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Coronary artery disease is a leading cause of death worldwide. There has been a myriad

of advancements in the field of cardiovascular imaging to aid in diagnosis, treatment,

and prevention of coronary artery disease. The application of artificial intelligence in

medicine, particularly in cardiovascular medicine has erupted in the past decade. This

article serves to highlight the highest yield articles within cardiovascular imaging with

an emphasis on coronary CT angiography methods for % stenosis evaluation and

atherosclerosis quantification for the general cardiologist. The paper finally discusses the

evolving paradigm of implementation of artificial intelligence in real world practice.

Keywords: artificial intelligence, machine learning, coronary artery disease, cardiovascular imaging,

atherosclerosis

INTRODUCTION

Artificial intelligence (AI) is a broad term that refers to computing that can perform complex
human-like tasks (1). Machine learning (ML) is a subset of AI which encompasses a growing
collection of algorithms that is divided into supervised learning, unsupervised learning, semi
supervised learning, and reinforcement learning (2, 3). Supervised learning refers to learning from
labeled examples, while unsupervised and reinforcement learning performs unlabeled learning and
learning from pattern recognition (4). Further subsets of ML include Deep Learning (DL), which
uses complex data sets which mirror human neural networks (5). Human cognition is finite, but
the use of AI may allow for improved discrimination and evaluation of these immense datasets (6).
At the same time, the “black-box” nature of AI can lead to uncertainty in clinical practice in part
due to the complexity of the algorithms, unrecognized bias and application to appropriate clinical
needs (7).

The application of AI in cardiology has increased exponentially annually, specifically
in the diagnosis of coronary artery disease (CAD). These novel approaches may enhance
future implementation of the new 2021 American College of Cardiology/American Heart
Association Chest Pain Guideline that elevate the role of imaging to Class I recommendation
in both acute and stable chest pain in intermediate risk patients (8). Current investigations
aim to augment and enhance current risk-based approaches through the analysis of
multiomic data sets, while also recently showing promise in the direct image interpretation
of cardiac and coronary structures through a myriad of approaches (9). Between 2001
and 2015 the proportion of AI/ML related articles in relevant journals per month was
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0.1% in relation to the total number published in the journals.
This increased to 16.2% per month by 2020 (1). Literature
search was completed on PubMed and EMBASE databases by
searching “artificial intelligence” or “machine learning” AND
various terminology related to cardiology such as “cardiac,”
“cardio,” “cardiology,” “infarct,” “valve,” “cardiosurgical,” etc. (1).
Over the past 5 years there were over 3,000 papers published in
Pubmed related to AI/ML learning in cardiovascular medicine
(4). In cardiovascular imaging specifically, there’s been increases
in non-invasive coronary imaging including applications of
coronary artery plaque, automated calcium scoring, perivascular
fat attenuation and machine learning based image enhancement
as well in the application of nuclear imaging, and myocardial
perfusion to large data sets to improve risk enhancement. This
review article serves to summarize the recent advancements
(Table 1) of Artificial Intelligence in respect to coronary artery
disease (CAD) and imaging.

CORONARY ARTERY DISEASE RISK
PREDICTION

Current prevention guidelines incorporate the use of the pooled
cohort equation for adults aged 40–75 with non-traditional
cardiovascular risk factors to determine a 10 year risk of cardiac
events (19). The pooled cohort equation creates a simplified
risk score with a finite number of variables; however the
simplification of the approach may overestimate cardiovascular
risk in certain populations (20, 21). Multiple studies have
sought to enhance the risk prediction model. AI has been
particularly impactful in the area of improved cardiovascular risk
prediction (16). Nakanishi et al. demonstrated that ML using
logistic regression modeling that incorporate multiple clinical
and cardiac computed tomography (CT) variables was superior
in predicting 10 year coronary artery disease death [area under
the curve (AUC)= 0.86] than clinical data alone (AUC= 0.835),
coronary artery calcium (CAC) alone (AUC = 0.816), or ML CT
(AUC = 0.827) (12). This model used a total of 77 variables [46
clinical such as atherosclerotic cardiovascular disease (ASCVD)
risk score, sex, age] and 31 CT variables from CAC scan
to train the machine learning algorithm. Similarly, Motwani
et al. (22) demonstrated that ML incorporating 25 clinical
and 44 coronary computed tomography angiography (CCTA)
parameters better predicted 5 year mortality than current clinical
or imaging metrics. This study involved 10,030 patients, and
ML exhibited a higher AUC compared with Framingham Risk
Score (FRS) (ML 0.79 vs. FRS 0.61) or CCTA severity scores
such as segment stenosis score (SSS) (ML 0.79 vs. SSS 0.64) (22).
Al’Aref studied 13,054 patients in The Coronary CTAngiography
Evaluation For Clinical Outcomes (CONFIRM) registry. ML
with CAC performed the best in predicting obstructive CAD
on CCTA (AUC 0.881) compared to ML alone (AUC =

