
down in Ovsaho cells (Supplementary Fig. S3C). On the
other hand, GR expression was not affected by ROR1
downregulation, suggesting that other intermediate
pathway(s) could mediate this feedback loop (Fig. 3a).
Moreover, inhibition of YAP/TAZ by verteporfin, a sup-
pressor of YAP/TAZ complex, downregulated ROR1 in
both, untreated and DEX-treated JHOS2 cells (Fig. 3b, c),
suggesting that inhibition of YAP/TAZ negatively mod-
ulates ROR1 levels. Previous data have shown that in
breast cancer cells, Wnt5a stimulation of ROR1 signaling
could increase YAP/TAZ expression and nuclear locali-
zation, and this effect was ROR1-dependent19. Immuno-
fluorescence (Fig. 3d) and western blot (Fig. 3e, f) analysis

of JHOS2 cells treated with exogenous Wnt5a showed
enhanced expression and nuclear localization of YAP1
and that this effect was ROR1-dependent, suggesting that
activation of Wnt5a-ROR1 signaling directly induces
YAP/TAZ upregulation in OC cells.

Glucocorticoids modulate Wnt5a-ROR1 expression and cell
differentiation in OC spheroids
OC is known to disseminate via a direct extension of

cancer cells across the peritoneal space as aggregated
spheroids shedding from the primary tumor, contributing
to disease progression via intraperitoneal metastatic
spread20. Modulation of cadherins’ expression could
influence OC progression via the development of perito-
neal metastasis and the presence of residual tumor cells21.
To mimic the growth of OC in vivo, we cultured cells in
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low-attachment conditions, to favor the spheroid forma-
tion and assessed the molecular consequences of GR
activation by monitoring changes in Wnt5a-ROR1 sig-
naling, cadherins, and cadherin-associated differentiation
markers, and spheroid morphology. DEX-treated
OVCAR3/OVCAR3cis cells grown in spheroid condi-
tions displayed a marked increase in Wnt5a-ROR1/ROR2
expression, along with downstream YAP/TAZ, BMI-1,
pAKT, and aldehyde dehydrogenase (ALDH1A1) levels,
as shown by western blot analysis (Fig. 4a). Notably, while
we did not observe a DEX-mediated increase in ROR1
expression in OVCAR3/OVCAR3cis cells grown in tra-
ditional cell culture (Supplementary Fig. S1C), we could
detect ROR1 expression as well as an increase in
ALDH1A1 expression in DEX-treated OVCAR3/
OVCAR3cis spheroids (Fig. 4a), a strong indication of
stemness phenotype in these cells. Moreover, photo-
micrographs showed that glucocorticoid treatment clearly
impaired spheroid formation especially in OVCAR3cis
cells (Fig. 4b), although cell viability was not affected
(Supplementary Fig. S2). Western blot analysis showed
that both OVCAR3/OVCAR3cis cells were positive for E-
cadherin and ZO-1 (zonula occludens protein-1) expres-
sion (Supplementary Fig. S3A), corresponding to an
epithelial-like phenotype as both proteins are involved in
epithelial cell polarity22. We found that DEX-treated
OVCAR3/OVCAR3cis spheroids showed a marked
increase in ZO-1 expression compared to untreated
samples (Fig. 4c), which corresponded to a loss of
spheroid formation and suggests a more epithelial-like
phenotype.
Next, we investigated spheroid formation in

glucocorticoid-treated PDCs. Molecular profiling of dif-
ferentiation markers by gene expression (Fig. 4d) and
western blot (Supplementary Fig. S3B) analysis identified
that FMOC09 has high expression of N-cadherin,
homeobox gene SOX11 and vimentin and low kallikreins
levels, corresponding to a mesenchymal-like or de-
differentiated phenotype23,24, while other PDCs have
high E-cadherin but low N-cadherin expression, indicative
of an epithelial-like phenotype. Claudin expression was
detected strongly in FMOC04 and FMOC11 (Supple-
mentary Fig. S3B). Furthermore, DEX treatment of
FMOC04, FMOC09, and FMOC17 grown in spheroid
condition resulted in the anticipated upregulation of
ROR1/ROR2 and its downstream RhoA, YAP/TAZ, BMI-
1, and pAKT levels (Fig. 4e), recapitulating our finding
from traditional culture conditions in Fig. 2b. DEX
treatment also resulted in the upregulation of ALDH1A1
levels in PDCs spheroids, suggesting the development of
the stemness phenotype in these cells. A microscopic
assessment revealed that DEX-treated FMOC04 formed
large spheroid-like single cells (Fig. 4f) characterized by
decreased E-cadherin and claudin, but increased vimentin

expression compared to untreated sample (Fig. 4g, h),
indicative of a DEX-mediated mesenchymal differentia-
tion. DEX-treated FMOC09 spheroids were morphologi-
cally identical to control (untreated), although western
blot analysis showed decreased N-cadherin and increased
vimentin levels while ZO-1 levels remained unchanged,
suggesting an intermediate mesenchymal phenotype.
However, DEX-treated FMOC17 spheroids were smaller
compared to control samples and we detected elevated
ZO-1 levels and a moderate decrease in vimentin, indi-
cative of an epithelial phenotype.

