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Abstract

Accumulating evidence shows a tight link between inflammation and cancer. However, comprehensive identification of
pivotal transcription factors (i.e., core TFs) mediating the dysregulated links remains challenging, mainly due to a lack of
samples that can effectively reflect the connections between inflammation and tumorigenesis. Here, we constructed a series
of TF-mediated regulatory networks from a large compendium of expression profiling of normal colonic tissues,
inflammatory bowel diseases (IBDs) and colorectal cancer (CRC), which contains 1201 samples in total, and then proposed a
network-based approach to characterize potential links bridging inflammation and cancer. For this purpose, we computed
significantly dysregulated relationships between inflammation and their linked cancer networks, and then 24 core TFs with
their dysregulated genes were identified. Collectively, our approach provides us with quite important insight into
inflammation-associated tumorigenesis in colorectal cancer, which could also be applied to identify functionally
dysregulated relationships mediating the links between other different disease phenotypes.
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Introduction

The close link between inflammation and cancer in the intestine

has been appreciated for centuries based on clinical observations

[1,2]. Inflammatory bowel diseases (IBDs), which include ulcer-

ative colitis (UC) and Crohn’s disease (CD), predispose patients to

the development of colorectal cancer (CRC) [3], which is one of

the most common and fatal cancers worldwide. Although, the

‘adenoma-carcinoma’ sequence has been long of central impor-

tance to studies on CRC, a shift in the focus to the sequence of

‘inflammation-dysplasia-carcinoma’ has been observed [4]. One

possible explanation [5,6] could be that inflammation, which

expedites the acquisition of cancer hallmarks underlying the

injured colonic tissues, could promote tumorigenic progression.

However, interpretation of the tight links bridging inflammation

and cancer in the intestine remains challenging.

High-throughput technologies have greatly promoted the

production of vast amounts of multiple-layer biological data, for

example gene expression microarray [7,8]; these data have be

extensively used to characterize the molecular differences between

normal and malignant cells [9,10], or molecular associations

between distinct disease phenotypes [11], for example inflamma-

tion and cancer. These expression-based studies successfully

identified individual genes involved in phenotypic characteriza-

tion, whereas it is still difficult to infer any details of relationships

between these molecules underlying oncogenesis. Therefore, it is

reasonable to identify relationships altered or dysregulated at a

pathway or network level.

Much of a cell’s response to the internal or external stimuli is

governed by a global regulatory network mostly at the transcrip-

tional level [12]. As one of the major regulators in mammal

cellular context, transcription factors (TFs) significantly contribute

to several pathological processes. Greten et al. [13] showed that

the specified component of transcription factor NF-kB linked

inflammation and tumorigenesis in UC-related CRC, using a

knockout mouse model. A recent work [14] implicated transcrip-

tion factor STAT3 in cell survival and cell-cycle progression of

colitis-associated tumorigenesis. However, no systematic studies of

TFs involved in the link in the intestine have been reported.

Translating genome-wide expression data into network knowledge

is essential for further large-scale analysis, which requires

computational tools, such as coexpression or information-theoretic

associated approaches [15]. Most recently, gene networks are

typically constructed from gene expression data through compu-

tational analysis. The first large-scale analysis of microarray
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coexpression aimed to increase the inference stability of gene

functions [16]. Subsequently, Choi et al. [17] compared a tumor

and normal coexpression network constructed from 13 distinct

cancer phenotypes, and then identified differential coexpression

relationships with functional alterations. In addition to studies on

these altered relationships, associated pathways or subnetworks are

also identified via integrated network-based approaches. In the

case of glioblastoma (GBM), Cerami et al. [18] confirmed that

functional GBM alterations tend to occur within specific modules,

and therefore they tried to identify GBM-related core pathways

using automated network analysis. Simultaneously, functional sub-

networks in colorectal cancer were recognized by Nibbe et al. [19]

using random walk algorithm. Undoubtedly, these methods are

useful in identifying associated molecular mechanisms underlying

individual disease. However, studies on disease phenotype in

response to molecular perturbations [20] or on molecular

associations between distinct disease phenotypes are still in their

early stage. Abdollahi et al. [21] demonstrated that the switch

Figure 1. Workflow applied to identify core TFs. The procedure is mainly divided into four steps: 1) reconstruction of IC-specific regulatory
networks from a large compendium of microarray data; 2) clustering of IC-specific regulatory networks using network TOM, followed by network
perturbations; 3) construction of a dysregulated network with edges dysregulated between inflammation and their linked cancer network based on
network comparisons; 4) identification of core TFs via dysregulated pattern analysis. TF, transcription factor; Ig, inflammation gene; Cg, colorectal
cancer gene; MI, mutual information.
doi:10.1371/journal.pone.0083495.g001
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from angiogenic balance to a pro-angiogenic phenotype is