0.682) and CAD consortium clinic score +CACS (0.866) (3).
These models demonstrate the potential to improve predictive
models. By incorporating numerous variables, both clinical and
imaging, these machine learning algorithms can better predict
cardiovascular mortality. Therefore, in addition to current tools

such as the 10-year ASCVD risk, CAC score, and CCTA, these
models can prove to add invaluable information in assessing a
patient’s cardiovascular risk.

CORONARY STENOSIS

The recent 2021 American Heart Association/American College
of Cardiology/Multisociety Guideline for the Evaluation and
Diagnosis of Chest Pain redefines the presence of coronary artery
disease as obstructive (≥50% stenosis) and non-obstructive
(<50%) stenosis (23). In the realm of invasive and non-invasive
coronary angiography (via CCTA), the evaluation of coronary
artery stenosis requires visual analysis by a trained provider
(18, 24). However, there can be inter-provider variability in
interpretation of these studies in real world practice. Lu et
al. (25) showed in the analysis of the Prospective Multicenter
Imaging Study for Evaluation of Chest Pain (PROMISE) trial,
coronary CTA scans read by both core laboratory and local
site readers, 41% of the scans were in discordance regarding
the presence of significant stenosis (defined as stenosis ≥50%).
There remains great interest in identifying solutions that
allow for improved reproducibility. AI has shown promising
advancements in the detection of obstructive CAD. In 2015,
Kang et al. (26) demonstrated that machine learning algorithms
allowed for the detection of both obstructive (≥50% stenosis)
and non-obstructive (<50% stenosis) lesions with an AUC
of 0.94. In addition, Freiman et al. (27) used a deep sparse
autoencoder—mixed structure regularization approach in 90
subjects and observed an AUC that ranged from 0.78 to
0.94 for discrimination of mild stenosis <30% to severe
stenosis ≥70%.

More recently, the CT Evaluation by Artificial Intelligence for
Atherosclerosis, Stenosis and Vascular Morphology (CLARIFY)
multi-center study compared AI to level 3 (L3) readers in
detecting coronary artery stenosis on CCTA (11). AI analysis
(Figure 1) showed 99.7% accuracy in detecting >70% stenosis
and 94.8% accuracy in detecting >50% stenosis. Among the
vessels analyzed, the mean difference in maximal diameter
stenosis between AI and L3 readers was minimal at −0.8 %. AI
analysis to determine the Coronary Artery Disease Reporting
and Data System (CAD-RADS) categorization compared to L3
readers was also examined. AI generated a CAD-RADS score
that was in agreement with the readers in 78% of scans, and
generated a score that was in agreement within 1 category
in 98% of the scans. A subsequent analysis by Griffin et al.
evaluated a multi-center cohort of patients undergoing core-
lab quantitative invasive angiography (QCA) and found that AI
CCTA had high diagnostic accuracy when compared to QCA in
detecting >50% stenosis (AUC 0.88) and >70% stenosis (AUC
0.92) (10). The analysis time was approximately 10 mins, which
represents an improvement over the several hours that previous
methods have required. The deep convolutional neural network
based approach utilized in these studies has been cleared by the
Food and Drug Administration (FDA), and is clinically available
and are expected to enable widespread generalizability of the
studied approaches.
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TABLE 1 | Summary of high-yield artificial intelligence/machine learning studies in coronary artery disease imaging.

