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The cochlea “translates” the in-air vibrational acoustic “language” into the spikes of
neural “language” that are then transmitted to the brain for auditory understanding
and/or perception. During this intracochlear “translation” process, high resolution in
time–frequency–intensity domains guarantees the high quality of the input neural
information for the brain, which is vital for our outstanding hearing abilities. However,
cochlear implants (CIs) have coarse artificial coding and interfaces, and CI users
experience more challenges in common acoustic environments than their normal-
hearing (NH) peers. Noise from sound sources that a listener has no interest in
may be neglected by NH listeners, but they may distract a CI user. We discuss
the CI noise-suppression techniques and introduce noise management for a new
implant system. The monaural signal-to-noise ratio estimation-based noise suppression
algorithm “eVoice,” which is incorporated in the processors of Nurotron R© EnduroTM,
was evaluated in two speech perception experiments. The results show that speech
intelligibility in stationary speech-shaped noise can be significantly improved with eVoice.
Similar results have been observed in other CI devices with single-channel noise
reduction techniques. Specifically, the mean speech reception threshold decrease in the
present study was 2.2 dB. The Nurotron society already has more than 10,000 users,
and eVoice is a start for noise management in the new system. Future steps on non-
stationary-noise suppression, spatial-source separation, bilateral hearing, microphone
configuration, and environment specification are warranted. The existing evidence,
including our research, suggests that noise-suppression techniques should be applied
in CI systems. The artificial hearing of CI listeners requires more advanced signal
processing techniques to reduce brain effort and increase intelligibility in noisy settings.

Keywords: cochlear implant, noise reduction, cocktail party problem, monaural, speech in noise, intelligibility,
Nurotron, eVoice
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“Speech intelligibility test of “eVoice”, a new noise-reduction algorithm in Nurotron Enduro systems” at the 2019 Asia Pacific
Symposium on Cochlear Implants and Related Sciences, Tokyo, Japan, November 2019.
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INTRODUCTION

The cochlear implant (CI) is one of the most successful prostheses
ever developed and aims to rehabilitate hearing by transmitting
acoustic information into the brains of people with severe to
profound hearing impairment by electrically stimulating auditory
nerve fibers (Shannon, 2014). The artificial electric hearing
provided by current CIs is useful for speech communication but
is still far from satisfactory compared with normal hearing (NH),
especially in the aspect of speech-in-noise recognition.

The noise issue is a common complaint of CI users (e.g.,
Ren et al., 2018). Because of variability associated with implant
surgery time, hearing history, rehabilitation and training, surgical
conditions, devices and signal processing, and so on, large
differences in hearing abilities have always been reported within
any group of CI users. These reasons behind the CI-NH gap and
intersubject CI variance may be classified into “top-down” and
“bottom-up” types (Moberly and Reed, 2019; Tamati et al., 2019).

From a practical standpoint, knowledge about “top-down”
memory and cognition is useful for rehabilitation and making
surgical decisions (Kral et al., 2019), whereas the relationship
between speech performance and the “bottom-up” signal
processing functions—especially those on the electrode
interface—determines the engineering approaches used in
current CI systems (Wilson et al., 1991; Loizou, 1999, 2006;
Rubinstein, 2004; Zeng, 2004; Zeng et al., 2008; Wouters et al.,
2015; Nogueira et al., 2018). Although the “top-down” approach
has been suggested to be incorporated into CI systems to form an
adaptive closed-loop neural prothesis (Mc Laughlin et al., 2012),
we only introduce “bottom-up”–related techniques that might
be useful for CI users to tackle the problem of noise masking, as
discussed below.

How to send more useful information upward? Sound
pressure waveforms are decomposed by healthy cochleae into
fine temporal-spectral “auditory images”. CIs attempt to capture
and deliver the same images but, unfortunately, in a coarse way.
Theories in grouping, scene analysis, unmasking, and attention
have demonstrated the significance of precise coding of acoustic
cues including pitch or resolved harmonics, common onset, and
spatial cues. For most CI systems, only temporal envelopes from
a limited number of channels can be transferred to the nerve, and
current interactions between channels are a key limitation of the
multichannel CI framework.

