

EDITORIAL Open Access

Check for updates

Standard: Human gastric organoids

Fan Hong^{1†}, Ronghui Tan^{1†}, Ting Wang^{2,4†}, Nanshan Zhong^{3†}, Hongling Zhao⁴, Rui-hua Xu^{5,6}, Lin Shen⁷, Yingbin Liu^{8,9}, Xuebiao Yao¹⁰, Dongxi Xiang^{8,9}, Lijian Hui^{11,12}, Jianping Xiong^{14,15}, Dong Gao^{13,16,17}, Bing Zhao³, Zhifeng Miao^{18,19,20}, Jie Hao^{21,22}, Yong Li²³, Shijun Hu²⁴, Boqiang Fu²⁵, Guoqiang Hua^{26,27}, Lei Wang^{4,21}, Zhao-Lei Zeng⁵, Chong Chen²⁸, Jianmin Wu^{29,30}, Changlin Wang^{31,32}, Chunnian Wang³³, Xianbao Zhan³⁴, Chen Song³⁵, Chunping Yu³⁶, Yingying Yang³⁷, Gengming Niu³⁸, Yalong Wang^{1*}, Tongbiao Zhao^{4,22,23*} and Ye-Guang Chen^{1,2,3*}

Abstract

Organoid technology provides a transformative approach to understand human physiology and pathology, offering valuable insights for scientific research and therapeutic development. Human gastric organoids, in particular, have gained significant interest for applications in disease modeling, drug discovery, and studies of tissue regeneration and homeostasis. However, the lack of standardized quality control has limited their extensive clinical applications. The "Human Gastric Organoids" is part of a series of guidelines for human gastric organoids in China, which establishes comprehensive standards on terminology, technical specifications, testing methods, inspection rules, usage instructions, labeling, transportation, and storage, developed by experts from the Chinese Society for Cell Biology and its branch societies. Released on October 29, 2024, this guideline aims to establish standardized protocols, enhance institutional practices, and promote international standardization for clinical and research applications of human gastric organoids.

Keywords Standard, Human stomach, Gastric organoids, Terms, Definitions, Technical requirements, Labeling, Transportation, Storage

Scope

This document specifies the ethical requirements, technical requirements, and testing methods, inspection rules, usage instructions, labeling, transportation, and storage for human gastric organoids.

This standard applies to the production and test of human gastric organoids derived from human gastric epithelial tissue and human pluripotent stem cells.

[†]Fan Hong, Ronghui Tan, Ting Wang and Nanshan Zhong contributed equally to this paper.

*Correspondence:
Yalong Wang
wangy116@tsinghua.org.cn
Tongbiao Zhao
tbzhao@ioz.ac.cn
Ye-Guang Chen
ygchen@tsinghua.edu.cn
Full list of author information is available at the end of the article

Normative references

The following referenced documents are indispensable for the application of these documents. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including all amendments) applies.

Pharmacopoeia of the People's Republic of China (2020 Edition, Part III).

Terms and definitions

The following terms and definitions apply to this document.

Organoids

Three-dimensional (3D) structures that grow from stem cells or progenitor cells in vitro, are capable of self-organization and renewal, consist of organ-specific cell types and can mimic the in vivo architecture and specific

© The Author(s) 2025. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and given intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativeccommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativeccommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Hong et al. Cell Regeneration (2025) 14:2 Page 2 of 9

function of the original tissue (Clevers 2016; Fujii and Sato 2021; Kim et al. 2020; Wang et al. 2023).

Human gastric organoids

Organoids that develop from human gastric stem cells of normal tissue or pluripotent stem cells, possess a variety of mature gastric epithelial cell types (Bartfeld et al. 2015; McCracken et al. 2017; McCracken et al. 2014).

Organoid passage

Process of dissociating existing organoids into smaller fragments, or single cell via physical, chemical, or biological methods, and keeping them growing in vitro under the same culture conditions (Bartfeld et al. 2015).

Organoid cryopreservation

Freezing process by which organoids are maintained at low temperature in an inactive state for maintaining cellular composition, gene expression, and functional properties.

Organoid thawing

Process of bringing frozen organoids from an inactive to an actively growing state.

