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Aspergillus flavus has been frequently reported as the second cause of invasive
aspergillosis (IA), as well as the leading cause in certain tropical countries. Amphotericin
B (AMB) is a clinically important therapy option for a range of invasive fungal infections
including invasive aspergillosis, and in vitro resistance to AMB was associated with poor
outcomes in IA patients treated with AMB. Compared with the AMB-susceptible isolates
of A. terreus, the AMB-resistant isolates of A. terreus showed a lower level of AMB-
induced endogenous reactive oxygen species (ROS), which was an important cause
of AMB resistance. In this study, we obtained one AMB-resistant isolate of A. flavus,
with an AMB MIC of 32 µg/mL, which was sensitive to triazoles and echinocandins.
This isolate presented elevated endogenous ROS levels, which strongly suggested
that no contribution of decreased AMB-induced endogenous ROS for AMB-resistance,
opposite to those observed in A. terreus. Further, we confirmed that the elevated
endogenous ROS contributed to the sensitivity of the AMB-resistant A. flavus isolate
to triazoles and echinocandins. Further investigation is needed to elucidate the causes
of elevated endogenous ROS and the resistance mechanism to AMB in A. flavus.

Keywords: Aspergillus flavus, amphotericin B, reactive oxygen species, triazoles, echinocandins

INTRODUCTION

Invasive aspergillosis (IA) is an important opportunistic fungal infection caused by Aspergillus
with high mortality rates. Over the past few decades, the incidence of IA has been rising with the
increasing number of immunosuppressed patients (Brown et al., 2012). Aspergillus flavus has been
frequently reported as the second leading cause of IA, as well as the leading cause in certain tropical
countries (Rudramurthy et al., 2019).

At present, there are three main classes of antifungal drugs used for the treatment of IA (Perlin
et al., 2017): (i) polyenes, such as amphotericin B (AMB); (ii) triazoles, such as itraconazole (ITC),
voriconazole (VRC) and posaconazole (POS); and (iii) echinocandins, such as caspofungin (CAS)
and micafungin (MFG). Among them, AMB stood out due to its broad activity spectrum and less
likely developed drug resistance. AMB has been a clinically important therapy option for a range of
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invasive fungal diseases, including IA, since it was first approved
in the 1950s (Perlin et al., 2017). Although dose-dependent toxic
side effects, such as nephrotoxicity, limit the use of AMB,
the lipid formulations of AMB with equal antifungal activity
were therefore developed to reduce these toxicity issues (Stone
et al., 2016; Grazziotin et al., 2018). Although AMB resistance
is rare, the pathogenic A. terreus is intrinsically resistant to
AMB (Vaezi et al., 2018) and the reports of the AMB-resistant
A. fumigatus and A. flavus were also notable (Ashu et al., 2018;
Rudramurthy et al., 2019). Moreover, in vitro resistance to AMB
was associated with poor outcomes in IA patients treated with
AMB (Hadrich et al., 2012). Therefore, it is important to elucidate
the mechanisms of AMB resistance.

Until now, the mode of antifungal action of AMB has not been
well understood, and the mechanisms of AMB resistance also
need to be elucidated. In addition to binding to ergosterol directly
(Gray et al., 2012) and forming ion channels (Kristanc et al., 2019)
thereby disrupting the structural integrity of cell membranes,
several studies have highlighted that AMB exert antifungal
activity by inducing endogenous reactive oxygen species (ROS)
production, therefore resulting in oxidative damage and fungal
cell death (Belenky et al., 2013; Mesa-Arango et al., 2014;
Shekhova et al., 2017). Studies on A. terreus, intrinsic resistance
to AMB, revealed that the AMB-resistant clinical isolates of
A. terreus could handle better with AMB-induced oxidative stress
and thus showed a lower level of AMB-induced endogenous ROS,
compared with AMB-susceptible clinical isolates of A. terreus
(Blatzer et al., 2015; Jukic et al., 2017). These studies are
important for understanding the mechanisms of resistance to
AMB in pathogenic fungi, including A. flavus.