Several research directions have been explored to improve
the CI recognition performance of speech in noise by updating
the technology of contemporary multichannel devices: (1)
stimulating auditory nerves in novel physical ways such as optical
stimulation (Jeschke and Moser, 2015) and penetrating nerve
stimulation (Middlebrooks and Snyder, 2007); (2) developing
intracochlear electrode arrays with different lengths, electrode
shapes, and mechanical characteristics (Dhanasingh and Jolly,
2017; Rebscher et al., 2018; Xu et al., 2018); (3) steering
and focusing the current spread by simultaneously activating
multiple electrodes (Berenstein et al., 2008; Bonham and Litvak,
2008); (4) refining the strategies in the temporal domain
by introducing harmonics (Li et al., 2012), timing of zero
crossings (Zierhofer, 2003) or peaks (Van Hoesel, 2007), and

slowly varying temporal fine structures (Nie et al., 2005;
Meng et al., 2016); and (5) enhancing speech or suppressing
noise before or within the core signal processing strategies.
The first and second directions are developed from the
perspective of neurophysiology; the third is mainly based
on psychophysical tests; the fourth uses a combination of
signal processing and psychophysics, and the fifth mainly
concentrates on signal processing. All of these aspects are worth
further investigation.

In the last two decades, the fifth approach of enhancing
speech or suppressing noise before or within the core signal
processing strategies has become a hot topic in academic and
industrial research. Noise reduction and speech enhancement
are two sides of the same coin, and the goal is to improve
intelligibility or quality of speech in noise, in most cases with
a signal-to-noise ratio (SNR) enhancement signal processing
system. Some noise reduction techniques in telecommunications
and hearing aids have been used to process noisy speech
signals, and then the processed signals are presented through
loudspeakers to CI users (e.g., classic single-channel spectral
subtraction) (Yang and Fu, 2005) for feasibility verification.
Now there are more sophisticated single-channel noise-reduction
algorithms (NRAs) (Chen et al., 2015), directional microphone,
or multimicrophone-based beamformers of hearing aids (Chung
et al., 2004; Buechner et al., 2014), and more recently deep
neural network–based algorithms (Lai et al., 2018; Goehring
et al., 2019) that have been tried with CI listeners. Another
line of research is to specifically optimize algorithm parameters
with a consideration of the differences between CI and NH
listeners. The parameters are generally related to the noise
estimation or gain function for noise reduction (Hu et al.,
2007; Kasturi and Loizou, 2007; Mauger et al., 2012a,b;
Wang and Hansen, 2018). All these studies demonstrated
significant improvements, which can be explained by the
higher SNR yielded by the techniques before or within the CI
core strategies.

In the newest versions of CI processors from current
commercial companies such as Cochlear R© (Hersbach et al.,
2012), Advanced Bionics R© (Buechner et al., 2010), and MED-
EL R© (Hagen et al., 2019), one or multiple algorithms of SNR-
based monaural noise reduction and spatial cue-based directional
microphone or multimicrophone beamformers have been
implemented and evaluated. Multimicrophone beamformers
significantly improve speech intelligibility for CI recipients in
noise. However, it is based on the assumption that target
speech and noise sources are spatially separated. Thus, single-
microphone NRAs in CI systems are still worthy of attention to
improve speech perception in noise, especially in scenarios when
the target speech and noise sources are not spatially separated.

Some single-microphone NRAs that are already implemented
in commercial CI products have been reported in the literature.
ClearVoice is a monaural NRA implemented with the HiRes 120
speech processing strategy (Buechner et al., 2010; Holden et al.,
2013). It first estimates noise by assuming that speech energy
amplitude changes frequently and background noise energy is
less modulated. Then, gain is reduced for channels identified
as having mainly noise energy. The noise estimation works at
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a time window of 1.3 s, which is the activation time of this
algorithm. Experiments showed that ClearVoice can improve
speech intelligibility in stationary noise (Buechner et al., 2010;
Kam et al., 2012). Another monaural NRA is implemented
with the ACE (advanced combination encoder) strategy in
Nucleus devices. It uses a minimum statistics algorithm with
an optimal smoothing method for noise estimation (Martin,
2001) and an a priori SNR estimate (McAulay and Malpass,
1980) in conjunction with a modified Wiener gain function
(Loizou, 2007). It was reported to significantly improve hearing
in stationary noise (Dawson et al., 2011).