Gastric stem cells

Cells that can self-renew and possess the ability to differentiate into all types of gastric epithelial cells (Barker et al. 2010; Kim and Shivdasani 2016; McCracken et al. 2017; Mills and Shivdasani 2011; Tan et al. 2020).

Gastric stem cell differentiation

Process of gastric stem cells dividing into their daughter cells, including surface mucous cells, parietal cells, chief cells, mucous neck cells and enteroendocrine cells, et al. (McCracken et al. 2017; Wolffling et al. 2021).

Gastric proliferative cells

Cells that are initially derived from gastric stem cells, characterized by high proliferative capacity and the ability to differentiate into various mature gastric epithelial cell types (Kim and Shivdasani 2016; Mills and Shivdasani 2011).

Gastric surface mucous cells

Gastric epithelial cells located at the top of the gastric glands that secrete mucus, serving as the primary protective barrier of the gastric mucosa against stomach acid damage (Willet and Mills 2016).

Gastric parietal cells

Cells in the neck region of the acid-secreting glands in the gastric body and antrum, specialized gastric epithelial cells abundant in tubulovesicles and mitochondria, that produce gastric acid and intrinsic factor, playing a crucial role in food digestion and the absorption of essential minerals such as phosphate, calcium, and iron (Miao et al. 2020; Yao and Smolka 2019; Yuan et al. 2017).

Gastric chief cells

Cells located at the base of the acid-secreting glands in the gastric body and antrum are specialized gastric epithelial cells, rich in rough endoplasmic reticulum, zymogen granules, and mitochondria, and are primarily responsible for synthesizing and releasing pepsinogen (Bredemeyer et al. 2009; Goldenring et al. 2011; Ramsey et al. 2007).

Gastric mucous neck cells

Cells typically located in the neck or base of the gastric glands, are specialized gastric epithelial cells responsible for secreting mucus, with cytoplasm filled with mucin granules, contributing to the gastric mucosal barrier (Bredemeyer et al. 2009; Ramsey et al. 2007).

Gastric enteroendocrine cells

Gastric epithelial cells, with an irregular conical shape, typically dispersed singly among others, secrete gastric hormones in response to stimuli such as luminal food or pH changes, with cytoplasm containing numerous secretory granules, and can be further subdivided into distinct subtypes of gastric enteroendocrine cells, each with specific secretory functions (Busslinger et al. 2021; Li et al. 2014; Mitrovic et al. 2012).

General requirements

Raw materials

The acquisition of raw materials must comply with domestically recognized ethical standards and local laws.

Depending on the intended use, donor evaluation criteria should be established for the research and production of human gastric organoids.

Process and information management

Critical factors influencing product quality during the procurement, preparation, testing, transportation, and storage of human gastric organoid raw materials should be documented, and a unique identification system should be implemented to ensure traceability throughout the process.

The minimum retention period for records must be clearly defined to ensure the integrity and security of documentation.

Hong et al. Cell Regeneration (2025) 14:2 Page 3 of 9

Technical requirements

Morphology

Human gastric organoids shall be cystic or bud-like, with a cavity in the middle and tightly contacting columnar epithelial cells on the outside under optical microscopy. The cavities and the edges of the junctions shall be clear, and the cells shall be transparent (Bartfeld et al. 2015).

Gastric organoids derived from human pluripotent stem cells should appear as vesicular or cystic under an optical microscope and possess glandular structures (McCracken et al. 2017).

Chromosomal karyotype

The chromosomal karyotype of human gastric organoids shall be 46, XY or 46, XX (Bartfeld et al. 2015).

Marker genes

Gastric organoids derived from human gastric corpus tissue and human pluripotent stem cells should express the marker genes *MKI67* for gastric proliferative cells, *MUC5AC* for gastric surface mucous cells, *ATP4B* for gastric parietal cells, *PGC* for gastric chief cells, *MUC6* for gastric mucous neck cells, and *CHGA* for gastric enteroendocrine cells. Additionally, gastric organoids derived from human gastric antrum tissue should also express the marker gene *LGR5* for gastric stem cells.