governed by global transcriptional circuitries in pancreatic cancer

in response to key endogenous proteins, based on a regulatory

network. Another study on distinct stages of hepatocarcinoma

completed by He et al. [22] identified potential molecular

processes by applying a network approach in combination with

transcriptional regulation.

In this work, we adopt an integrated computational approach

(Figure 1; see also Figure S1 for a flow chart of the computational

steps) to reconstruct regulatory networks of normal, IBDs and

CRC from a large compendium of gene expression profiling with

distinct expression patterns of inflammation and cancer genes

(referred to as IC-specific networks), using a reverse-engineering

algorithm. A network-based clustering is then applied to charac-

terize a potential clue linking IBDs and associated CRC networks,

which assists us to distinguish inflammatory networks with

tumorigenic potentials. Through network comparison analysis,

dysregulated relationships are computed with significant gain or

loss of mutual information between inflammation and cancer

network, and then a dysregulated network is constructed. Based on

dysregulated pattern analysis, we finally identify 24 pivotal TFs

(i.e., core TFs), together with their dysregulated genes, as

interesting candidates for biologists; this will surely extend and

complement the current knowledge of inflammation-related

tumorigenesis in colorectal cancer.

Materials and Methods

Data Sources
We collected 13 IBDs and CRC-related gene expression data

sets from Gene Expression Omnibus (GEO) (Table S1). Their

corresponding processed series matrix files were used as data input

to re-construct gene interaction networks. Background correction

and data normalization of each expression data set were already

performed, separately. Probe sets mapped to none or multiple

human Gene IDs were removed. Expression values were log2

transformed. For each data set, we extracted samples in conditions

of UC, CD, CRC, and normal, which resulted in 22 expression

data sets.

We obtained 231 inflammation-related genes from the Gene

Ontology categories ‘‘inflammatory response’’ (GO:0006954) and

‘‘regulation of inflammatory response’’ (GO:0050727), which were

then referred to as the inflammation gene set. The colorectal

cancer gene set (cancer gene set), which included 196 genes, was

manually generated from the Online Mendelian Inheritance in

Man database (OMIM) by searching different key words

(‘‘colorectal cancer’’ OR ‘‘colorectal carcinoma’’ OR ‘‘colorectal

neoplasm’’). These two gene sets are then referred as IC gene sets.

Besides, a TF set referring to 344 unique TFs was downloaded

from TRANSFACH Professional 11.4.

Reconstructing IC-specific Regulatory Networks
First, the K-means clustering algorithm [23] was applied to IBD

and CRC-related expression data sets based on the expression

patterns of genes in both inflammation and cancer gene sets,

identifying expression-homogeneous sample groups that were then

referred to as IC-specific data sets. For each of the UC, CD, and

CRC related data sets with more than 100 samples, we grouped

samples into four clusters using K-means clustering. Those with

less than 100 samples were grouped into two clusters. The sub-

divided expression profiling or IC-specific expression data sets,

including normal data sets not subjected to clustering treatment,

were generated. Then, those with less than 20 samples were

excluded from further study, in consideration of the precision of

the approach used for the construction of regulatory networks

[24]. The data sets not excluded were used for the reconstruction

of IC-specific regulatory networks.

ARACNe (Algorithm for the Reconstruction of Accurate

Cellular Networks) [25], which is based on an information-

theoretic approach and data processing inequality (DPI) control,

provides a way to infer regulatory networks directly from gene

expression data. Interactions between TFs and genes were

identified by computing mutual information (MI) estimated by

the Gaussian kernel method with a specified p-value cutoff, which

were then pruned by DPI analysis based on a tolerance parameter.

Based on the TF set derived from TRANSFAC, we used the

ARACNe program to reconstruct one regulatory network between

TFs and all genes detected by the microarray screening from each

IC-specific expression data set independently, with a p-value cutoff

of 0.001 and a stringent cutoff on DPI tolerance of 0%. Then we

extracted IC and TF genes from the constructed regulatory

network, which are termed as IC-specific regulatory network.