Study Population Method Application AI method Performance*

Griffin et al. (10) Diverse stable chest pain

patients from 23 global sites

undergoing CCTA plus

quantitative coronary

angiography, stress testing

and fractional flow reserve

(CREDENCE study)

Direct image analysis using

a series of validated

convolutional neural

networks for AI-guided

evaluation of coronary

segmentation, lumen wall

evaluation and plaque

characterization of CCTA

images

Ground truth: Core-Lab

quantitative coronary

angiography and invasive

fractional flow reserve for

identification of % coronary

stenosis and adverse

plaque characteristics in

comparison to in

Validated convolutional

neural network models;

Image analysis 10 mins

Accuracy, sensitivity,

specificity of 86%, 94%,

82% for ≥70% stenosis.

Intra-class correlation of

0.73; For false positive

AI-CCTA (≥70% by

AI-CCTA, QCA < 70%),

66% of vessels had FFR <

0.8

Choi et al. (11) Acute and stable chest pain

patients from 3 international

centers undergoing CCTA

(CLARIFY study)

Direct image analysis using

a series of validated

convolutional neural

networks for AI-guided

evaluation of coronary

segmentation, lumen wall

evaluation and plaque

characterization of CCTA

images.

Ground truth: Level 3 Expert

consensus for identification

of % coronary stenosis and

adverse plaque

characteristics

Validated convolutional

neural network models;

Image analysis 10 mins

Accuracy, sensitivity,

specificity for ≥70%

stenosis was 99.7, 90.9,

99.8%. Mean difference for

maximal diameters stenosis

−0.8% (95% CI 13.8% to

−15.3%)

Nakanishi et al. (12) Asymptomatic adults

without known CHD, part of

CAC Consortium, n =

66,636

Coronary artery calcium and

clinical variables. 77

variables incorporated,

including ASCVD risk score,

age, sex, race, CACS, and

the number, volume and

density of CAC plaques

Risk prediction for ASCVD

related death and CHD

related death

ML using a 10-fold cross

validation framework to train

and evaluate the model, as

well as information gain ratio

and model building using an

ensemble algorithm

AUC 0.845 and 0.860 for

ML predicting CVD death

and CHD death respectively,

compared to 0.821 and

0.835 for clinical data alone,

and 0.781 and 0.816 for

CAC score alone

Al’Aref et al. (3) Stable patients with

suspected CAD, from

CONFIRM registry, n =

13,054

Coronary artery calcium and

clinical variables. 25 clinical

variables used, including

age, gender, diabetes

mellitus, hypertension,

cholesterol levels

Prediction of obstructive

CAD on CCTA

ML using a gradient

boosting algorithm. A

ten-fold cross validation

framework was used to train

and evaluate the model

AUC 0.881 for ML + CACS,

compared to ML alone

(0.773), CAD consortium

clinical score (0.734), and

with CACS (0.866)

Hu et al. (13) Stable patients with

suspected CAD from the

REFINE SPECT registry, n =

1980

Stress/rest 99mTc-sestamibi/

tetrofosmin MPI with

SPECT, followed by invasive

coronary angiography within

6 months. 18 clinical, 9

stress test, and 28 imaging

variables utilized

Early coronary

revascularization (ECR)

prediction for stable patients

after stress testing

ML using a ten-fold cross

validation framework to train

and evaluate the model, as

well as information gain ratio

and model building using an

ensemble LogitBoost

algorithm

AUC of ECR prediction by

ML (0.812)

Oikonomou et al. (14) Patients with stable chest

pain referred for CCTA, n =

1575

CCTA, including

perivascular adipose tissue

data, and clinical variables.

5-year MACE risk prediction

(cardiac death, non-fatal MI,

late revascularization,

non-cardiac death)

ML using random forest

algorithm and repeated

five-fold cross-validation

MACE prediction with and

without addition of

perivascular adipose tissue

data (AUC 0.880 vs. 0.754)

(Continued)
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TABLE 1 | Continued

Study Population Method Application AI method Performance*

Betancur et al. (15) Patients who underwent

clinically indicated exercise

or pharmacologic stress

myocardial perfusion

SPECT imaging, n = 2,619

Rest/stress 1-day
99mTc-sestamibi imaging. 28

clinical variables, 17 stress

test variables, and 25

imaging variables used.