In this study, we screened the susceptibility of clinical
isolates of A. flavus to AMB by using the broth microdilution
method according to the Clinical and Laboratory Standards
Institute (CLSI) M38-A3 guideline. From 117 clinical isolates
of A. flavus, we obtained an AMB-resistant A. flavus isolate.
To investigate the role of ROS in AMB resistance in this
isolate, the sensitivity to oxidative stress and endogenous ROS
levels with or without exposure to AMB were determined.
Meanwhile, the expression level and activities of enzymes
involved in ROS detoxification were also investigated. In
addition, the endogenous ROS levels induced by triazoles and
echinocandins were also measured, and the ROS scavenger
N-acetylcysteine (NAC) was used to investigate the effect of
ROS levels on in vitro antifungal susceptibility in AMB-resistant
A. flavus isolate.

MATERIALS AND METHODS

Antifungal Susceptibility Testing
Antifungal susceptibility testing by the broth microdilution
method was performed according to the recommendations of
the CLSI M38-A3 document (Clinical and Laboratory Standards
Institute (CLSI)., 2017), and the tested drugs included were ITC,
VRC, POS, CAS, MFG (all from Harveybio Gene Technology
Co., Ltd., Beijing, China) and AMB (North China Pharmaceutical
Co., Ltd., Shijiazhuang, China). Briefly, antifungal drugs were

dispensed into 96-well plates at final concentration ranges
of 0.0625–32 µg/mL for AMB, 0.0313–16 µg/mL for ITC,
VRC, and POS, and 0.008–4 µg/mL for CAS and MFG. All
isolates of A. flavus were subcultured on potato dextrose agar
(PDA) at 35◦C for 3 to 7 days to yield good conidiation.
Conidia were harvested by slightly scraping the surface of the
A. flavus colonies with a sterile cotton swab and suspending
the colonies in sterile saline solution with 0.05% Tween-20.
Heavy particles were allowed to settle for 5 min, after which
the upper homogenous suspensions were used as inoculum
suspensions. Inoculum suspensions were diluted in RPMI 1640
medium at a final concentration of 1 × 104 CFU/mL, as
determined by a hemocytometer, and transferred into 96-
well plates containing drug dilutions. The 96-well plates were
incubated at 35◦C and examined visually for MIC (after 48 h)
and MEC (after 24 h) determinations. The MIC endpoints
for AMB and triazoles were determined as the lowest drug
concentration that resulted in a 100% reduction in growth
compared with that of the drug-free controls. The MEC
endpoints for echinocandins were determined as the lowest drug
concentration that led to the growth of small, rounded, compact
hyphal forms compared with the hyphal growth seen in the
growth control well.

Antifungal susceptibility testing by E-test was performed
according to the manufacturer’s instructions. Briefly, inoculum
suspensions at a final concentration of 1 × 106 CFU/mL were
inoculated on the entire surface of each 90-mm plate containing
25 mL of RPMI 1640 medium (in the presence or absence
of 15 mM NAC) with a sterile cotton swab. The E-test strips
(Autobio, Zhengzhou, China) were placed on the center of the
plate and incubated at 35◦C. The MIC or MEC (for CAS only)
was determined from the inhibition ellipse that intersected the
scale on the strip after 48 h.

Antifungal susceptibility testing by disk diffusion was
performed on non-supplemented Muller-Hinton (NMH) agar
refer to the method described previously (Qiao et al., 2007).
When necessary, a 15 mM concentration of the antioxidant NAC
was dissolved in NMH medium. Disks prepared in-house of AMB
(50 µg), ITC (10 µg), VRC (5 µg), POS (5 µg), CAS (5 µg), and
MFG (5 µg) were placed onto the surface of the inoculated (the
same method as described in the E-test) NMH plate. The plates
were incubated at 35◦C, and the inhibition zone diameter was
determined after 48 h.

Testing of Sensitivity to Oxidative Stress
Based on the reported studies that AMB-resistant A. terreus can
handle oxidative stress better, two A. terreus clinical isolates with
different susceptibilities to AMB, the AMB-susceptible A. terreus
isolate BMU09523 (MIC = 2 µg/ml) and the AMB-resistant
A. terreus isolate BMU05143 (MIC = 8 µg/mL) were included
for comparison. We tested the sensitivity of A. flavus isolates
and A. terreus isolates to H2O2 by spot assay. H2O2 at a final
concentration of 1 mM was supplemented in PDA medium
with or without antifungal drugs. Serially diluted inoculum
suspensions (2 µl) were spotted onto PDA plates and incubated
at 35◦C for 48 h.
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TABLE 1 | Primers used in this study.