Cell composition

Gastric organoids derived from human gastric corpus tissue and human pluripotent stem cells should contain MKI67-positive gastric proliferative cells, MUC5AC-positive gastric surface mucous cells, ATP4B-positive gastric parietal cells, PGC-positive gastric chief cells, MUC6-positive gastric mucous neck cells, and CHGA-positive gastric enteroendocrine cells. Additionally, gastric organoids derived from human gastric antrum tissue should also contain LGR5-positive gastric stem cells.

The proportion of gastric proliferative cells should be no less than 10%, gastric surface mucous cells no less than 5%, gastric chief cells no less than 5%, gastric mucous neck cells no less than 10%, and gastric enteroendocrine cells no less than 1%.

Functional parameters

Human gastric organoids should possess the acidsecreting function of parietal cells and the pepsinogen-secreting function of chief cells (McCracken et al. 2017).

Culture and growth

Human gastric organoids derived from healthy donors shall be able to be passaged for at least 2 generations in vitro after the initial culture.

Compared to the last generation, the passaged organoids shall have the same morphology, viability, marker gene expression, cell composition and other characteristics (Bartfeld et al. 2015).

Organoids viability

After thawing, the number of viable gastric organoids should be no less than 50% of the number before cryopreservation, and the viable organoids shall be capable of being subcultured in vitro.

Microorganisms

Organoids shall be negative for fungi, bacteria, mycoplasma, and virus.

Identity

The identity of organoids shall match that of the donor tissue by STR analysis (Yang et al. 2024).

Test methods

Morphology

Observe organoid morphology by the inverted phase contrast microscope.

Chromosomal karyotype

The method in "Preparation and quality control of animal cells for the production of biological products" from the *Pharmacopoeia of the People's Republic of China* (2020 Edition, Part III) shall be followed.

Marker genes

The method can be found in Appendix A.

Cell composition

The method can be found in Appendix B.

Functional parameters

The acid-secreting function of parietal cells should be tested according to the method described in Appendix C.

The pepsinogen-secreting function of chief cells should be tested according to the method described in Appendix D.

Hong et al. Cell Regeneration (2025) 14:2 Page 4 of 9

Culture and growth

Organoids cultured in vitro can be photographed using optical microscopy, with a scale bar for measuring their diameter and performing quantitative analysis.

Organoids viability

Organoids viability shall be counted according to the method can be found in Appendix E.

Microorganisms

Bacteria and Fungi

The "1101 Sterility Inspection Method" in *Pharmaco-poeia of the People's Republic of China* (2020 Edition, Part III) shall be followed.

Mycoplasma

The "3301 Mycoplasma Inspection Method" in *Pharmacopoeia of the People's Republic of China* (2020 Edition, Part III) shall be followed.

Exogenous viral factors

The "3302 Exogenous Viral Factors Inspection Method" in *Pharmacopoeia of the People's Republic of China* (2020 Edition, Part III) shall be followed.

STR

The method can be found in Appendix F.

Instructions for use

The instructions should include at least the following information:

- a) Organoid code;
- b) Passage number;
- c) Organoid number;
- d) Production date;
- e) Batch number;
- f) Manufacturing organization;
- g) Storage conditions;
- h) Transportation conditions;
- i) Contact information;
- j) Usage instructions;
- k) Standard reference number;
- 1) Production address;
- m) Postal code;
- n) Precautions.

Note: Endotoxin results should be provided upon user request.

Labeling

The labels should include at least the following information:

- a) Organoid code;
- b) Passage number;

- c) Organoid number;
- d) Batch number;
- e) Manufacturing organization;
- f) Production date.

Transportation and Storage

Transportation

The transportation methods and conditions should be selected based on the requirements for the use of human gastric organoids to ensure their biological properties, safety, stability, and efficacy.

The transportation of human gastric organoids should consider, but not be limited to, factors such as the characteristics of the organoids, the container carrying the organoids, transportation route, conditions, equipment, methods, potential risks, and necessary safeguards.

The control measures for transportation conditions should include, but not be limited to, temperature range, vibration control, contamination prevention, equipment performance, and appropriate packaging.

Relevant inspection and technical guidance documents should be provided upon the user's request.