Clustering of IC-specific Regulatory Networks
A modified version of topological overlap measure (TOM)

[26,27] named network TOM was proposed to compute the

similarity of regulatory properties for all common TFs between

each two regulatory networks, when performing clustering of IC-

specific networks. Given two regulatory networks, let Ai and Bi be

the number of neighbors of common TFi in networkA and

networkB, respectively. The number of common neighbors of TFi

was represented by Cii, and then we could define the TOMii for

any common TFi as below:

TOMii ~
Cii

minfAi,Big
:

Finally, TOMii was summed into network TOM between the

two networks and then divided by the maximum network TOM

for all possible pairwise networks, which was then used as the

measure of similarity between the two networks.

Next, network permutations were applied to those IC-specific

networks and then new clustering results were generated via

repeatedly removing one network out for all the networks used for

network clustering and then two networks out, using the same

similarity measure.

Computing Dysregulated Relationships
We define a regulatory relationship between TFi and genej to

be dysregulated between inflammation and cancer network, if and

only if the MI difference of the relationship between IBD and

CRC networks is statistically significant in comparison with

random distribution.

Given a pair of IBD and CRC networks, we combined those

adjacent neighbors of each common TFi in the individual network

and then computed the MI difference for each relationship of all

common TFs. The MI difference between TFi and genej was

computed as below:

DMIij~MIij½CRC�{MIij½IBDs�;

whereMIij½CRC� and MIij½IBDs� represent MI between TFi and

genej in the CRC and IBD networks, respectively. All MI values

were computed from the ARACNe program. Finally, we

generated all MI differences for all relationships of all common

TFs between the two networks. To identify dysregulated

Core TFs Bridging IBDs to Associated CRC
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Figure 2. Network topological parameters of IC-specific regulatory networks. The respective numbers of TFs, inflammation and cancer
genes are listed in the first three columns. Network diameter, network density, mean node closeness (only TFs), mean node shortest paths (only TFs),
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relationships, permutation tests were done 100 times for both IBD

and CRC expression data sets, resulting in 100 pairs of random

networks computed from the corresponding pair of random data

sets. We repeatedly computed the MI difference for each

relationship using each pair of random IBD and CRC networks

obtained above and then merged all MI differences into a random

distribution. A false discovery rate (FDR) p-value ,0.05 was used

as significance cutoff. Those dysregulated relationships were

visualized using Cytoscape software [28]. The largest connected

component was extracted for further analysis.

Identifying Core Transcription Factors
A TF is defined to be a pivotal regulator in the dysregulated

network constructed out of dysregulated relationships between

IBD and CRC networks, based on the degree distribution of the

TF and the composition ratios of its directly connected inflam-

mation and cancer genes. As for the composition ratios of each

TF, we computed the ratio of the number of adjacent

inflammation genes to its degree, and the ratio of the number of

adjacent cancer genes to its degree.

Results

Reconstruction of IC-specific Normal, IBD, and CRC
Regulatory Networks
We collected twelve gene expression data sets from the GEO

database (Table S1). Out of these data, we extracted 22 sets of

normal, UC, CD, and CRC expression data (normal: 7; UC: 6;

CD: 3; CRC: 6) referring to 1201 samples in total. Firstly, to

generate relatively homogeneous samples, we applied a K-means

clustering algorithm to the 22 expression data sets based on the

distinct expression patterns of 196 cancer and 231 inflammation

and mean betweenness of nodes (only TFs) and edges (all edges) are also included in the following six columns. For the first nine columns, each is
accompanied with a histogram outside the first row, with the height of each bar indicating the number in each cell of the corresponding column. The
degree distribution of only TFs in each network is provided as histograms in the last column. The three black down-arrows in each histogram classify
all bars into four groups, representing cancer, CD, normal, and UC networks, respectively. InGene, inflammation gene; CaGene, cancer gene; #,
number; NodeCn, node closeness; NodeSp, node shortest paths; NodeBt, node betweenness; EdgeBt, edge betweenness.
doi:10.1371/journal.pone.0083495.g002

Figure 3. Clustering of IC-specific regulatory networks. Network TOM was used as the similarity measure of hierarchical clustering. Three
representative branches are marked by different color shadow. Ca, cancer network; UC and CD, inflammation networks; Normal, normal network;
Ca.GSE25070_24.network, the cancer network inferred from the GSE25070 data set with 24 samples after subjecting to K-means clustering algorithm.
doi:10.1371/journal.pone.0083495.g003

Core TFs Bridging IBDs to Associated CRC

PLOS ONE | www.plosone.org 5 December 2013 | Volume 8 | Issue 12 | e83495



genes. This resulted in 14 UC, 6 CD, and 16 CRC subsets, which

are referred to as IC-specific. The other 7 normal data sets, which

were not subjected to K-means clustering analysis, are believed

homogenous and also included for further analysis. Finally,

twenty-one IC-specific expression data sets were retained,

including 5 UC, 2 CD, 11 CRC, and 3 normal, with at least 20

samples for each.