We introduce a recently developed single-channel estimated-
SNR–based NRA, termed “eVoice,” which has been implemented
in the second-generation research processor EnduroTM of
Nurotron. Nurotron, a young company based in Irvine, CA,
United States, and Hangzhou, Zhejiang, China, currently has
more than 10,000 patients implanted. The Nurotron system
has 24 electrode channels, and its users’ speech performance
in quiet and postsurgery development status are comparable
with previous data from other brands (Zeng et al., 2015; Gao
et al., 2016). The noise estimation in eVoice is processed
on a frame-by-frame basis, which is using a relatively short
time window. It is based on classical signal processing
algorithms and is not the first CI device to use this kind
of approach. The aims of this study include reporting the
intelligibility experiment results for eVoice and rethinking noise
management of a new CI system, which in this case is the
Nurotron system.

EVOICE OF NUROTRON: A
SINGLE-CHANNEL NRA

The default core strategy of Nurotron is the advanced peak
selection (APS) strategy, which is similar to an “n-of-m”
strategy (Zeng et al., 2015). The APS strategy is based on
a short-time Fourier transform (STFT) and typically selects
eight maxima (an automatic process defined in the coding
strategy) for stimulation in each frame (Ping et al., 2017).
A block diagram of the APS strategy and eVoice is shown in
Figure 1. In APS, acoustic input signal is first preamplified,
followed by bandpass filtering (the band number m typically
equals the active electrode number, i.e., m = 24 in Nurotron
devices) and envelope calculation. Then, in peak selection, n
bands with the largest amplitude are selected for further non-
linear compression and electrical stimulation (typically, n = 8
in Nurotron devices). The eVoice is an envelope-based noise
reduction method implemented between envelope calculation
and peak selection. It consists of two steps: noise estimation and
gain calculation (Wang et al., 2017).

Noise Estimation
The noise estimation algorithm is based on an improved minima-
controlled recursive averaging (MCRA-2) algorithm (Rangachari
and Loizou, 2006). Noise power in each channel is estimated on
a frame-by-frame basis instead of a time window that includes
several frames to reduce response time.

Suppose that the noise is additive, then in the time domain,
the input signal y(n) can be denoted as

y (n) = x (n)+ d(n) (1)

where x(n) is the clean speech signal and d(n) is the additive
noise signal. We use Y(λ, k), i.e., the STFT of y(n), to represent
the summation magnitude of channel k in frame λ in the
frequency domain. The power spectrum of the noisy signal can
be smoothed and updated on a frame-by-frame basis using the
recursion below:

P
(
λ, k

)
= ηP

(
λ− 1, k

)
+ (1− η)

∣∣Y(λ, k)
∣∣2 (2)

where η is a smoothing factor. Then, the local minimum of the
power spectrum in each channel can be tracked as follows:

Pmin(λ, k) =


P
(
λ, k

)
, Pmin(λ− 1, k) ≥ P(λ, k)

γPmin
(
λ− 1, k

)
+

1−γ
1−β (P

(
λ, k

)
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Pmin(λ− 1, k) < P(λ, k)
(3)

where Pmin(λ, k) is the local minimum of the noisy speech power
spectrum, and β and γ are constant parameters. The ratio of noisy
speech power spectrum to its local minimum can be calculated
as follows:

Sr
(
λ, k

)
=

P(λ, k)
Pmin(λ, k)

(4)

This ratio is compared against a threshold T(λ, k) to determine the
speech-presence probability I(λ, k) using the criterion below:

I(λ, k) =

{
1 , Sr

(
λ, k

)
≥ T(λ, k)

0, Sr
(
λ, k

)
< T(λ, k)

(5)

where T(λ, k) is the threshold that is dynamically updated
according to the estimated SNR of the previous frame. It
is worth mentioning that this threshold is set at a constant
level in the literature, and we found from our pilot data that
dynamic thresholds performed better than constants during our
assessment, so we decided to use dynamic thresholds.

This speech-presence probability I(λ, k) can be smoothed as
follows:

K
(
λ, k

)
= αK

(
λ, k

)
+ (1− α)I(λ, k) (6)

where K(λ, k) is the smoothed speech-presence probability, and
α is a smoothing constant. The smoothing factor to be used
for noise estimation can be updated using the above calculated
speech-presence probability:

αs
(
λ, k

)
= αd + (1− αd)K(λ, k) (7)

where αs is the smoothing factor to be used for noise estimation,
and αd is a constant. Finally, the noise power of each channel is
estimated as follows:

D
(
λ, k

)
= αs

(
λ, k

)
D(λ− 1, k)+ (1− αs

(
λ, k

)
)
∣∣Y(λ, k)

∣∣2 (8)

Gain Function for Noise Reduction
Using the estimated noise power, the SNR can be estimated
according to

SNR
(
λ, k

)
= δSNR

(
λ− 1, k

)
+ (1− δ)(

P(λ, k)
D(λ, k)

− 1) (9)
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FIGURE 1 | Block diagram of the APS strategy (black) and eVoice (red).