Locus tag Gene ID Sequence (5′–3′)

AFLA_056170 catA TGTGAAGGTCGCTACGTCTG

ACGCTTGTAGTTCCGATGCT

AFLA_100250 cat CGAGACACTGGCTCATTTCA

ACCGGTGGTACTGATTCTGC

AFLA_090690 cat1 CTCCAAGCTCGTCAAGTTCC

GATCGAAGCCAAACTTCAGC

AFLA_122110 cat2 TCAATCAGATGGAGCCTGTG

GCCGGGTAGTAAACACTCCA

AFLA_096210 cat3 ATAATGTCGGTCGCAAGTCC

CTTCGCATACTCTGGTGCAA

AFLA_034380 cat4 TGAGACTCTCGCCCATTTCT

CCCAGTCCAAGTTACCCTCA

AFLA_044930 sod1 ATTGAAGGCTACGGTGTTGG

CCCTCTTTGCTCTTCGACAC

AFLA_068080 sod2 GCGACATAAGCGGAAAACAT

GTCTTCCTTCGCCTCTTCCT

AFLA_033420 sod3 ATGGAAATCCACCACCAAAA

AGAGGGAGTGGTTGATGTGG

AFLA_027580 sod4 ACTCTGCCTGACCTGGCTTA

AGTGGTGATGTCCTCCTTGG

AFLA_088150 sod5 GAGATGGCCTCCGTATTCAA

CATCAATCCTTCCCTCTCCA

AFLA_099000 sod6 CACCAGTTCGGTGACAACAC

GTACGGCCAAGTACGCTCTC

Measurement of Endogenous ROS Level
The endogenous ROS level of the AMB-resistant A. flavus isolate
was determined by 2′,7′-dichlorofluorescin diacetate (DCF-DA)
as previously described (Shekhova et al., 2017). In brief, 100 µL
conidial suspensions at a concentration of 1× 104 CFU/mL were
dispensed into flat-bottom 96-well plates, followed by incubation
at 37◦C for 18 h. After a washing step with phosphate buffered
saline (PBS), the cells were stained with 10 µM DCF-DA for
30 min at 37◦C in the dark. After washing with PBS, different
antifungal drugs prepared in PBS were added to the cells. PBS was
used as a negative control and 2 mM H2O2 was used as a positive
control. The fluorescence intensity (excitation filter at 485 nm
and emission filter at 530 nm) was measured by a microtiter plate
reader (Infinite 200 Pro, Tecan, Switzerland) and observed under
fluorescence microscope simultaneously at 37◦C. The maximum
fluorescence intensity observed after 2 h of incubation with drugs
was recorded as a reference to the endogenous ROS level.

Assessment of Genes Encoding
Enzymes Involved in ROS Detoxification
by RT-qPCR
To identify homologs of enzymes involved in ROS detoxification
in A. flavus, the amino acid sequences of catalases (CATs) and
superoxide dismutases (SODs) in A. fumigatus and A. terreus
(Jukic et al., 2017) were used as queries to perform BLASTP
analysis1 in the genome database of A. flavus. The primers

1https://blast.ncbi.nlm.nih.gov/Blast.cgi

used in Reverse transcription-quantitative PCR (RT-qPCR) were
designed on the Primer3Plus2. The identified putative genes
encoding enzymes involved in ROS detoxification in A. flavus and
the primers are listed in Table 1.