3-year MACE risk

prediction, including

all-cause mortality, non-fatal

myocardial infarction,

unstable angina, or late

coronary revascularization

ML using a ten-fold cross

validation framework to train

and evaluate the model, as

well as information gain ratio

and model building using an

ensemble LogitBoost

algorithm

MACE prediction by ML

(AUC 0.81), vs. automated

stress TPD (0.73) and

physician interpretation

(0.64)

Motwani et al. (16) Stable patients with

suspected CAD, from

CONFIRM registry, n =

10,030

Clinical and CCTA data. 25

clinical and 44 CCTA

parameters evaluated,

including segment stenosis

score, segment involvement

score, number of segments

with non-calcified, mixed or

calcified plaques, age, sex,

gender, and FRS

Risk prediction of 5-year

all-cause mortality of CAD

ML using a 10-fold cross

validation framework to train

and evaluate the model, as

well as information gain ratio

and model building using an

ensemble algorithm

AUC 0.79 for ML predicting

5-year all cause mortality vs.

FRS (0.61) and CCTA

severity score (0.64 for SSS)

Arsanjani et al. (17) Stable patients with

suspected CAD, n = 713

Rest201Thallium/stress
99mTechnetium with SPECT,

followed by invasive

coronary angiography within

3 months. 33 total clinical,

stress test, and imaging

variables utilized.

Early coronary

revascularization prediction

for stable patients after

stress testing

ML with model building

using an ensemble

LogitBoost algorithm and a

ten-fold cross validation

framework to train and

evaluate the model

Receiver operator

characteristic AUC of 0.81

for ML, vs. 0.81 for reader

1, 0.72 for reader 2, and

0.77 for standalone

measure of perfusion

Kang et al. (18) Patients who underwent

clinically indicated CCTA,

n = 42

CCTA patient datasets, with

visual identification of

lesions with stenosis ≥25%

by three expert readers,

using consensus reading

Automated CCTA reading to

detect both obstructive

(stenosis ≥50%) and

non-obstructive (stenosis

25–50%) CAD.

ML incorporating a

learning-based method and

an analytic method. A

ten-fold cross validation

framework was used to train

and evaluate the model

Receiver operator

characteristic AUC of 0.94

for detecting obstructive

and non-obstructive lesions

*All values statistically significant, p < 0.05.

ML, machine learning; AUC, area under curve; CACS, coronary artery calcium score, ASCVD, atherosclerotic cardiovascular disease; CHD, coronary heart disease; CCTA, coronary computed tomography angiography; CAD, coronary

artery disease; FRS, Framingham risk score; SSS, segment stenosis score; FRP, fat radiomic profile; MPI, myocardial perfusion imaging; ECR, early coronary revascularization; TPD, total perfusion defect.
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FIGURE 1 | Case example of AI-guided coronary computed tomography angiography. Using a series of validated convolutional neural network models (including

VGG19 network, 3D U-Net, and VGG Network variant) for image quality assessment, the machine learning algorithm (Cleerly, New York, NY) selects the best series,

identifies and labels all of the major epicardial coronaries and their side branches, determines centerlines, performs coronary segmentation and labeling and then

performs a rapid assessment of % stenosis, plaque volume and of adverse plaque characteristics. The data is then displayed in a graphical output to allow for clinical

review.

FIGURE 2 | New paradigm of AI guided coronary artery disease imaging. An

artificial intelligence (AI) guided approach to coronary artery disease in CAD

imaging opens several new frontiers in the evaluation and treatment of

atherosclerosis. These include the evaluation of rapid disease progressors,

accessing response or non-response to statin and other lipid lowering

therapies, improved prediction of ischemia, enhanced selection for guideline

based invasive angiography and prognostication of major adverse

cardiovascular events.