Then, we reconstructed 21 IC-specific regulatory networks from

the corresponding IC-specific expression data sets using the

ARACNe program with a P-value and a DPI tolerance as

described in Materials and Methods. ARACNe, as a reverse-

engineering algorithm, is widely used to reconstruct gene

interaction networks in mammalian cellular context. As compar-

ing with other algorithms in the same family, ARACNe algorithm

Figure 4. Frequently recurred ICBranch in network perturbation. We removed one network out and then generated new clustering,
repeatedly, to examine whether those branches generated using all networks recurred or not. (Names of the removed networks are listed in the first
column. The number 1 in each cell from column two to six means recurring, while the number 0 means not.). Branches classified as CaBranch1,
CaBranch2, InBranch, NorBranch, ICBranch and NewBranch are manually extracted from the hierarchical clustering using all networks. CaBranch1,
contains exactly the two networks of Ca.GSE25070_24.network and Ca.GSE3629_67.network. CaBranch2, contains cancer networks clustered closely
with each other. InBranch, includes inflammation networks. NorBranch, contains exactly the two normal networks of Normal.GSE11223_63.network
and Normal.GSE20881_67.network. ICBranch, contains exactly the four networks of UC.GSE3629_22.network, UC.GSE3629_31.network,
Ca.GSE13294_42.network and Normal.GSE8671_32.network. NewBranch was shown in the right side, only and only if the ICBranch was missing.
The UC networks in ICBranch are underlined by red line in NewBranch.
doi:10.1371/journal.pone.0083495.g004

Core TFs Bridging IBDs to Associated CRC
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is deemed good in performance when dealing with steady-state

data (not time-series) and is still outstanding when few experiments

are available, as compared with the number of genes [29,30,31].

The inferred networks contained TFs and all their potentially

connected genes. To further explore those underlying pivotal

factors mediating the dysregulated links, TFs and their directly

connected IC genes were extracted, and then the maximal

connected component for each IC-specific network was used for

the following analysis (Figure S2).

Figure 2 lists the network topological parameters of 21 IC-

specific networks, including network diameter, network density,

mean node closeness, mean node shortest paths, betweenness, and

degree. Network constitutions, i.e. the number of TF, inflamma-

tion genes and cancer genes corresponding to each network are

also provided. We observe that the nodes are constituted similarly

among networks. The number of TFs, inflammation or cancer

genes in each network shows small alterations, ranging from 288 to

339, 212 to 225, and 170 to 174, respectively. Moreover, the

respective numbers of node constitutions for common TFs,

inflammation or cancer genes between each two IC-specific

networks are also parallel with each other (details in Figure S3).

However, certain topological parameters show obvious discor-

dances among normal, inflammation or cancer regulatory

networks. For example, mean node (only TFs) and edge (all edges)

betweenness show great differences with each other even among

cancer network themselves. While mean node (only TFs) closeness

and shortest paths show moderate differences when inflammation

and cancer networks are compared.

A Potential Clue Linking IBDs and Associated CRC
Network TOM is used to assess the regulatory similarity of

common TFs between each two different networks. We then used

the network similarity measure to cluster 21 IC-specific regulatory

networks. As indicated by the clustering result, normal, inflam-

mation or cancer networks generally have the maximum similarity

within their respective categories, such as the branch of eight

tightly clustered cancer networks shown in Figure 3 (left of the red

dashed line). Exactly, the nearby branch of five inflammation

(including CD and UC), and two normal networks are also tightly

clustered respectively. Those networks expected to generate the

Figure 5. Core network constructed out of core TFs. The sub-network is constructed from 24 core TFs and their dysregulated IC genes. Several
interactions have been confirmed by other researches. For example, the interactions between NFATC1 and IL6, and STAT3 and AKT1, which have
been confirmed by biological experiments, are illustrated by the two inserted dashed rectangle and offered with detailed information on how it
works. Core TFs are highlighted in red with bigger size. Genes with genetic variations offered by March et al. are marked with a small five-pointed
star.
doi:10.1371/journal.pone.0083495.g005