For assessment of expression of genes encoding enzymes
involved in ROS detoxification, a total of 1 × 106 CFU conidia
were dispensed into Aspergillus minimal medium followed by
incubation at 37◦C for 18 h on an orbital shaker at 200 rpm.
Different antifungal drugs prepared in PBS or PBS were added at
37◦C for an additional 2 h on an orbital shaker at 200 rpm. Then
the hyphae were harvested and total RNA was extracted following
liquid nitrogen crush using TRIzol reagent (Invitrogen). cDNA
was synthesized using an Advantage RT-for-PCR kit (Clontech)
according to the manufacturer’s instructions. RT-qPCR was
performed on an Applied Biosystems ViiA7 Real-Time PCR
system using SYBR green reagent (Applied Biosystems). The
cycling conditions were as follows: a 10-min initial denaturation
at 95◦C, followed by 40 cycles of denaturation at 95◦C for
15 s, and annealing/extension at 60◦C for 10 s. Changes in
gene expression were calculated using the 2−11Ct method
(Schmittgen and Livak, 2008). All experiments were performed
in triplicate from biological triplicates.

Determination of CAT, SOD and GSH-Px
Activity
To determine CAT, SOD and glutathione peroxidase (GSH-Px)
activity of the A. flavus isolate, the hyphae were harvested as
conditions described in the RT-qPCR assay. The enzyme activity
was determined using the CAT activity assay kit (Abcam), the
SOD activity assay kit (Abcam), and GSH-Px activity assay kit
(Abcam) separately according to the manufacturer’s instructions.
The relative enzyme activities (%) were calculated relative to
those of A. flavus NRRL3357 under basal conditions.

Statistical Analysis
Experiments were performed at least three independent
biological replicates. A Welch two-sample t test was used
for significance testing of two groups. P-values < 0.05 were
considered statistically significant.

RESULTS

The AMB-Resistant Isolate of A. flavus
Showed Sensitivity to Triazoles and
Echinocandins
From 117 clinical isolates of A. flavus, we obtained one AMB-
resistant isolate of A. flavus, named BMU09525, with an
AMB MIC of 32 µg/mL. The MICs of ITC, VRC, and POS
against A. flavus BMU09525 were 0.06, 0.25, and 0.03 µg/mL,
respectively. The MECs of CAS and MFG for A. flavus
BMU09525 were both 0.008 µg/mL (Table 2). The results
showed that the AMB-resistant isolate of A. flavus BMU09525
was sensitive to triazoles (ITC, VRC, POS) and echinocandins

2https://primer3plus.com/cgi-bin/dev/primer3plus.cgi
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TABLE 2 | Antifungal susceptibility testing by the broth microdilution method
(µg/mL), E-test (µg/mL), and disk diffusion (mm).

Methods NAC NRRL3357 BMU09525

AMB BMM − 2 32

E-test − 2 >32

+ 2 >32

DD − 15 0

+ 12 0

ITC BMM − 0.25 0.06

E-test − 2 0.25

+ 4 0.75

DD − 33 47

+ 29 34

VRC BMM − 0.5 0.25

E-test − 0.032 0.024

+ 0.064 0.064

DD − 40 51

+ 34 44

POS BMM − 0.125 0.03

E-test − NA NA

+ NA NA

DD − 32 46

+ 33 30

CAS BMM − 0.03 0.008

E-test − 0.25 0.064

+ 0.5 0.25

DD − 27 25

+ 23 22

MFG BMM − 0.03 0.008

E-test − NA NA

+ NA NA

DD − 40 36

+ 40 28

BMM, broth microdilution method; DD, disk diffusion; NA, E-test strips
were not available.

(CAS, MFG). Similar results were obtained by the disk diffusion
method and E-test (Figure 1 and Table 2). Interestingly, when
testing echinocandins against the A. flavus strain NRRL3357,
microcolonies within a well-defined zone of inhibition could be
seen, while testing echinocandins against AMB-resistant isolate
of A. flavus, the inhibition ellipse of E-test strip (CAS) or the
inhibition zone of the disk (CAS and MFG) was as clean as
that seen in triazoles against the AMB-resistant A. flavus isolate,
suggesting that echinocandins may exert a fungicidal effect,
instead of a fungistatic effect, against the AMB-resistant isolate
of A. flavus.