The package should be checked during transportation, and if necessary, additional freezing sources (e.g., dry ice and liquid nitrogen) should be added to maintain the appropriate transportation temperature.

Storage

Optimized cryopreservation protocols and methods should be employed to minimize damage to human gastric organoids during freezing and thawing processes, ensuring their normal functionality is minimally affected.

The cryopreservation information for human gastric organoids should be documented, including but not limited to:

- a) Organoid code;
- b) Batch number;
- c) Organoid number;
- d) Passage number;
- e) Freezing date;
- f) Cryoprotectant composition;
- g) Name of the operator.

The storage conditions for human gastric organoids should be documented, including but not limited to:

- a) Storage conditions;
- b) Storage date;
- c) Storage duration;
- d) Storage personnel.

Hong et al. Cell Regeneration (2025) 14:2 Page 5 of 9

Appendix A

Cell Type Marker Gene Test (Real-time Fluorescence Quantitative PCR Method)

A.1 Instruments

A.1.1 PCR-Cycler

A.1.2 Real-time fluorescence quantitative PCR-Cycler

A.2 Reagents

Unless otherwise specified, the reagents used shall be analytically pure, and the water used for testing shall be deionized water.

- A.2.1 Phosphate Buffer Saline (PBS): pH 7.4
- A.2.2 Commercial RNA extraction kit
- A.2.3 Commercial RNA reverse transcription kit
- A.2.4 Commercial fluorescence quantitative PCR kit
- A.2.5 qPCR primers of GAPDH and target genes

A.3 Testing protocol

A.3.1 Organoid sample preparation Aspirate the medium from the cultured organoids in vitro. Add an equal volume of PBS (A.2.1) and then aspirate. Repeat this step.

A.3.2 Organoid RNA extraction Perform organoid RNA extraction using the commercial RNA extraction kit (A.2.2) according to the kit instructions.

A.3.3 Organoid cDNA preparation One μg organoid RNA is used for organoid RNA reverse transcription using the PCR-Cycler (A.1.1) and the commercial RNA reverse transcription kit (A.2.3). Perform according to the kit and instrument instructions.

A.3.4 Gene expression determination The organoid RNA reverse transcription product from step A.3.3 is used for gene expression determination. Perform real-time fluorescence quantitative test using the real-time fluorescence quantitative PCR-Cycler (A.1.2), the commercial fluorescence quantitative PCR kit (A.2.4) and related qPCR primers (A.2.5) according to the kit and instrument instructions. Determine the Ct value by referring to the detection curve, then obtain the expression value of GAPDH (CtG) and target genes (CtM).

A.3.5 Analysis of target gene expression Taking GAPDH expression as a reference, obtain the expression level of target genes: X = CtM/CtG.

A.4 Calculation and analysis

Repeat the steps A.3.1 to A.3.5 for two more times. Calculate the expression levels of organoid target genes for three times, which are recorded as the average expression levels of organoid target genes.

A.5 Accuracy

The absolute difference of three independent measurements obtained under repeatability conditions shall not exceed 10% of the arithmetic mean.

Appendix B

Cell Composition Proportion Test (Immunofluorescence Staining Method)

B.1 Instruments

Laser confocal microscope.

B.2 Reagents

Unless otherwise specified, the reagents used shall be analytically pure, and the water used for testing shall be deionized water.

B.2.1 PBS: pH 7.4

B.2.2 Commercial immunofluorescence staining kit

B.2.3 Antibodies of target proteins

B.3 Testing protocol

B.3.1 Organoid sample preparation Aspirate the medium from the cultured organoids in vitro. Add an equal volume of PBS (B.2.1) and then aspirate. Repeat this step.

B.3.2 Organoid immunofluorescence staining Perform organoid immunofluorescence staining using the commercial immunofluorescence staining kit (B.2.2) and antibodies of target proteins (B.2.3) according to the kit instructions.

B.3.3 Observation of immunofluorescence staining positive cells The laser confocal microscope is used for observation and photography.

B.3.4 Analysis of target protein Calculate the number of DAPI as the total number of cells in organoids (M). Calculate the number of cells with positive signal of target protein (N). The cell proportion with positive signal of target protein is obtained as X = N/M.