Core TFs Bridging IBDs to Associated CRC
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Figure 6. Verification of the emerging dysregulated relationships underlying the dysregulated links. (A) THP-1 cells were treated with
different concentrations of LPS (0 ng/ml, 50 ng/ml, 100 ng/ml, 1 mg/ml, 5 mg/ml and 10 mg/ml, respectively), and then the human CRC cell lines were

Core TFs Bridging IBDs to Associated CRC
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most closely associated regulatory patterns of TFs make up three

major representative branches of normal, inflammation, and

cancer (from right to left, marked by corresponding color shadow

in Figure 3). Each branch means that these networks are much

more parallel with each other in regulatory mechanisms (or

regulatory patterns) than with those from other branches.

Intuitionistically, two normal networks are clustered within the

branch of inflammation networks, which we called the normal

branch; their remarkably smaller distance is actually a good

representation for the high performance of our proposed network

TOM. Unsurprisingly, those tightly clustered inflammation or

cancer networks generated relatively bigger distance are mainly

due to disease heterogeneity [32].

Interestingly, two UC networks, i.e., UC.GSE3629_22.network

and UC.GSE3629_31.network, are clustered tightly together with

one CRC network, i.e., Ca.GSE13294_42.network, in the

rightmost branch (Figure 3, right of the red dashed line). In case

of systematic noise, we tried to evaluate the recurrence of the exact

branch by randomly removing one network out and then perform

clustering on the remaining networks. Although perturbations of

networks used for clustering could cause some alterations in final

results, we are encouraged to see that the two UC networks are

always clustered with the same CRC network (Figure 4).

Consistently, the results for randomly removing two networks

out also demonstrate that the exact branch recurs with the most

frequency. Furthermore, as supported by the literature, patients

with UC are more predisposed to colitis-associated cancers (CAC),

such as CRC [33], and CRC is a major threat in long-standing

UC patients [34], which partly supports the potential links implied

by the branch. We thus reason that there exist some similar

regulatory mechanisms between the inflammation and cancer

regulatory network, which also suggest a potential functional link

between UC and CRC. Meanwhile, one normal network

(Normal.GSE8671_32.network) seemed also unexpectedly clus-

tered within the same branch next to the cancer network. One

possible explanation might be that the normal network derived

from histological normal colonic tissues has already executed

advanced molecular processes of inflammation and/or cancer

beneath the normal presentation (Figure S4).

Dysregulated Relationships between UC and their Linked
CRC
Clustering of IC-specific regulatory networks based on network

TOM assists us to delineate a potential clue linking UC and

associated CRC, with the branch (Figure 3, right of red dashed

line) providing us quite promising candidates. To interpret the

dysregulated links, relationships with significant gain or loss of MI

between the UC and CRC networks were identified. For the

combination of UC.GSE3629_22.network and Ca.G-

SE13294_42.network, we firstly combined direct neighbors of

common TFs, and then computed MI difference for each

relationship. Secondly, 100 random IC-specific expression data

sets for each of the two expression data sets, which were used for

reconstructing corresponding regulatory networks, were generat-

ed. From each of the 100 pair random expression data sets, we

repeatedly computed MI differences for those relationships

computed above after reconstructing corresponding random

regulatory networks using ARACNe program with default

parameters, and then form a random distribution of MI

differences. In comparison with random distribution, we could

define the significance of each relationship by an FDR p-value

,0.05. Those relationships with significant gain or loss of MI were

considered as dysregulated. Then, we generated 3394 dysregulated

relationships from the combination, while 2898 were generated

from the other combination of UC.GSE3629_31.network and

Ca.GSE13294_42.network. Finally, we extracted 1052 relation-

ships, which were defined as dysregulated simultaneously in both

combinations, to construct a dysregulated network.

The network, which contains 625 nodes with 285 TFs, and 200

inflammation and 162 cancer genes, is an objective representation

of 1052 dysregulated relationships between TFs and IC genes. Key

network topological parameters (Figure S5) demonstrate that it is a

scale-free and small-world biological network.