The AMB-Resistant Isolate of A. flavus
Showed Hypersensitivity to Oxidative
Stress, Opposite to That Observed in the
AMB-Resistant A. terreus
The AMB-resistant A. terreus isolate showed better tolerance to
H2O2 than the AMB-susceptible A. terreus isolates (Figure 2A),
consistent with previous studies on A. terreus. Surprisingly,

when exposed to H2O2, the AMB-resistant A. flavus isolate
showed more obvious growth inhibition than the A. flavus
strain NRRL3357 (Figure 2B). When H2O2 was combined
with antifungals, the A. flavus strain NRRL3357 showed merely
slight growth inhibition compared to that using antifungals
alone. However, H2O2 could significantly enhance the activity
of antifungals against the AMB-resistant A. flavus isolate
(Figure 2B). The above results indicated that the AMB-resistant
A. flavus isolate was hypersensitive to oxidative stress, in contrast
to the case reported for A. terreus. In addition, a decreased growth
rate of the AMB-resistant A. flavus isolate could be observed
compared to the A. flavus strain NRRL3357 (Figure 2B).

The AMB-Resistant Isolate of A. flavus
Showed Elevated Basal Endogenous
ROS
The basal endogenous ROS level of the AMB-resistant A. terreus
isolate was comparable to that of the AMB-susceptible A. terreus
isolate, while the basal endogenous ROS level of the AMB-
resistant A. flavus isolate was significantly higher than that of
both the A. flavus NRRL3357 and A. terreus (Figures 3, 4). The
elevated basal endogenous ROS in AMB-resistant A. flavus isolate
suggested that the mechanisms of AMB resistance in AMB-
resistant A. flavus isolate may differ from those mediating AMB
resistance in A. terreus.

The AMB-Resistant Isolate of A. flavus
Showed Comparable ROS Detoxification
Enzyme Activities
Because the AMB-resistant A. flavus isolate showed elevated
basal endogenous ROS level and was sensitive to oxidative stress,
we further tested the expression level of sod and cat genes in
A. flavus. A total of 6 sod and 6 cat genes were investigated in
A. flavus (Figure 5 and Table 1). And the ROS detoxification
enzyme activities, including CAT, SOD, and GSH-Px (Figure 6),
were also measured.

Except for cat gene, the basal level of catA, cat1, cat2, cat3, and
cat4 in the AMB-resistant A. flavus isolate were mildly higher
than that of the A. flavus NRRL3357. Upon H2O2 exposure,
catA, cat2 and cat3 expression level increased in both the AMB-
resistant A. flavus isolate and the A. flavus NRRL3357, while no
significant changes of cat, cat1, and cat4 in both two strains.
However, a different picture was observed in sod genes expression
level. In the AMB-resistant A. flavus isolate, only sod2 showed a
higher basal level than that of the A. flavus NRRL3357, while the
basal expression level of sod1, sod5 and sod6 were less than that of
the A. flavus NRRL3357. The basal expression levels of both sod3
and sod4 did not differ between these two A. flavus strains. After
exposure to H2O2, sod1, sod2, sod5, and sod6 showed a significant
increase in the AMB-resistant A. flavus isolate, while only sod2
showed elevated transcript level in the A. flavus NRRL3357.

Next, we tested the enzyme activities of CAT, SOD, and
GSH-Px using the commercially available kits (Figure 5). The
basal enzyme activities of CAT, SOD or GSH-Px in the AMB-
resistant A. flavus isolate were not significantly different from
those in the A. flavus NRRL3357. After exposure to H2O2,
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FIGURE 1 | In vitro antifungal susceptibility testing. (A) In vitro antifungal susceptibility testing determined by disk diffusion. The antioxidant N-Acetylcysteine (NAC)
was added at a concentration of 15 mM. Disks of AMB (50 µg), ITC (10 µg), VRC (5 µg), POS (5 µg), CAS (5 µg), and MFG (5 µg) were placed onto the NMH
medium. Plates were incubated at 35◦C for 48 h. (B) In vitro antifungal susceptibility testing determined by E-test. Plates were incubated at 35◦C for 48 h.