B.4 Calculation and Analysis

Calculate the cell proportion with positive signal of target protein in at least 30 organoids, and the average cell proportion is recorded as the proportion of target cell type in organoids.

Appendix C

Detection of Acid Secretion Function (Stimulating the Organoids with Histamine and Staining with Acridine Orange)

C.1 Instruments

Laser scanning confocal microscopy

Hong et al. Cell Regeneration (2025) 14:2 Page 6 of 9

C.2 Reagents

Unless otherwise specified, the reagents used shall be analytically pure, and the water used for testing shall be deionized water.

C.2.1 PBS: pH 7.4

C.2.2 Commercial histamine

C.2.3 Commercial acridine orange

C.3 Testing protocol

C.3.1 Histamine Pretreatment of Organoids For organoids cultured in vitro, replace the medium with histamine-containing medium (100 μ M, from C.2.2) 30 minutes before staining. Incubate under normal culture conditions for 30 minutes.

C.3.2 Acridine Orange Staining of Organoids Remove the culture medium from the in vitro cultured organoids. Add an equal volume of PBS (C.2.1) to wash the organoids. Repeat once. Stain the organoids with commercial $10 \, \mu M$ acridine orange (C.2.3).

C.3.3 Observation of Positive Cells Use laser scanning confocal microscopy to observe and capture images at emission wavelengths of 500~550 nm and 600~650 nm.

C.4 Image Analysis

Analyze the images to calculate the ratio of positive cells at $600\sim650$ nm emission wavelength to those at $500\sim550$ nm emission wavelength in at least 30 organoids.

Appendix D

Detection of Pepsinogen Secretion Function (Enzyme-Linked Immunosorbent Assay (ELISA)) D.1 Instruments

Enzyme-linked immunosorbent assay (ELISA) plate reader

D.2 Reagents

Unless otherwise specified, the reagents used shall be analytically pure, and the water used for testing shall be deionized water.

D.2.1 PBS: pH 7.4

D.2.2 Commercial human gastric pepsinogen I enzymelinked immunosorbent assay (ELISA) kit

D.3 Testing protocol

D.3.1 Organoid Retrieval For organoids cultured in vitro, remove the culture medium. Add an equal volume of PBS (D.2.1) to wash the organoids. Remove the buffer.

D.3.2 Detection of Human Gastric Pepsinogen I Perform the detection according to the instructions of

the commercial human gastric pepsinogen I ELISA kit (D.2.2).

D.3.3 ELISA Plate Reader Detection Measure absorbance using an ELISA plate reader.

D.4 Quantitative Analysis

Calculate the content of human gastric pepsinogen I based on the instructions provided in the commercial kit.

Appendix E

Organoids Viability (Calcein-AM Staining Method)

E.1 Instruments

E.1.1 Inverted microscope.

E.1.2 Fluorescence microscope

E.2 Reagents

Unless otherwise specified, the reagents used shall be analytically pure, and the water used for testing shall be deionized water.

E.2.1 Dimethyl sulfoxide (DMSO) for cell culture.

E.2.2 PBS: pH 7.4.

E.2.3 Storage solution of Calcein-AM solution: 2 mmol/L in DMSO.

E.3 Testing protocol

E.3.1 Organoid observation in bright field Place the organoids under the microscope to observe their morphology and status. Determine whether the organoid morphology meets the requirements of 6.1 by visual observation.

E.3.2 Organoid quantification Add the Calcein-AM storage solution to the medium until the final concentration is 0.2 μmol/L, and incubate the mixture for 60 minutes at 37 °C. Then clean the medium with Calcein-AM slowly with PBS (E.2.2) and add fresh medium. The organoids are observed and photographed by fluorescence microscope at 490 nm excitation wavelength and 515 nm emission wavelength. Living organoids are in green with clear edges. Count the number of organoids with a diameter \geq 20 μm.

E.4 Accuracy

The absolute difference between the results of three independent determinations obtained under reproducible conditions shall not exceed 10% of the arithmetic mean.

Appendix F

Organoid Authentication by STR Profile

F.1 Instruments

F.1.1 Centrifuge.

F.1.2 PCR-Cycler.