CORONARY ATHEROSCLEROSIS
QUANTIFICATION

Beyond coronary stenosis or coronary artery calcium
contemporary evidence has shown that the quantification
of adverse atherosclerotic plaque characteristics enhances
prognostication of patients at elevated risk for acute coronary
syndrome (ACS) (28). Rosendael et al. (29) showed that calcium
density (calculated from semi-automated software) can be
associated with ACS risk. In this study, patients with and without
ACS had similar calcified plaque volume. However, those who
experienced ACS had less highly dense plaque, termed by the
authors as “1K plaque” (HU > 1,000) than ACS-free subjects,
suggesting that 1K plaque has lower risk for acute plaque rupture.
The SCOT-HEART trial showed that low-attenuation plaque
(HU < 30) was associated with three times the risk of coronary
heart disease death or nonfatal MI (30). Other features of plaques
which contribute to the prognosis of CAD were studied by Yang
et al. (31). The investigators used machine learning to analyze
vessels in CCTA that had low fractional flow reserve (FFR)
(≤0.80). In these vessels, adverse plaque features beyond lumen
area which were found to be associated with low FFR vessels
that included: percent atheroma volume, fibrofatty/necrotic
core volume, plaque volume, proximal left anterior descending
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coronary artery involvement, and remodeling index. Al’ Aref et
al. (32) trained a machine learning model to detect culprit lesions
(which had been confirmed on invasive coronary angiography)
by combining quantitative and qualitative plaque features on
CCTA. The machine learning model yielded an area under the
curve of 0.77 for identifying the culprit lesion, significantly
outperforming other models that were based solely on diameter
stenosis or high-risk plaque features.

Quantification of plaque and identifying high risk plaque
features is time consuming, often taking several hours for a
single study, and requires a high level of expertise in a dedicated
research core lab limiting such application to real world practice
(33). Machine learning offers tremendous potential to allow for
interpretation of imaging matrices that encompass the millions
of pixels required to fully quantify atherosclerotic plaque from
CCTA data in the clinical world. The aforementioned CLARIFY
study by Choi et al. and the subsequent evaluation by Griffin
et al. has evaluated a broad range of atherosclerosis plaque
features using AI analysis (11, 34). Subsequent initial analysis
has further shown that AI detected high risk features, such as
lumen volume and low-attenuation, more often than experienced
level 3 readers as well as accuracy when compared to fractional
flow reserve. Furthermore, the analysis was performed as little as
under 10 mins.

There are a number of important ongoing applications of
plaque quantification. Budoff et al. (35) demonstrated that in
CAD patients with elevated triglyceride levels and already taking
a statin, icosapent ethyl significantly decreased the volume of
low-attenuation plaque compared to placebo over an 18 month
period. The application of well-validated AI guided approach to
atherosclerosis quantification may enable important advances in
assessing the response to preventive therapies.

NUCLEAR MYOCARDIAL PERFUSION
IMAGING

AI has also been applied to the field of nuclear medicine
(36). Its utility has been demonstrated in the evaluation of
coronary artery disease via single photon emission computed
tomography (SPECT). Hu et al. studied 1980 patients with
suspected CAD (37). Those patients underwent SPECT imaging
and later invasive coronary angiography. ML utilized multiple
clinical, imaging, and stress test variables to predict the need for
early coronary revascularization (ECR). On a per vessel basis, ML
better predicted the need for ECR (AUC = 0.79) vs. Regional
Stress Tissue perfusion deficit (TPD) (AUC = 0.71), combined
view TPD (AUC = 0.71), or ischemic TPD (AUC = 0.72). This
was also true on a per patient basis (AUC = 0.81). Interestingly,
ML also outperformed expert nuclear readers on the need for
ECR in a per patient basis. Arsanjani et al. showed that machine
learning can improve the accuracy of SPECT in identifying
significant CAD (≥70% stenosis). AI performed with similar, if
not better, accuracy (87%) in detecting these lesions compared to
two expert readers (86 and 82%) (38). A similar study found that
support vector machines algorithm was superior to two expert
readers in detecting obstructive CAD (AUC 0.92 vs. 0.87 and