Core Transcription Factors Mediate the Dysregulated
Links
Transcription factor-mediated regulatory networks serve as a

decision-making system within mammal cells [35]. Therefore,

based on the dysregulated network constructed, we could identify

core TFs functioning through regulating adjacent dysregulated

genes bridging UC and associated CRC. After studying the degree

distribution of all TFs in the network, we threshold a TF degree of

no less than 8 to be topologically important. And then, we checked

the composition ratio of adjacent inflammation and cancer genes

of all TFs. As indicated, TFs could be categorized into three kinds:

cancerogenic TFs with mostly adjacent cancer genes; inflamma-

tory TFs with mostly adjacent inflammation genes; IC-specific TFs

with both adjacent inflammation and cancer genes. In order to

identify those potentially involved core TFs regulating not only

inflammation genes, but also cancer genes, the composition ratios

(including both the ratio of the number of adjacent inflammation,

and the ratio of the number of adjacent cancer genes) were set as

at least 0.1. In favor of our rules, 24 core TFs are generated based

on these restrictions, considering both the degree constraint and

the constituent ratio of their adjacent inflammation and cancer

genes. Those prone to regulating only inflammation or cancer

genes and with lower degree showing a relative minor influence on

the whole network structure were not included. A dysregulated

sub-network (core network) is then constructed out of 24 core TFs

with their directly connected genes (Figure 5). The core TF list

includes STAT3, GFI1, NFATC1, TCF7L2, ETS1, CEBPG, XBP1,

RUNX3, SMAD7, SMAD2, POU2F2, FOXC1, TCF4, PBX1,

HOXA4, SOX10, SREBF1, NFYB, FOXO1, PRDM1, ZNF589,

BACH2, POU5F1B, and TFF3. Some core TFs, i.e. TCF7L2 and

FOXO1 are important which are also targets for genetic mutations

[36] (Figure 5).

treated with these different supernatants. Cell proliferation rates were analyzed by MTT after 96 hours. (B) Positively responded cell line LOVO,
HCT116, and HT29 were treated as in (A) with different concentrations of LPS (0 ng/ml, 12.5 ng/ml, 25 ng/ml, 37.5 ng/ml, 50 ng/ml, 62.5 ng/ml,
87.5 ng/ml and 100 ng/m). Proliferation rate of these cell lines raised with higher concentrations of LPS stimulation. (C) LOVO, HCT116, and HT29 cells
were treated with LSMCM for 24 hours while the concentrations of LPS were 25 ng/ml for LOVO cells and 100 ng/ml the other two cell lines. Then cell
morphology was examined with 4006 enlargement. (D) Cells were treated as in (C) and the degree of cell migration was observed with 2006
enlargement. (*p,0.05 vs. control). (E) Cells were treated with two kinds of LSMCM (THP-1 cells were stimulated with 50 ng/ml and 100 ng/ml LPS
respectively), and the numbers of colonies were counted after 9 days. (*p,0.05 vs. control, #p,0.05 vs. 50 ng/ml). (F) Cells were treated as (C) and
the degree of cell invasion was observed with 4006enlargement.(*p,0.05 vs. control). (G) Cells were treated as (E) and total mRNA were collected at
6, 12 and 24 hours respectively. Celecoxib was used with LSMCM at the same time. Genes expression were detected by Real-time PCR. (H) Cells were
treated as (A), and celecoxib was used with LSMCM at the same (*p,0.05 vs. control; #p,0.05 vs. control).
doi:10.1371/journal.pone.0083495.g006
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Certain core TFs together with their dysregulated relationships

are generally known, which highlights the importance in

regulation of core TFs in bridging inflammation and cancer in

the intestine. An example is NFATC1 together with its dysregu-

lated gene IL6 [37]. Early activation of IL6 is necessary for the

malignant transformation of normal cells in mouse cell line model

[38]. Most studies in T cells prove that the release of IL6 depends

on the activation of NFATC1 [39], which is also implicated in

immune responses of multiple types of cells corresponding to

intestinal injury. Another well-reported factor STAT3 [40] is

activated through phosphorylation in a manner that IL6 binds to

its receptor. IL6 could induce the transcription of STAT3, and

then accomplish its anti-apoptotic and pro-tumorigenic effects

through STAT3 and its downstream targets like AKT1 [41]. AKT1

[42,43] is essential in regulating mammalian cell proliferation and

survival. Moreover, the regulatory relationship between them has

been already confirmed by Iliopoulos et al. [44]; this relationship

is mediated by miR-21 and its target gene PTEN. STAT3 can

induce tumorigenicity of transformed cells and subsequent

activation of NF-kB [45], which is another way of activating IL6

[46].