Hong et al. Cell Regeneration (2025) 14:2 Page 7 of 9

F.1.3 Electrophoresis apparatus. F.1.4 Microvolume UV Spectrophotometer.

F.2 Reagents

F.2.1 Cell DNA extraction kit. F.2.2 STR DNA profiling kit.

F.3 Sample storage

The samples are prepared and stored below -80 °C.

F.4 Testing protocol

F.4.1 Sample preparation The organoids are cultured in the Matrigel to a stable growth state, and then mechanically pipetted out of the Matrigel. The mixture is collected in a centrifugal tube, the organoids are collected by centrifugation, and the supernatant is discarded.

F.4.2 Extraction of DNA

- A) Perform genomic DNA extraction from organoids and primary tumor tissues according to the instructions of the Cell DNA extraction kit.
- B) Measure the absorbance of extracted DNA by UV spectrophotometer to ensure that the ratio of A260/ A280 is between 1.8 and 2.0.
- C) DNA volume \geq 20 µL, DNA concentration \geq 50 ng/

F.4.3 PCR amplification

- A) Perform STR DNA amplification according to standard PCR amplification methods or the commercially approved kit instructions.
- B) Use sterile water as the template for PCR amplification in the negative control group; use the DNA extracted from organoid and primary tumor tissue samples as templates in the sample detection group; use a DNA template with a confirmed STR profiling as the positive control group.
- C) Detect the PCR products of three groups by agarose gel electrophoresis. Clear target band shall be observed in positive control but not in the negative control.

F.4.4 STR genotyping Detect PCR products by capillary electrophoresis gene analyzer and STR genetic map data are obtained. The PCR banding pattern of organoids and primary tumor tissue shall be consistent.

F.5 Result analysis

F.5.1 When STR alleles contain the same number of repeats, only one allele peak shall appear in the profile, when they contain different numbers of repeats, two allele peaks appear in the profile.

The test is considered valid when no allele peaks appeared in the negative control group and the positive control group is consistent with its standard genotyping

F.5.2 If more than two allelic peaks are present at the STR locus of the tested sample, the sample shall be determined to be cross-contaminated after repeated experiments to exclude interfering factors such as mutations in the primer binding region, provided that the test is valid.

Abbreviations

3D Three Dimension Ct Cvcle-threshold

DAPI 4,6-Diamino-2-phenyl indole DMSO Dimethyl Sulfoxide DNA Deoxyribonucleic Acid PRS Phosphate Buffer Saline **PCR** Polymerase Chain Reaction Ribonucleic Acid

RNA STR Short Tandem Repeat

Acknowledgements

We thank Prof. Ka Li, Aijin Ma, Qiyuan Li, Junying Yu, Yong Zhang for offering sugaestions.

Authors' contributions

Y.-G.C. and T.Z. contributed to conception and design. F.H., R.T., T.W., Y.W. and N.Z. drafted and revised the manuscript. Y.W., H.Z., R.-H.X., L.S., Y.L. (Yingbin Liu), X.Y., D.X., L.H., J.X., D.G., Z.M., B.Z., J.H., Y.L. (Yong Li), S.H., B.F., G.H., L.W., Z.-L.Z., C.C., J.W., C.W. (Changlin Wang), C.W. (Chunnian Wang), X.Z., C.S., C.Y., Y.Y., and G.N. critically read and revised the manuscript.

This work was supported by grants from the National Natural Science Foundation of China (31988101 to Y.-G.C., 32300586 to Y.L.W.), the National Key Research and Development Program of China (2023YFA1800603 to Y.-G.C), Major Project of Guangzhou National Laboratory (GZNL2023A02008 to Y.L.W.), and Young Talent Support Project of Guangzhou Association for Science and Technology (QT2024-019 to Y.L.W.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

Y.-G.C. is the Editor-in-Chief of Cell Regeneration. He was not involved in the review or decision related to this manuscript. This work was not sponsored by any commercial organizations, and all the other authors declare that they have no competing interests.