Then, we use a gain function like:

G
(
λ, k

)
=

SNR
(
λ, k

)
SNR

(
λ, k

)
+ 1

(10)

To suppress the noise to the maximum extent, the gain can be
further adjusted:

G0
(
λ, k

)
=

{
g , G

(
λ, k

)
< Tg

G
(
λ, k

)
, G

(
λ, k

)
≥ Tg

(11)

where g is a minor constant value, and Tg is a dynamic threshold
determined by SNR. Tg is also one of the key factors that
determine algorithm sensitivity.

Finally, the signal power after noise reduction is as follows:

S
(
λ, k

)
= G0

(
λ, k

)
P(λ, k) (12)

Example
An example of eVoice working in a speech-shaped noise (SSN)
at +5 dB SNR is shown in Figure 2. eVoice was implemented with
the APS coding strategy with a channel selection of 8-of-24 at a
sampling rate of 16,000 Hz. Figure 2 shows the power comparison
in the eighth channel, including the signals for clean speech,
noisy speech, processed speech, and estimated noise plotted in
different colors.

EXPERIMENT 1: SUBJECTIVE
PREFERENCE AND SPEECH
RECOGNITION IN NOISE

This experiment was designed to evaluate speech intelligibility
with eVoice (denoted by “NR1”) compared with another
NRA (denoted by “NR2”) that used a binary masking for
noise reduction, as well as the APS strategy with no NRA
(denoted by “APS”). NR2 uses the same noise estimation
method with NR1 as described in Noise Estimation. After noise
estimation, NR2 calculates an SNR that is used to set the
gain. That is, if the SNR is higher than a threshold, set
the gain to 1 (speech dominant), or a small constant if
lower (noise dominant). NR2 was selected for comparison
because it is as computationally effective as eVoice and the
method of ideal binary masking had been studied in other
CI systems (Mauger et al., 2012b). Speech intelligibility was
measured with a speech-in-noise recognition test and a subjective
rating questionnaire.

Methods
Participants
This experiment involved 11 experienced CI users (six females
and five males), aged from 20 to 59 years (mean age = 41.2 years).
All were postlingually deafened adults unilaterally implanted
with a CS-10A implant and using a VenusTM sound processor
(i.e., first generation) programed with the APS strategy. The
EnduroTM sound processor was fitted instead of the VenusTM

in this experiment. There is an option in a remote control
to select whether to use an NRA (one with NR1-eVoice and
the other one with NR2-Binary Masking). Demographics for
individual participants are presented in Table 1. All participants’
native language was Mandarin Chinese, and participants were
paid for their time and traveling expenses. Written informed
consent was obtained before the experiment, and all procedures
were approved by the local institution’s ethical review board.

Procedures and Materials
In this experiment, NR1 and NR2 performances were assessed
first in a subjective evaluation, followed by a speech-in-noise
recognition test.

The subjective evaluation lasted for 2 weeks. At the beginning
of week 1, participants were fitted with an EnduroTM processor
that was incorporated with the NR1 and were asked to have
a take-home trial for 1 week. During that week, participants
were free to turn the NR1 on and off and use it in
various everyday listening scenarios. At the end of week 1,
subjective ratings were collected using the questionnaire shown
in Table 2. Similar procedures were followed for the NR2 in
week 2. The questionnaire consists of eight questions that cover
various everyday listening scenarios. A 5-point rating scale was
used to collect participants’ subjective ratings of the NR1 or
NR2 in each listening scenario after each 1-week take-home
use: 2, strongly agree; 1, agree; 0, neutral; -1, disagree; -2,
strongly disagree.

In the test of speech recognition in noise, we used two
noise types (an SSN and a babble noise) at three SNRs (5,
10, and 15 dB) to compare the three algorithms (APS, NR1,
and NR2). This yielded a total of 21 test blocks (two noise
types × three SNRs × three algorithms + baselines of the
three algorithms in quiet). The three baseline blocks (three
algorithms in quiet) were conducted first in a random order,
followed by the remaining 18 blocks in a random order. We
used sentence materials from two published Mandarin speech
databases: the PLA General Hospital sentence recognition test (Xi
et al., 2012) corpus and the House Research Institute sentence
recognition test (Fu et al., 2011) corpus. The PLA General
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FIGURE 2 | An example of noise reduction at channel 8 in SSN at +5 dB SNR. The frame shift is 8 ms.