FIGURE 2 | The sensitivity to H2O2 determined by spot assay. Hydrogen peroxide (H2O2) at a concentration of 1 mM was supplemented in PDA medium with or
without antifungal drugs. (A) A total of 2, 20, 200, and 2 × 103 conidia of A. terreus were spotted onto PDA medium, respectively. (B) A total of 5, 50, 500, and
5 × 103 conidia of A. flavus were spotted onto PDA medium, respectively. Plates were incubated at 35◦C and documented after 48 h.

the activities of all these enzymes showed an increase but
remained comparable between the two strains. Nevertheless,
the increase of enzyme activities of CAT and GSH-Px in

the A. flavus NRRL3357 was more significant than that
in the AMB-resistant A. flavus isolate, which showed only
a mild increase.
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FIGURE 3 | Level of endogenous ROS determined by DCF-DA assay. (A) The level of basal endogenous ROS. (B) The level of endogenous ROS induced by
antifungals. Conidial were incubated at 37◦C for 18 h before stained with 10 µM DCF-DA for 30 min at 37◦C in the dark. After a wash step, different antifungal drugs
prepared in PBS were added to the cells. The fluorescence intensity peak was observed after 2 h of incubation with drugs.

Overall, these results indicate that the basal activities of the
enzyme involved in ROS detoxification in the AMB-resistant
A. flavus isolate were comparable to those in the A. flavus
NRRL3357, despite the different expression levels were observed.
And the elevated basal endogenous ROS level in the AMB-
resistant A. flavus isolate may not be related to abnormal
ROS detoxification enzyme activities. When exposure to H2O2,
however, the less remarkable increase in enzyme activities of CAT
and GSH-Px in the AMB-resistant A. flavus isolate may result in
hypersensitivity to oxidative stress.

Triazoles and Echinocandins, Instead of
AMB, Could Induce the Production of
Endogenous ROS in the AMB-Resistant
Isolate of A. flavus
To further investigate the relationships between ROS levels
and antifungal susceptibilities in the AMB-resistant A. flavus
isolate, the endogenous ROS levels induced by antifungals
were determined (Figures 3, 4). With exposure to AMB, the
endogenous ROS level of the AMB-susceptible A. terreus isolate
was significantly increased, while that in the AMB-resistant
A. terreus isolate increased slightly, consistent with the literature
reports on A. terreus. Surprisingly, the endogenous ROS level
of the A. flavus strain NRRL3357 increased slightly, while the
endogenous ROS level of the AMB-resistant A. flavus isolate even
showed a minor decrease despite the ROS level in the AMB-
resistant A. flavus isolate being significantly higher than that of
the A. flavus strain NRRL3357. With exposure to triazoles and
echinocandins, the endogenous ROS levels of both A. terreus
and A. flavus isolates increased to different degrees. These
results strongly suggested no contribution of AMB-induced
endogenous ROS to AMB resistance in the AMB-resistant
A. flavus isolate, in contrast to the situation observed in A. terreus.
In addition, the elevated basal endogenous ROS in the AMB-
resistant A. flavus isolate might result in its sensitivity to triazoles
and echinocandins.

ROS Elimination by the Antioxidant NAC
Decreased the Sensitivity of the
AMB-Resistant A. flavus Isolate to
Triazoles and Echinocandins
The antioxidant NAC can act as a non-specific sulfhydryl donor
to scavenge intracellular ROS. Adding NAC to the medium did
not show any impact on the susceptibility to AMB, corresponding
to the result that no AMB-induced ROS production in the
AMB-resistant A. flavus isolate (Figure 1A and Table 2).
However, adding NAC to the medium reduced the inhibition
zone of triazoles and echinocandins, indicating the decreased
susceptibility of AMB-resistant A. flavus isolate to triazoles and
echinocandins (Figure 1A and Table 2). Consistent results were
obtained by E-test (Figure 1B and Table 2), which showed
that NAC increased the MICs of triazoles and the MECs of
echinocandins obtained from E-test strips. The above results
confirmed our assumption that the increased level of endogenous
ROS contributes to the sensitivity of the AMB-resistant A. flavus
isolate to triazoles and echinocandins. Interestingly, the addition
of NAC decreased the susceptibility of the A. flavus strain
NRRL3357 to ITC, VRC, and CAS, similar to the AMB-
resistant A. flavus isolate. Although adding NAC decreased the
susceptibility of the A. flavus strain NRRL3357 to AMB, the
addition of NAC did not change its susceptibility to POS or MFG,
as no alteration in the inhibition zone diameter was observed
by disk diffusion.