Discussion

Cancer research [47,48] has generated a conceptual framework

that is useful to understand the complex and dynamic alterations

in cancer biology. The vast catalog of cancer phenotypes and

genotypes is a full manifestation of six general hallmarks (or traits)

enumerated by Hanahan et al., together with inflammation, which

is recently known as ‘the seventh’ [49]. Although years of clinical

and epidemiological researches have offered accumulated proofs

on the strong association between inflammation and various

cancer phenotypes, few studies have comprehensively evaluated

the core transcription factors mediating the dysregulated links

between IBDs and associated CRC.

The roles of inflammation in carcinogenesis are quite complex

and are poorly understood, even though we ignore the direction of

causation between inflammation and cancer. Therefore, on the

basis of a limited number of cancer and inflammation samples, it is

very difficult to delineate the mysterious and complex links

between inflammation and cancer. Here, we integrated a large

compendium of microarray expression profiles on the level of

network, and separately extracted inflammation and cancer

samples with similar transcriptional levels of inflammation and

cancer related genes. These sample subsets enable us to depict

complex and heterogeneous mechanisms of inflammation and

cancer, and importantly, can help us capture potential mechanical

links between inflammation and cancer.

To comprehensively characterize the mechanisms under

different inflammation and cancer sample subsets, we constructed

a series of inflammation and cancer regulatory networks indepen-

dently using ARACNe algorithm, based on those sub-divided

expression profiles each with at least 20 samples. The effects of

such sample size on the performance of ARACNe have been

studied and evaluated. For example, Altay et al. [24] compared

ARACNe with other algorithms using sample size 20 and 200.

Even though the sample size was relatively small, they claimed that

the algorithm was still better in performance. Additionally, we also

set a stringent threshold of the DPI parameter to prune edges in

inferred networks. Furthermore, Such network-based strategy has

been widely used to describe complex mechanisms underlying

diverse disease phenotypes [50]. These networks allow us to find

out whether there exist functional associations between some

inflammation and cancer networks. A network-based clustering

approach named network TOM was then proposed to find such a

potential clue linking inflammation and cancer, via integrating

several expression data sets with different platforms. Indeed, such

network integration algorithm was minimally affected by the inter-

platform difference [51], as suggested by the hierarchical

clustering that, those networks were clearly grouped into three

major branches (namely, cancer, inflammation and normal

branch). Obvious structure similarity or regulatory similarity was

observed among tightly clustered networks in each branch,

especially the normal branch as expected although the networks

were constructed using expression data from different platforms. It

was undoubtedly that we could do much better using a large

compendium of expression data sets with unified platform.

Additionally, in consideration of the data heterogeneity not only

from platform, several other researches have also introduced

network integration in stead of directly assembling expression

profiles to study the functional links among gene pairs [52,53,54].

Besides the three major successfully clustered branches of normal,

inflammation and cancer, a special branch of tightly clustered

inflammation and cancer networks was also identified. In order to

confirm the robustness of the branch, we also performed

permutation tests to construct new clustering results via repeatedly

removing one network out. As indicated, the network clustering

results generated in network permutation were similar with the

clustering using all networks, which also suggested that the

platform had minimal effects on the network integration approach.

To delineate the links in the intestine, we computed relationships

dysregulated with significant gain or loss of mutual information

between inflammation and cancer networks, and then generated

24 core TFs together with their connected IC genes.

In addition to computational analysis, we also designed a brief

procedure to biologically examine those emerging dysregulated

relationships between core TFs and IC genes (see Procedures S1).

Using cell lines exposed to inflammatory stimuli, we observed that

some selected core TFs and their connected IC genes were altered

in expression at the mRNA level as examined by real-time PCR

(Table S2). Meanwhile, we observed significantly malignant

progressions such as enhanced proliferation (Figure 6A,B),

altered cell morphology (Figure 6C), and increased ability of cell

migration (Figure 6D and 6F) and colony formation (Figure 6E).

Moreover, we observed that expression of core TF GFI1 and two

of its dysregulated genes TGFBR2 and PTGER2 was time-

dependent (Figure 6G), and furthermore suppressing PTGER2

with celecoxib partly rescued the decrease of GFI1 (Figure 6G )

and significantly inhibited cell proliferation rates (Figure 6H).