TABLE 1 | Demographic details of participants in experiment 1.

Age range Profound deafness duration Implanted CI experience

Participant at testing Etiology at implanted side (years) side (years)

N1 45–49 Sudden deafness 10 L 2

N2 25–29 Unknown 2 R 2

N3 20–24 Drug induced 17 R 4

N4 45–49 Unknown 4 R 2

N5 45–49 Drug induced 35 R 2

N6 45–49 Drug induced 28 R 4

N7 35–39 Drug induced 15 L 6

N8 40–44 Sudden deafness 0.25 L 1.5

N9 55–59 Sudden deafness 4 L 3

N10 40–45 Sudden deafness 8 R 6

N11 40–45 Drug induced 17 R 6

Abbreviations: CI, cochlear implant; F, female; L, left; M, male; R, right.

Hospital corpus consists of 12 lists each with 11 sentences,
and each sentence includes six to eight key words. The House
Research Institute corpus comprises 10 lists each with 10
phonetically balanced sentences, and each sentence contains
seven words. All sentences were read by female speakers. Eleven
of the 12 lists in the 301 corpus and all lists in the House
corpus were used.

Because of the limited number of material lists, different
lists from the PLA General Hospital and House Research
Institute corpora were randomly assigned to blocks for each
participant, with one list for each block. Special care was
taken to ensure that the blocks of each algorithm used lists
from the same corpus. In each block, sentences were presented
in a random order, and a percentage word correctness score
was calculated. Stimuli were presented in a soundproof room
by a speaker located 1 m in front of the participant at
a comfortable level (approximately 65 dBA). The tests were
administered using QuickSTAR4TR software developed by
Qianjie Fu (Emily Fu Foundation, 2019).

Statistical Analysis
Repeated-measures one-way analysis of variance (ANOVA)
was used to analyze speech recognition in quiet. Repeated-
measures three-way ANOVAs were performed to assess speech
recognition in noise. Bonferroni adjustments were used for
multiple comparisons.

Results
Subjective Evaluation Test
Figure 3 shows the results of the subjective ratings
for NR1 and NR2.

For NR1 (i.e., eVoice), there were many positive ratings and
few negative ones. Most participants gave positive ratings to Q2,
Q4, Q5, and Q6, which indicated better listening experience with
NR1 on than off in scenarios such as multitalker communication,
at an intersection, and in a vehicle. For Q3, Q7, and Q8, most
participants had neutral ratings, which corresponded to scenarios
such as in a restaurant or supermarket and near an air conditioner
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or fan. This result suggested comparable performance between
NR1 on and off in these settings. There were a few participants
who give positive ratings to Q3, Q7, and Q8 (better experience
with NR1 turned on in listening scenarios such as a one-on-one
conversation in a restaurant, by an air conditioner or fan, or in
a busy supermarket). For listening in quiet, most participants
reported that NR1 had no effect on a one-on-one conversation
in quiet and gave positive ratings to Q1 (the NRA had no effect
on one-on-one conversations in quiet rooms).

For NR2 (i.e., binary masking), the feedback was more
variable. In general, ratings were almost evenly distributed

TABLE 2 | Questionnaire used for subjective evaluation.

Q1 The NRA has no effect on one-on-one conversations in
quiet rooms

Q2 The NRA helps during multitalker (at least three talkers)
conversations in quiet rooms

Q3 The NRA helps during one-on-one conversations in
restaurants

Q4 The NRA noticeably suppresses noise or helps to converse
with others when vehicles pass

Q5 The NRA helps during one-on-one conversations or yields
clearer station announcements inside a crowded bus

Q6 The NRA helps during one-on-one conversations or
provides clearer radio sound inside a car

Q7 The NRA helps during one-on-one conversations near an
air conditioner or fan

Q8 The NRA helps during one-on-one conversations in a busy
supermarket

NRA refers to the noise-reduction algorithm to be evaluated (i.e., NR1 in week 1
or NR2 in week 2).

between negative and positive for all eight questions except
Q2 and Q8, which means that there were participants who
thought NR2 was helpful in most listening scenarios. However,
comparable numbers of participants thought it was not helpful
or were neutral. For Q2 and Q8, most participants gave neutral
ratings, which indicate that most thought the NR2 had no
effect for multitalker communication in quiet or a one-on-one
conversation in a supermarket.