¹Guangzhou National Laboratory, Guangzhou 510005, China. ²The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China. ³The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College,

Hong et al. Cell Regeneration (2025) 14:2 Page 8 of 9

Nanchang University, Nanchang 330031, China. ⁴Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China. ⁵State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China. ⁶Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China. ⁷State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China. 8State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200232, China. ⁹Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200127, China. ¹⁰MOE Key Laboratory of Cellular Dynamics, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, China. 11 School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China. 12 State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Science, Shanghai 200031, China. ¹³University of Chinese Academy of Sciences, Beijing 100049, China. ¹⁴Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang 330031, Jiangxi, China. 15 Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang 330031, Jiangxi, China. ¹⁶Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China. ¹⁷Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China. ¹⁸Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155N Nanjing Street, Shenyang 110001, Liaoning, China. ¹⁹Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110001, Liaoning, China. ²⁰Institute of Health Sciences, China Medical University, Shenyang 110001, Liaoning, China. 21 National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. ²²State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. ²³Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China. ²⁴Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou 510080, China. ²⁵National Institute of Metrology, Beijing 100029, China. ²⁶Department of Radiation Oncology and Cancer Institute, Fudan University Shanghai Cancer Center Fudan University, Shanghai 200433, China. ²⁷D1Med Technology (Shanghai) Inc, Shanghai 201802, China. ²⁸Gastric Cancer Center and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China. ²⁹Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Center for Cancer Bioinformatics, Peking University Cancer Hospital and Institute, Beijing 100142, China. ³⁰Peking University International Cancer Institute, Peking University, Beijing 100191, China. ³¹China National Institute of Standardization, Beijing 100191, China. 32 Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 200433, China. ³³Department of Gastrointestinal Pathology, Ningbo Diagnostic Pathology Center, Ningbo 315021, China. 34 Department of Oncology, Changhai Hospital, Second Military Medical University, No. 168 Changhai Road, Shanghai 200433, China. 35 Huayi Regeneration Technology Co., Ltd, Chengdu 611135, China. ⁵Lilly (China) Research and Development Center, Shanghai 201203, China. ³⁷Qilu Pharmaceutical Co., Ltd, Jinan 250104, China. ³⁸Shang Hai OneTar Biomedicine Co., Ltd, Shanghai 201203, China.

Received: 4 December 2024 Accepted: 10 December 2024 Published online: 14 January 2025