DISCUSSION

Several studies have reported that AMB can induce endogenous
ROS production as its mode of action (Belenky et al., 2013; Mesa-
Arango et al., 2014; Shekhova et al., 2017). Due to the intrinsic
resistance of A. terreus to AMB, the impact of endogenous
ROS production on the susceptibility of this species to AMB
has been closely studied (Posch et al., 2018). Compared with
AMB-susceptible A. terreus isolates, AMB-resistant A. terreus
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FIGURE 4 | Fluorescence microscope images showing endogenous ROS in (A) A. flavus. (B) A. terreus. Conidial were incubated at 37◦C for 18 h before stained
with 10 µM DCF-DA for 30 min at 37◦C in the dark. After a wash step, Fluorescence images were recorded after 2 h of incubation with drugs. AMB (32 µg/ml), ITC
(1 µg/ml), VRC (1 µg/ml), POS (1 µg/ml), CAS (0.5 µg/ml), MFG (0.5 µg/ml).

FIGURE 5 | The expression level of (A) cat genes and (B) sod genes in A. flavus. A total of 1 × 106 CFU A. flavus conidia were preincubated in Aspergillus minimal
medium for 18 h at 37◦C and 200 rpm before H2O2 (1 mM) was added for 2 h. Then the hyphae were harvested and total RNA was extracted following liquid
nitrogen crush. Gene expression was normalized to that of beta-tubulin according to the 2-11Ct method. Data are presented as means ± standard deviations for
three independent experiments with technical duplicates.
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FIGURE 6 | Determination of the enzyme activities of SOD, CAT and GSH-Px.
A total of 1 × 106 CFU A. flavus conidia were preincubated in Aspergillus
minimal medium for 18 h at 37◦C and 200 rpm before H2O2 (1 mM) was
added for 2 h. Then the hyphae were harvested and enzyme activities were
determined according to the manufacturer’s instructions. The relative enzyme
activities (%) were calculated relative to those of A. flavus NRRL3357 under
basal conditions. CAT, catalase; SOD, superoxide dismutase; GHS-Px,
glutathione peroxidase.

isolates presented decreased AMB-induced ROS production in
mitochondria (Blatzer et al., 2015) and higher ROS-detoxifying
enzyme activity (Jukic et al., 2017). However, the AMB-resistant
isolate of A. flavus presented an elevated level of endogenous
ROS regardless of exposure to AMB and was hypersensitive to
oxidative stress. Further studies revealed that the less remarkable
increase in enzyme activities of CAT and GSH-Px may result in its
hypersensitivity to oxidative stress, compared to the observations
in A. terreus (Blatzer et al., 2015; Jukic et al., 2017). These
results suggested that the higher activity of ROS-detoxifying
enzyme did not contribute to resistance to AMB in the AMB-
resistant isolate of A. flavus. The above results indicate that
the mechanisms underlying AMB resistance in AMB-resistant
A. flavus isolate differ from those mediating AMB resistance
in A. terreus. Although AMB resistance has not been reported
to be associated with the missing ergosterol in Aspergillus spp.
(Blum et al., 2008, 2013), the absence of ergosterol in Candida
spp., caused by mutations in genes of the ergosterol biosynthesis
(Geber et al., 1995; Sanglard et al., 2003; Martel et al., 2010a;
Vincent et al., 2013; Silva et al., 2020), leading to AMB resistance
and abnormal membrane structure and function, which also
drastically diminished tolerance to oxidative stress (Vincent et al.,
2013). These studies are consistent with the phenotypes observed
in the AMB-resistant isolate of A. flavus. Further membrane
sterol profile analysis is needed to elucidate its mechanisms
of AMB resistance.