Speech Intelligibility Test
Results of speech recognition in quiet are shown in Figure 4.
A repeated-measures one-way ANOVA revealed no significant
difference among the mean results (∼90%) of the three
algorithms (p = 0.452).

Figure 5 shows the results of speech recognition in the SSN
and babble noise. Statistical significance was determined using
ANOVA with the percent correct scores as the dependent variable
and the noise type (SSN or babble), SNR (5, 10, or 15 dB),
and algorithm (APS, NR1, or NR2) as within-subject factors.
Tests of within-subjects effects indicated a significant effect
of noise type (p = 0.022), SNR (p < 0.001), and algorithm
(p = 0.002), as well as significant interactions between noise
type and SNR (p < 0.001). Pairwise comparisons revealed
that the overall performance of NR1 was significantly better
than APS (p = 0.001) and NR2 (p = 0.016), and there was
no significant difference between APS and NR2 (p = 0.612).
When noise type and SNR were fixed to determine the
effect of algorithms at specific SNRs in a particular noise
type, NR1 performed significantly better than NR2 at the
5-dB SNR in the SSN (p = 0.010) and also significantly
better than APS (p = 0.027) at the 5-dB SNR in the babble

FIGURE 3 | Results of subjective evaluations of NR1 (left panel) and NR2 (right panel). The abscissa lists all eight questions used for the subjective evaluation,
and the ordinate is the rating given by the participants. Along the ordinate, “-2” represents strong disagreement on the question, and “2” represents strong
agreement. The larger the number, the more positive the subjective evaluation is that the NR could help in different noisy scenarios and did not impact listening in
quiet settings. The size of the circles represents the number of participants who gave the corresponding ratings, with larger circles indicating more participants.
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FIGURE 4 | Results of speech recognition score in quiet settings. The left panel shows the individual percent correct scores, and the right panel shows the group
means, with error bars indicating the standard error of group means.

FIGURE 5 | Results of speech recognition score in SSN (left panel) and babble noise (right panel). Results of each individual participant are plotted, and the bars
show the mean values, with error bars indicating the standard deviations.

noise. In both the SSN and babble noise at the SNRs of
10 and 15 dB, there were no significant differences among
the three algorithms. However, higher mean scores of NR1
could be observed against APS and NR2 at the 10-dB SNR
in SSN (nearly eight percentage points), as well as at the 10-
dB SNR (eight percentage points higher than APS) and 15-
dB SNR (∼5 percentage points higher than APS and NR2)
in the babble noise, although these improvements were not
statistically significant.

Short Summary
In this experiment, we tested two NRAs: eVoice (NR1) and
another that used binary masking (NR2). Both use the same
noise estimation process but differ in the noise cancelation
process. NR1 uses a smoothing gain function, whereas NR2
uses a binary masking. The subjective evaluation ratings show
that NR1 was positively reviewed, whereas ratings of NR2 were
almost evenly distributed from negative to positive, with a slight
dominance of neutral responses. The speech recognition test
results indicate overall better performance of NR1 compared to
NR2 and APS. However, a significant benefit was only found at

5-dB SNR. The above results demonstrate that NR1 had better
performance than NR2 for both speech recognition tests and
subjective evaluations.

EXPERIMENT 2: SPEECH RECEPTION
THRESHOLD TEST

Rationale
The hypothesized significant benefit of eVoice was not always
supported by the results of the first experiment. One reason may
be from the fixed SNR procedure and large performance variance
in the cohort. From the results of Experiment 1 (left panel in
Figure 5), we noticed that the ceiling effect could be observed
in some participants at the SNR of 15 dB, and the floor effect
could be observed at the SNR of 5 dB. Speech perception in
noise varied dramatically among participants, even at the same
SNR in the same noise. This indicates a limit of testing percent
correct scores at fixed SNRs because this type of test is not able
to exclude potential ceiling and floor effects. To overcome this
limitation, we designed Experiment 2, which used an adaptive
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speech reception threshold (SRT) test to measure the potential
benefits of eVoice.

In the first experiment, we found clearly that NR1 (i.e., eVoice)
provided better performance than NR2 (i.e., the ideal binary one)
in the subjective test, although little improvement was observed
in the speech-in-noise recognition test. To further explore the
potential of eVoice and to save experiment time, only NR1 was
evaluated in the second experiment.