References

- Barker N, Huch M, Kujala P, van de Wetering M, Snippert HJ, van Es JH, et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell. 2010;6(1):25–36. https://doi.org/10.1016/j.stem.2009.11.013.
- Bartfeld S, Bayram T, van de Wetering M, Huch M, Begthel H, Kujala P, et al. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology. 2015;148(1):126–36 e6. https://doi.org/10.1053/j.gastro.2014.09.042.
- Bredemeyer AJ, Geahlen JH, Weis VG, Huh WJ, Zinselmeyer BH, Srivatsan S, et al. The gastric epithelial progenitor cell niche and differentiation of the zymogenic (chief) cell lineage. Dev Biol. 2009;325(1):211–24. https://doi.org/10.1016/j.ydbio.2008.10.025.
- Busslinger GA, Weusten BLA, Bogte A, Begthel H, Brosens LAA, Clevers H. Human gastrointestinal epithelia of the esophagus, stomach, and duodenum resolved at single-cell resolution. Cell Rep. 2021;34(10): 108819. https://doi.org/10.1016/j.celrep.2021.108819.
- Clevers H. Modeling Development and Disease with Organoids. Cell. 2016;165(7):1586–97. https://doi.org/10.1016/j.cell.2016.05.082.
- Fujii M, Sato T. Somatic cell-derived organoids as prototypes of human epithelial tissues and diseases. Nat Mater. 2021;20(2):156–69. https://doi.org/10.1038/s41563-020-0754-0.
- Goldenring JR, Nam KT, Mills JC. The origin of pre-neoplastic metaplasia in the stomach: chief cells emerge from the Mist. Exp Cell Res. 2011;317(19):2759–64. https://doi.org/10.1016/j.yexcr.2011.08.017.
- Kim TH, Shivdasani RA. Stomach development, stem cells and disease. Development. 2016;143(4):554–65. https://doi.org/10.1242/dev.124891.
- Kim J, Koo BK, Knoblich JA. Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol. 2020;21(10):571–84. https://doi.org/10.1038/s41580-020-0259-3.
- Li HJ, Johnston B, Aiello D, Caffrey DR, Giel-Moloney M, Rindi G, et al. Distinct cellular origins for serotonin-expressing and enterochromaffin-like cells in the gastric corpus. Gastroenterology. 2014;146(3):754–64 e3. https://doi.org/10.1053/j.gastro.2013.11.048.
- McCracken KW, Cata EM, Crawford CM, Sinagoga KL, Schumacher M, Rockich BE, et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature. 2014;516(7531):400–4. https://doi.org/10.1038/nature13863.
- McCracken KW, Aihara E, Martin B, Crawford CM, Broda T, Treguier J, et al. Wnt/ β-catenin promotes gastric fundus specification in mice and humans. Nature. 2017;541(7636):182–7. https://doi.org/10.1038/nature21021.
- Miao ZF, Adkins-Threats M, Burclaff JR, Osaki LH, Sun JX, Kefalov Y, et al. A Metformin-Responsive Metabolic Pathway Controls Distinct Steps in Gastric Progenitor Fate Decisions and Maturation. Cell Stem Cell. 2020;26(6):910–25 e6. https://doi.org/10.1016/j.stem.2020.03.006. https://doi.org/10.1016/j.stem.2020.03.006.
- Mills JC, Shivdasani RA. Gastric epithelial stem cells. Gastroenterology. 2011;140(2):412–24. https://doi.org/10.1053/j.gastro.2010.12.001.
- Mitrovic O, Micic M, Radenkovic G, Vignjevic S, Ethikic D, Budec M, et al. Endocrine cells in human fetal corpus of stomach: appearance, distribution, and density. J Gastroenterol. 2012;47(11):1212–20. https://doi.org/10.1007/s00535-012-0597-9.
- Ramsey VG, Doherty JM, Chen CC, Stappenbeck TS, Konieczny SF, Mills JC. The maturation of mucus-secreting gastric epithelial progenitors into digestive-enzyme secreting zymogenic cells requires Mist1. Development. 2007;134(1):211–22. https://doi.org/10.1242/dev.02700.
- Tan SH, Swathi Y, Tan S, Goh J, Seishima R, Murakami K, et al. AQP5 enriches for stem cells and cancer origins in the distal stomach. Nature. 2020;578(7795):437–43. https://doi.org/10.1038/s41586-020-1973-x.
- Wang Y, Lin H, Zhao L, Hong F, Hao J, Zhang Z, et al. Standard: Human intestinal organoids. Cell Regen. 2023;12(1):23. https://doi.org/10.1186/s13619-023-00168-5.
- Willet SG, Mills JC. Stomach Organ and Cell Lineage Differentiation: from Embryogenesis to Adult Homeostasis. Cell Mol Gastroenterol Hepatol. 2016;2(5):546–59. https://doi.org/10.1016/j.jcmgh.2016.05.006.

Hong et al. Cell Regeneration (2025) 14:2 Page 9 of 9

Wolffling S, Daddi AA, Imai-Matsushima A, Fritsche K, Goosmann C, Traulsen J, et al. EGF and BMPs Govern Differentiation and Patterning in Human Gastric Glands. Gastroenterology. 2021;161(2):623–36 e16. https://doi.org/10.1053/j.qastro.2021.04.062.

- Yang R, Qi Y, Kwan W, Du Y, Yan R, Zang L, et al. Paired organoids from primary gastric cancer and lymphatic metastasis are useful for personalized medicine. J Transl Med. 2024;22(1):754. https://doi.org/10.1186/s12967-024-05512-0.
- Yao X, Smolka AJ. Gastric Parietal Cell Physiology and Helicobacter pylori-Induced Disease. Gastroenterology. 2019;156(8):2158–73. https://doi.org/ 10.1053/j.gastro.2019.02.036.
- Yuan X, Yao PY, Jiang J, Zhang Y, Su Z, Yao W, et al. MST4 kinase phosphorylates ACAP4 protein to orchestrate apical membrane remodeling during gastric acid secretion. J Biol Chem. 2017;292(39):16174–87. https://doi.org/10.1074/jbc.M117.808212.