0.88) (39). Betancur et al. also showed that compared to current
clinical method (total perfusion deficit), deep learning was able
to predict obstructive CADwith more accuracy per patient (AUC
0.80 vs. 0.78) and also per vessel (AUC 0.76 vs. 0.73) (14). While
identifying obstructive CAD is certainly important, what is of
greater clinical value is predicting those patients who will go
on to have adverse outcomes. In one study, machine learning
demonstrated superiority to visual analysis by physicians in
predicting 3-year major adverse cardiovascular events (MACE)
(AUC 0.78 vs. 0.65). When incorporating clinical information
(age, gender, risk factors, family history) into the algorithm,
machine learning performed with even greater accuracy in
predicting MACE (AUC 0.81) (40).

Furthermore, Alonso et al. showed that by analyzing SPECT
data, a machine learning model outperformed logistic regression
in predicting cardiac death (AUC 0.83 vs. 0.76) (13). In analyzing
patients with obstructive CAD, AI has also proven its ability
to predict those that may require intervention in the future.
Arsanjani et al. (41) explored the utility of AI in predicting the
need for revascularization. The researchers discovered that by
incorporating clinical parameters such as age, smoking history,
hypertension, diabetes, and family history, machine learning
algorithm could predict the need for revascularization with
similar or better accuracy compared to two expert readers
(AUC 0.81 vs. 0.81 and 0.72). As AI interpretion of nuclear
imaging continues to improve, its clinical value may increase the
automated identification of ischemia beyond currently available
perfusion mapping.

CORONARY FLOW

In 2011, the non-invasive evaluation of fractional flow reserve by
computed tomography (FFRCT) was introduced into the field of
cardiac imaging by the DISCOVER-FLOW trial (42). Machine
learning has been subsequently applied to the analysis of non-
invasive coronary flow (43). The MACHINE registry was the first
study comparing CT FFR from machine learning algorithm vs.
CT FFR from computational fluid dynamics (CFD) algorithm
(15). The study demonstrated that machine learning CT FFR
algorithm distinguished functionally significant obstructive CAD
equally well as FFR derived from a hybrid CFD approach. Tesche
et al. (44) found that machine learning CT FFR had a per-
lesion sensitivity of 79% and specificity of 94% in detecting
lesion-specific ischemia. The area under the curve for detecting
lesion-specific ischemia was 0.89 for machine learning CT FFR,
equal to CFD CT FFR (AUC 0.89) and significantly higher than
CCTA (AUC 0.61) and quantitative coronary angiography (AUC
0.69). The diagnostic value of machine learning CT FFR was also
studied by Dugua et al. (17), who retrospectively investigated
patients with symptoms of ACS who were worked up with CCTA
followed by invasive coronary angiography. The investigators
identified non-culprit lesions (≥ 25% stenosis, not intervened
on during invasive coronary angiography). In an average of 19.5
month follow-up period, 14 patients (29%) suffered a MACE
due to these non-culprit lesions. The mean FFR CT for these
non-culprit lesions was 0.78, therefore showing that FFR CT ≤
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80% in patients with symptoms consistent with ACS can be a
predictor of future MACE. These studies show the clinical utility
of machine learning FFR CT, which also has the potential to be
more efficient. Calculating FFR CT using computational flow
dynamics is technologically demanding and can take up to 10
mins (15). On the other hand Itu et al. (45) demonstrated how
machine learning models could generate FFR CT in as little
as 2.4 s. Mannil et al. (46) conducted a proof-of-concept study
showing that machine learning and texture analysis of low-dose
cardiac CT was able to detect myocardial infarction that was not
visible to radiologists.