DEX augmented drug responses to targeted kinase
inhibitors while impairing drug efficacy for chemotherapy
and SMAC mimetics
Several studies have shown that glucocorticoids pro-

mote tumor cell survival while inhibiting chemotherapy
drug responses, however, these studies were done only for
a few drugs6. Therefore, we assessed the global changes in
drug responses mediated by DEX treatment in OC by
monitoring drug-sensitivity responses using a DSRT
screen25 for a panel of 528 small molecule inhibitors (each
drug in five concentrations), including established and
emerging targeted cancer drugs. To obtain DEX-selective
drug sensitivities, DSRT was carried out in the presence
or absence of DEX treatment (100 nM) for 3 days fol-
lowed by a comparison of drug-sensitivity scores (DSSs).
We performed DSRT using four OC cell lines (JHOS2,

Kuramochi, OVCAR3, and OVCAR3cis) and three PDCs
(FMOC04, FMOC09 and FMOC11) followed by unsu-
pervised hierarchical clustering of ΔDSSs (DSSDEX−
DSSCtr for each drug). Altogether, OVCAR3, OVCAR3cis,
JHOS2, and FMOC04 showed higher differences in drug
responses in the presence of DEX treatment compared to
less-responsive Kuramochi cell line and FMOC09 and
FMOC11 (Fig. 5a–d and Supplementary Fig. S4). We
observed a significant increase in the efficacy of several
kinase inhibitors (Fig. 5b and Supplementary Fig. S5) in
the presence of DEX treatment, notably PI3K inhibitors
(pictilisib, copanlisib, taselisib, omipalisib, among others),
AKT inhibitors (ipatasertib, AZD-5363) and HER/EGFR
inhibitors (poziotinib, canertinib, dacomitinib, gefitinib,
tesevatinib, erlotinib, among others) in OVCAR3/
OVCAR3cis and JHOS2 cell lines, whereas enhanced
DEX-mediated drug responses for ipatasertib, dacomiti-
nib, poziotinib, and ravoxertinib were observed in
FMOC04. Loss of drug efficacy was noted for AT7519,
danusertib, GSK-461364, PF-03758309, BI2536, pre-
xasertib, AZD6738, and alisertib in DEX-treated
OVCAR3cis and chemoresistant FMOC04 (Fig. 5b), sug-
gesting common DEX-mediated drug changes in che-
moresistant OC models. On the other hand, several
chemotherapeutic drugs (Fig. 5c and Supplementary Fig.
S5) such as paclitaxel, docetaxel, and gemcitabine lost
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their efficacy after DEX treatment in OVCAR3,
OVCAR3cis, FMOC04, and Kuramochi corroborating
with the previous observation6. Interestingly, we observed
a DEX-mediated decrease of drug efficacy for apoptotic
SMAC mimetics AT-406, birinapant as well as NVP-
LCL161 in DEX-treated OVCAR3, OVCAR3cis, Kur-
amochi, JHOS2, FMOC04, and FMOC11 cells (Fig. 5d
and Supplementary Fig. S4), suggesting that modulation
of apoptotic drug responses could be one mechanism
responsible for DEX-mediated drug resistance in OC
preclinical models. Interestingly, the mesenchymal or de-
differentiated FMOC09 showed a DEX-mediated increase
in drug efficacy for RSL3, a ferroptotic inducer, and
BRD7116, an inhibitor of leukemic stem cells (Supple-
mentary Fig. S4), suggesting new patient-specific action-
able drugs for DEX-treated OC.

ROR1 targeting increases the efficacy of SMAC mimetics
and taxanes drugs in OC
Since glucocorticoid treatment upregulated ROR1 levels

in OC samples, next we investigated changes in drug
responses associated with ROR1 targeting in JHOS2 and
Ovsaho cells. Analysis of DSSs before and after shRNA
ROR1 targeting revealed several drugs that showed
enhanced efficacy after doxycycline-induced shRNA
ROR1 knockdown (Fig. 6a–d) such as Bcl-xL inhibitor A-
1155463, taxane agents (paclitaxel, cabazitaxel), integrin
alpha 2 antagonist E7820 as well as anti-apoptotic SMAC
mimetics AT-406, birinapant and NVP-LCL161, with
DSSs variation for each cell line. Interestingly, AT-406,
birinapant, and NVP-LCL161 showed decreased efficacy
in DEX-treated JHOS2 in which ROR1 appears to be
upregulated (Fig. 2a), indicating that modulation of ROR1
expression could influence the efficacy of SMAC mimetics
in OC.