Additionally, we also tried to evaluate our approach by

comparing it with differentially expressed genes identified between

UC and CRC. Using data set GSE3629, which includes both UC

and CRC expression data, 24 differential genes (Table S3) were

identified using significance analysis of microarrays with a quite

loose threshold of FDR,0.1. Compared with differential expres-

sion analysis, our proposed approach identifies certain known TFs,

such as STAT3, whose dysregulated relationship with AKT1 has

been already validated by Iliopoulos et al. [44]. However, none of

the core TFs or those well-known factors overlap with the

differential gene list. One possible explanation could be that not all

inflammatory samples undergo tumorigenic progression, and a

mixture of inflammatory samples with and without cancerogenic

traits would eliminate discordances in expression of certain pivotal

factors. Moreover, the unsatisfactory performance of differential

analysis also shows not only the complexity of the dysregulated

links, but also a desperate need for an appropriate approach to

study the underlying mechanisms mediated by core TFs between

inflammation and cancer in the intestine.
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Supporting Information

Figure S1 Flow chart of the computational steps applied to

compute core TFs. Computation process was provided, from the

input of expression data sets, to the end of computation of core

TFs. Details about network perturbation and corresponding sub-

profiling permutation were included in the section of Materials

and Methods in main text.

(EPS)

Figure S2 A full presentation of all 21 IC-specific regulatory

networks. Each IC-specific regulatory network was reconstructed

from corresponding IC-specific expression data set using ARA-

CNe algorithm.

(EPS)

Figure S3 Heatmap of number of common TF, inflammation

and cancer genes between each two IC-specific networks.

Heatmap of number of common TFs (A), inflammation genes

(B) and cancer genes (C) between each two IC-specific networks

with columns and rows reordered based on corresponding means.

Names of rows and columns correspond to all 21 IC-specific

networks.

(EPS)

Figure S4 Relative expression of gene IL6 and STAT3 in three

normal networks. We found that the expression level of IL6 (A)

which could be an indicator of inflammation and function to

regulate the survival and proliferation of intestinal epithelial cells

was aberrantly lower in network GSE8671_32 than the other two

normal networks. Similarly, STAT3 (B), another gene whose

activation is generally dependent on IL6 binding to its acceptor

and is mainly in charge of the protumorigenic and/or cytopro-

tective effects of IL6. Its expression level was significantly activated

in network GSE8671_32 comparing to the other two normal

networks. Thus, we inferred that the network might have already

undergone certain local molecular processes of inflammation and/

or cancer beneath the normal presentation. Height of each bar

represents the mean of relative ranks of expression for the gene

IL6 and STAT3 across samples in common genes between the

three data sets. Error bar indicates 97.5% confidence interval.

***means significant comparisons and all p-values,0.001 (stu-

dent’s t test) VS GSE8671_32.

(EPS)

Figure S5 Key topological features of the dysregulated network.

(A) Shortest path length distribution. The average shortest path

distance in the dysregulated network is 5.3597. (B) Degree

distribution of the dysregulated network. The number of nodes

with k neighbors, p(k), follows a power-law distribution: p(k),k2c,

c=1.996. Statistics on fitted line: R-square = 0.801.

(EPS)

Table S1 Thirteen IBD and CRC expression data sets

downloaded from GEO database. arepresents the number of

samples in status of normal, UC, CD, and CRC contained by each

data set.

(XLS)

Table S2 Expression of some core TFs together with their

dysregulated genes at the mRNA level in cell line model. Cells

were treated with two kinds of LSMCM for 48 h (the supernatant

of THP-1 cells which were treated with 50 ng/ml and 100 ng/ml

LPS respectively). Gene expression showing at least 1.5 fold

change was recognized as being significantly altered. A relation-

ship is observed as dysregulated if no less than one node it connects

is significantly altered in expression in at least one colon cell line as

examined by real-time PCR. Consistent results from independent

real-time PCR assays were obtained. #undetected. Gene TGFBR2

and PTGER2 are shown in bold, which are used for further

analysis (Figure 6G,H in main text).

(XLS)

Table S3 Differential gene list using GSE3629 data set with

FDR,0.1 using SAM.

(XLS)

Procedures S1 (1) Cancer cell lines and LPS-stimulated

macrophage-conditioned medium. (2) MTT assays. (3) Boyden

chamber migration assays. (4) Monolayer wound healing assays.

(5) Colony formation assays. (6) Quantitative real-time RT-PCR

analysis.

(DOC)
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