Triazoles exert antifungal effects by inhibiting sterol
14α-demethylase (CYP51A/ERG11), which prevents ergosterol
biosynthesis and causes the accumulation of toxic sterols (Martel
et al., 2010b; Warrilow et al., 2010, 2019). Echinocandins
target the β-1,3-glucan synthase of the fungal cell wall and
inhibit the synthesis of β-1,3-D glucan on the cell wall (Perlin,
2015). In addition to the above targets, several studies have
reported that triazoles (Shirazi et al., 2013; Shekhova et al., 2017;
Lee and Lee, 2018) and echinocandins (Belenky et al., 2013;
Hao et al., 2013; Delattin et al., 2014) are capable of inducing
endogenous ROS production. The AMB-resistant A. flavus

isolate was sensitive to triazoles and echinocandins, while having
elevated basal endogenous ROS. Further, H2O2 significantly
enhanced the antifungal effects of triazoles and echinocandins
in vitro, showing a synergistic effect against the AMB-resistant
A. flavus isolate. Thus, we hypothesized that sensitivity of
AMB-resistant A. flavus isolate to triazoles and echinocandins
may be caused by elevated endogenous ROS levels. The
antioxidant NAC can act as a non-specific sulfhydryl donor
and is widely used to scavenge intracellular ROS (Dringen
and Hamprecht, 1999; Dekhuijzen, 2004). Scavenging ROS
by NAC decreased the sensitivity of AMB-resistant A. flavus
isolate to triazoles and echinocandins confirmed our hypothesis.
Interestingly, NAC did not affect the susceptibility of A. flavus
strain NRRL3357 to POS and MFG, suggesting that ROS, albeit
can be induced by POS and MFG, may not be necessary in
antifungal mode of action.

Reactive oxygen species are derived from oxygen and
known to be of biological importance in eukaryotic cells
(Sena and Chandel, 2012). Mitochondria possess the oxidative
phosphorylation system, which is the major origin of ROS
generation (Zorov et al., 2014). Inappropriate electron transfer
reactions in mitochondrial electron transport chain can produce
excessive ROS. These highly reactive and toxic ROS can
cause cellular damage, ultimately resulting in cell death (Zorov
et al., 2014). Correspondingly, ROS can be eliminated by
multiple antioxidant enzymes in eukaryotic cells, including SOD
(Lambou et al., 2010), CAT (Shibuya et al., 2006), and GSH-
Px (Margis et al., 2008). Studies in A. terreus (Blatzer et al.,
2015; Jukic et al., 2017), the AMB-resistant A. terreus isolates
exhibited distinct basal expression levels of sod and cat genes
compared to the AMB-susceptible A. terreus isolates. However,
the basal enzyme activities of CAT and SOD of the AMB-
resistant A. terreus isolates were already higher than that of
the AMB-susceptible A. terreus isolate. In this study, the two
A. flavus strains also exhibited distinct basal expression levels
of sod and cat genes. The basal expression level of catA, cat3,
cat4, and sod2 in the AMB-resistant A. flavus isolate were
higher than that of the A. flavus NRRL3357, while the basal
expression level of cat, sod1, sod5, and sod6 were less than
that of the A. flavus NRRL3357. However, the basal enzyme
activities of CAT and SOD in the AMB-resistant A. flavus
isolate were comparable to those in the A. flavus NRRL3357.
Taken together, although no elevated enzyme activity was
observed in the AMB-resistant A. flavus isolate in the basal
condition as reported in the AMB-resistant A. terreus, the
basal enzyme activity in the AMB-resistant A. flavus isolate
was still comparable to the AMB-susceptible A. terreus isolates.
Therefore, it is reasonable to speculate that the elevated basal
endogenous ROS level is due to increased production rather than
impaired clearance in the AMB-resistant A. flavus isolate. Since
mitochondria are the main site of ROS production, it is likely
that the elevated endogenous ROS level in the AMB-resistant
A. flavus isolate may be caused by the dysfunction mitochondrial
which may lead to overproduction of ROS. Also, the slowed
growth observed in the AMB-resistant A. flavus isolate may be
also due to mitochondrial abnormalities. However, additional
studies are needed.
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In conclusion, our results showed that the AMB-resistant
A. flavus isolate presented elevated endogenous ROS levels,
an opposite observation to that mediating AMB-resistance in
A. terreus. The elevated endogenous ROS contributed to the
sensitivity of the AMB-resistant A. flavus isolate to triazoles
and echinocandins. However, further investigation is needed
to elucidate the causes of elevated endogenous ROS and the
resistance mechanism to AMB in A. flavus.
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