Discussion
Adjuvant glucocorticoids are widely used in OC clinical

treatment to combat the side effects of chemotherapy and
to treat symptoms related to advanced cancer. However,
numerous studies have indicated that activation of GR
signaling via glucocorticoids may spare tumor cells from
undergoing apoptosis while impairing the efficacy of
chemotherapy6. A recent study provided a mechanism by
which glucocorticoids may induce metastatic breast can-
cer and demonstrated that synthetic glucocorticoids such
as DEX increased the expression of ROR1, resulting in
enhanced metastasis and decreased survival in preclinical
models9. Previous studies have linked the activation of
ROR1 signaling to tumorigenesis, stemness, and drug
resistance in OC, and high ROR1 expression was asso-
ciated with worse OC prognosis13.
Here, we tested the effect of the glucocorticoid DEX on

ROR1 signaling activation and analyzed the global

changes in drug responses in OC preclinical models,
including platinum-resistant cells. We developed
cisplatin-resistant OVCAR3 cells and observed the upre-
gulation of Wnt5a-ROR2 in OVCAR3cis, consistent with
our previous results showing that Wnt5a-ROR2 expres-
sion is linked to cisplatin resistance development in OC
models12. Furthermore, we observed a significant increase
in ROR1 protein expression following DEX treatment in
OC cells, and this correlated with the upregulation of
ROR1 downstream signaling such as RhoA, YAP/TAZ,
and BMI-1 levels. DEX-mediated upregulation of ROR1
and its downstream signaling was observed in both con-
ventional cell culture as well as in spheroids. Interestingly,
in OC cells cultured in spheroid conditions (both cell lines
and PDCs) we detected an increase in ALDH1A1 levels
following DEX treatment, strongly suggesting the devel-
opment of stemness phenotype mediated by this synthetic
glucocorticoid. Our results are in corroboration with
previous findings showing that modulation of ALDH1A1
expression is more easily detected in spheroid cultures26.
ROR1-dependent upregulation of RhoA, YAP/TAZ, and
BMI-1 was demonstrated by inducible shRNA targeting
ROR1 expression in JHOS2 cells, which abrogated DEX-
mediated increase in RhoA, YAP/TAZ, and BMI-1
expression (Fig. 3a). Moreover, pharmacological inhibi-
tion of YAP/TAZ by verteporfin downregulated ROR1
levels, indicating the existence of a feedback regulatory
loop linking YAP/TAZ and ROR1 signaling. Ultimately,
Wnt5a-mediated upregulation and nuclear localization of
YAP1 was observed in JHOS2 cells, and this effect was
ROR1-dependent. Conclusively, our results show that
DEX treatment elevated ROR1 expression, which in turn
enhanced RhoA, YAP/TAZ, and BMI-1 levels in OC
tumor cells and is indicative of a DEX-mediated stemness
phenotype via ROR1 signaling. Interestingly, ROR1
downregulation did not affect GR expression, suggesting
an indirect modulation between GR signaling activation
and ROR1 expression.
The expression of E-cadherin and its associated differ-

entiation markers has relevant biological significance for
OC disease outcome27. Low E-cadherin levels were asso-
ciated with advanced OC stages and the development of
peritoneal metastasis21. Moreover, decreased E-cadherin
expression was detected in ascites spheroids compared to
matched solid tumors28,29 while another study associated
decreased E-cadherin but increased N-cadherin expres-
sion with a mesenchymal, or de-differentiated, a subtype
of HGSOC that is linked with shorter OS compared to
other subgroups23. In our PDCs collection, we also
identified that FMOC09 exhibited a mesenchymal or de-
differentiated gene expression signature compared to
other PDCs. Moreover, our results showed that DEX
could modulate the expression of cadherins and the dif-
ferentiation mechanism in OC spheroids, although the
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spectrum of DEX-mediated differentiation outcomes
observed here suggests variations in underlying molecular
mechanisms, which reflects the complexity of OC sub-
types and their gene signature. Nonetheless, our data
clearly indicate that glucocorticoids alter the level of dif-
ferentiation markers in spheroid models and could
therefore influence OC disease progression, denoting
clinical significance.
We tested the effect of glucocorticoids on 528 oncology