Methods
Participants
Eight experienced CI users were recruited for this experiment
(five females and three males, aged from 23 to 62 years
with a mean of 43.6 years). All spoke Mandarin Chinese as
their native language. They were all postlingually deafened
adults unilaterally implanted with a CS-10A implant and
used EnduroTM devices as their clinical processors, programed
with the APS coding strategy with a remote control option to
switch eVoice on or off. Demographic data for individual
participants are presented in Table 3. Participants were
compensated for their time and traveling expenses. All
provided informed consent before the experiment, and
all procedures were approved by the local institution’s
ethical review board.

Materials and Procedures
An adaptive staircase SRT in noise test was administered
to further evaluate the performance of eVoice. This SRT
measurement method was adopted from our previous studies
(Meng et al., 2016, 2019) with two minor changes: (1) the
stimulus presentation time was reduced from three at most to
two at most, and (2) the correctness judgment threshold was
changed from 50% words in a sentence to 80% words. The
first was done to reduce experiment time. The second was
for tracking a higher threshold, which is more indicative for
a true understanding. Therefore, we were actually tracking a
threshold around which the subjects have a 50% chance to obtain
80% correctness.

The Mandarin Hearing in Noise Test (MHINT) corpus (Wong
et al., 2007) recorded by a single male speaker was used.
There are 12 lists for formal tests and 2 lists for practice,
with 20 sentences in each list, and 10 words in each sentence.
In this experiment, 10 of 12 formal test lists were used as
target speech in the formal tests, and both practice lists were
used in the training stage to familiarize participants with the
test procedures.

The SRTs for each condition with and without eVoice
were tested. For each condition, two types of background
noise were used: SSN and babble noise, which were generated
using the method described in section “Speech Stimuli and
Tasks” of Experiment 2 in Meng et al. (2019). The SRT for
each condition–background combination was tested twice using
two different MHINT lists, and the results were averaged
between the two lists as the final SRT. Speech intelligibility
for each condition in quiet was also measured using one
MHINT list. Therefore, a total of 10 lists were used for
testing (two backgrounds × two conditions × two lists per

combination + two lists for speech intelligibility in quiet).
The order of lists and conditions was randomized across
participants. Prior to the formal test, two practice lists were
used to familiarize participants with the test procedures of
the SRT and the speech intelligibility in quiet test. During
the test, each sentence was presented at most twice on the
request of the participants; participants were instructed to
repeat words that form a sentence with a meaning, and no
feedback was given.

The SNR in each trial was adapted by changing the level
of target speech with fixed background noise. Participants
were instructed to repeat as many words as they could,
and the target level was decreased if no less than eight of
the words were repeated correctly; otherwise, the target level
was increased. The step size was 8 dB before the second
reversal, followed by 4 dB before the fourth reversal and
2 dB for the remaining reversals. The arithmetic mean of the
SNRs of the last eight sentences was calculated and recorded
as the final SRT.

It is worth mentioning that the babble noise used in this
study consisted of voices of the same talker as the target speech
(Meng et al., 2019), which is extremely challenging for any NRA.
Additional information about the procedures and materials can
be obtained from Meng et al. (2016, 2019).

Results
The eight CI users listed in Table 3 participated in this experiment,
but N17 was found to have auditory neuropathy. Therefore, N17
data were excluded from the analyses.

Results of speech recognition in quiet are shown in Figure 6.
The group mean scores were 93.1 and 93.3% for eVoice-off
and eVoice-on, respectively. A two-tailed paired-samples t-test
showed no significant difference between the two conditions
(t(6) = −0.162, p = 0.877).

Figure 7 shows the results of the SRTs in the SSN (left panel) and
babble noise (right panel). In the SSN, every participant had lower
SRTs with eVoice-on than with eVoice-off. The group mean SRTs
were 7.9 and 5.7 dB for eVoice-off and eVoice-on, respectively.
This 2.2-dB difference was a statistically significant improvement
(t(6) = 6.892, p < 0.001).

In the babble noise, group mean SRTs of 10.9 and 10.7 dB were
observed for eVoice-off and eVoice-on, respectively. A two-tailed
paired-samples t test revealed no significant difference between
the two conditions (t(6) = 0.249, p = 0.812).

Short Summary
The aim of this experiment was to quantify the benefit
introduced by eVoice for speech intelligibility and exclude
potential ceiling and floor effects. Speech intelligibility was
measured using an adaptive SRT test with two different
backgrounds: SSN and babble noise. There was no significant
difference in speech recognition rates in quiet settings.
This result indicates that eVoice would not affect speech
perception in quiet. eVoice yielded an SRT decrease of 2.2 dB
in SSN, whereas no significant effect was found in SRTs
in babble noise.
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TABLE 3 | Demographic details of participants in experiment 2.

Age range Profound deafness duration Implanted CI experience Enduro

Participant at testing Etiology at implanted side (years) side (years) experience (years)

N12 20–24 Drug induced 1 R 6 1

N13 50–54 Unknown 0.4 L 6 0.5

N14 30–34 Sudden deafness 1 R 1.5 1

N15 45–49 Unknown 5 L 7 3

N16 50–54 LAVS 1 L 6 1

N9 60–64 Sudden deafness 4 L 6 3

N10 45–49 Sudden deafness 8 R 9 3

N17 35–39 Unknown 7 L 8 0.5

Abbreviations: CI, cochlear implant; F, female; L, left; LAVS, large vestibular aqueduct syndrome; M, male; R, right.

FIGURE 6 | The speech recognition scores in quiet with eVoice-off and eVoice-on. The left panel shows the individual scores, and the right panel shows the group
means, with error bars showing the standard errors of group means.

FIGURE 7 | Results of SRT in the SSN (left panel) and babble noise (right panel). Individual SRTs are shown on the left, and the group mean SRTs are shown on
the right. Error bars show the standard error of group means. The significant difference is illustrated by the asterisk (p < 0.05).

DISCUSSION

In this study, we examined eVoice, the first noise-suppression
technique in Nurotron R© CIs. eVoice is a single-channel NRA
implemented within the APS strategy in the Enduro processor.
Two experiments were conducted to evaluate this algorithm.
First, the performance of eVoice was compared with another
binary-masking method in a speech recognition test and also
underwent a subjective evaluation in Experiment 1 (N = 11).
The eVoice performed slightly better than the binary-masking
NRA. Then, the more indicative adaptive SRT test was conducted

to quantify the noise reduction effect of eVoice on speech
intelligibility in Experiment 2 (N = 7). Comparing eVoice on and
off, there was a 2.2-dB SRT benefit in stationary noise and no
difference in quiet and non-stationary noise.

Compared to other single-channel NRAs implemented in
CI strategies, eVoice has comparable performance with those
reported in the literature. For example, a single-channel NRA
implemented in the ACE strategy was found to have an SRT
benefit of up to 2.14 dB in stationary noise (Dawson et al., 2011).
The ClearVoice implemented in the HiRes 120 strategy used a
time window of 1.3 s for noise estimation and yielded a percent
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correct score increase of up to 24 percentage points (Buechner
et al., 2010). This may translate to a 1.3- to 3.4-dB SRT
decrease according to the literature that for typical speech
materials, a 1-dB SRT decrease leads to 7- to 19-percentage-point
increase in the percent correct score (Moore, 2007). However,
significant benefits in non-stationary noise are seldom reported
in the literature, which may indicate a limit of traditional
single-channel NRAs. More advanced techniques should be
developed to improve speech perception in non-stationary
noise for CI users.

This article is significant from the implantees’ and the
audiologists’ perspectives. For a new system with a quickly
growing number of users, this report on eVoice is useful
for understanding the system and the new noise reduction
method. For a new NRA in CIs, two questions are of great
concern to users and audiologists: (1) whether this NRA
really works in various types of noises and (2) to what
extent users can benefit from it. Our results demonstrate that
eVoice can improve speech intelligibility in stationary noise
and does not affect speech perception in quiet and non-
stationary noise. This is because eVoice is a monaural SNR
estimation–based algorithm that assumes that the noise is
relatively stationary compared with speech. We found that some
users of the Enduro processor might have not noticed the
existence of this NRA, and their audiologists can advise or remind
them to turn eVoice on to improve their speech perception
performance in noise.

Another significant contribution of this article is to
inspire people to rethink noise management for CI
systems. Researchers should consider the assumptions
about directionality and complex non-linear patterns that
can be computationally modeled by signal processing
or machine learning (e.g., Bianco et al., 2019; Gong
et al., 2019). Previous studies and present work provide
considerable support for optimizing and updating noise-
suppression techniques to improve speech-in-noise
recognition for CI users.
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