drug responses to identify DEX-modulated synergistic or
antagonistic effects with translational relevance for OC
treatment. As expected, DEX treatment decreased the
efficacy of several chemotherapy drugs, most significantly
taxanes (paclitaxel, cabazitaxel, and docetaxel) and alka-
loid microtubule depolymerizers (vinorelbine, vinblastine,
and vincristine). Loss of chemotherapy drugs efficacy in
glucocorticoid-treated OC samples corroborated with
previous observations, since DEX has been shown to exert
a cytoprotective effect when used in combination with
standard chemotherapy and to contribute to chemother-
apeutic resistance30,31. Interestingly, we observed a

significant loss of efficacy for SMAC mimetics and IAP
antagonists AT-406, birinapant, and NVP-LCL161 in all
DEX-treated OC cell lines and FMOC4. AT-406 is a
potent monovalent SMAC mimetic that induces rapid
degradation of cIAP1 protein and inhibits cancer tumor
growth32. Birinapant is a bivalent SMAC mimetic that
preferentially targets TRAF2-associated cIAP1 and cIAP2
to inhibit TNF-induced NF-κB activation, and has been
shown to have antitumor activity in ovarian and colorectal
cancers33. NVP-LCL161 is a first-in-class oral SMAC
mimetic that induces degradation of cIAP1 and has
demonstrated single-agent activity in human tumor
xenograft models, with basal production of TNF-α and
NF-κB inhibition as a common mechanism34,35. It is
currently unknown how glucocorticoids could decrease
the efficacy of SMAC mimetics in OC, although several
possible mechanisms could be involved. Modulation of
NF-κB activation is one plausible mechanism and pre-
vious reports have indicated that glucocorticoids could
inhibit NF-κB either indirectly through enhanced tran-
scription of IκBα or directly via competition between
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coactivator proteins p65 and GR36–39. Accordingly, we
detected a DEX-dependent upregulation of IκBα in DEX-
treated OVCAR3/OVCAR3cis and FMOC04 cell lysates
(Fig. S6).
A small phase II clinical trial with birinapant mono-

therapy for chemoresistant OC patients did not yield
significant results40, suggesting that combinatorial treat-
ments should be considered. SMAC mimetics were shown
to work in synergistic lethality with other drugs such as
chemotherapy drugs in solid tumors (paclitaxel, carbo-
platin, cisplatin, daunorubicin, among others) or with
targeted therapies such as TRAIL receptor agonists, epi-
genetic drugs, or immunotherapies41. We detected a
strong synergistic lethality between ROR1 targeting and
SMAC mimetics AT-406 (in JHOS2 and Ovsaho cells),
birinapant, and NVP-LCL161 (in JHOS2 cells), and this
combination could be considered for the development of
new treatment strategies in chemoresistant OC. ROR1
monoclonal antibody cirmtuzumab is currently in phase
I-II clinical trials (NCT02776917) for chemoresistant
breast cancer in combination with paclitaxel19. Interest-
ingly, we detected the same synergistic effect in JHOS2
and Ovsaho cells with ROR1 targeting and paclitaxel,
strongly suggesting that this combinatorial treatment
should be tried in OC clinical settings.
On the other hand, increased sensitivities were observed

for multiple kinase inhibitors in DEX-treated OC cell
lines, as well as for AKT inhibitor ipatasertib and ERK
inhibitor ravoxertinib in FMOC04. Ipatasertib sensitivity
corroborated our western blot results (Fig. 2b), showing
enhanced DEX-mediated AKT phosphorylation in
FMOC04. Also, specific DEX-mediated enhanced drug
responses for RSL3, a ferroptotic inducer, and BRD7116,
an inhibitor of leukemic stem cells were detected in
FMOC09, indicative of patient-specific drug responses
that could be detected using our ex vivo DSRT platform.
Taken together, our DRST screens have identified pre-
viously unknown glucocorticoid-mediated drug responses
in OC cells, such as DEX-mediated loss of efficacy for
SMAC mimetics, which could be reversed by targeting
ROR1 expression.
GR is a nuclear hormone receptor activated by endo-

genous cortisol and synthetic glucocorticoids42. Several
lines of evidence have involved GR signaling activation in
tumorigenesis and cancer progression. For instance, high
GR expression that correlates with increased GR activity
was associated with a significant decrease in median
progression-free survival (PFS) of OC patients43. Physio-
logical stress-mediated activation of GR signaling has also
been shown to associate with poor patient outcome.
Higher levels of stress hormones were found in breast
cancer patients with metastatic disease than in age-matched
healthy women or patients without metastases44 and in
other studies, abnormal cortisol rhythms corresponded to

shorter survival for patients with advanced breast or
OC45,46. Our study describes a new molecular mechanism
for how GR signaling activation negatively impacts OC
disease outcome by promoting ROR1-stemness, differ-
entiation, and drug resistance, highlighting an important
therapeutic role for ROR1 in OC.
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