PERIVASCULAR ADIPOSE INFLAMMATION
BY CT

Vascular inflammation is a significant contributor to
atherosclerosis and plaque destabilization (47). Perivascular
Adipose Tissue (PVAT) can be monitored by CT fat attenuation
to predict coronary artery disease due to the inflammatory effects
from the vessels to the PVAT (48, 49). Higher fat attenuation
index (FAI) is associated with increased cardiovascular mortality
(50). One study found that there is higher FAI in culprit lesions
compared to non-culprit lesions in ACS (51, 52). Oikonomou
et al. (53) studied the use of ML in PVAT in three different
studies/methodologies for enhanced cardiac risk prediction
beyond looking at the coronary vessel anatomy and risk factors.
The first study analyzed 167 patients undergoing cardiac surgery.
PVAT was biopsied for transcriptional factors and CT scan to
image the PVAT was performed. This demonstrated a non-
invasive method of detecting and adipose tissue microvacuolar
remodeling by correlation with increased levels of Collagen
Type 1 Alpha 1 Chain (53). Study 2 analyzed the Fat Radiomic
Profile (FRP) of 1,575 patients from the SCOT-HART trial and
concluded that high FRP (designated as ≥ 0.63) was associated
with a 10.8 fold increase of MACE after adjustment for risk
factors (53). Lastly in study 3, 44 patients with acute myocardial
infarctions (AMI) underwent CT scans on admission and 6
months later. The authors found that there were higher FRP
values consistent with adverse PVAT remodeling with persistence
at 6 months compared to perivascular Fat attenuation index
(FAI) which was present at only with initial presentation of
AMI (53).

EPICARDIAL FAT QUANTIFICATION

In multiple studies, the location of the epicardial fat, particularly
in the left atrioventricular groove has been a modest predictor of
obstructive CAD (54, 55). In a study by Commanduer et al. (56),
deep learning to quantify epicardial adipose tissue (EAT) was
compared to quantification from two expert readers. 70 patients
underwent non-contrast calcium scans and correlation of EAT
volumes with deep learning quantification highly correlated with
expert readers R= 0.973 and R= 0.979; p< 0.001. Deep learning
quantification was also associated with increased non-calcified
plaque on subsequent CCTA (5.7 vs. 1.8%, p = 0.026). Deep
learning quantification was performed with a mean of 1.57 s ±
0.49 s compared to 15 mins for expert readers.

CORONARY ARTERY CALCIUM

Increased coronary artery calcium has demonstrated to have
important prognostic significance across age and diverse ethnic
groups (57–59). In addition, CAC now has an important
guideline-level role in risk-stratification and treatment decisions
of CAD for patients at intermediate risk. For example, in non-
diabetic adults aged 40–75 with LDL-C between 70 and 189
mg/dl and a 10-year ASCVD risk between 7.5 and 19.9%, current
guidelines encourage the use of CAC score to guide clinicians on
de-risking patients or initiating intensive lipid lowering therapy
(60). Typically, calcium scores are obtained from regular dose,
ECG-gated chest CT’s and require some degree of manual input
(the provider selecting/confirming areas of calcification and the
software subsequently generating a calcium score).

There has been recent interest in using artificial
intelligence/machine learning to allow for the automated
quantification of coronary artery calcium as well as incorporating
a calculated coronary artery calcium score to improve current
risk prediction models. Isgum et al. (61) demonstrated that
coronary artery calcium score can also be obtained from
low-dose chest CT performed for lung cancer screening in
the smoking population. Investigators identified CAC with a
statistical pattern recognition system, and then utilized support
vector machines to correctly classify cardiovascular risk category
in 82% of the subjects based on Agatston score. The accuracy
of fully automated calcium scores from low-dose CT has also
been evaluated in other studies. Takx et al. (62), examined
automatic calcium scores derived from low-dose CT. There was
good reliability between fully automated calcium scores and
reference scores set by human readers (kappa 0.85). Most of the
discordance was due to the automated method failing to detect
calcifications in the right coronary artery. Isgum et al. (63), also
yielded similar results. The study showed agreement of CVD
risk category (based on Agatston score) not only between fully
automatic and manual calcium scores derived from low dose
CT (kappa 0.89), but also between fully automatic calcium score
from low dose CT and calcium score from dedicated calcium
scoring CT (kappa 0.74). Winkel et al. (64) used deep-learning
software to calculate vessel-specific CAC sub-scores (right
coronary artery, left main, left main, left anterior descending,
and circumflex). The risk class assignment determined by AI
showed agreement with that of human readers (kappa = 0.91).
Given the association of smoking history with cardiovascular
disease, and the abundance of lung cancer screening CT scans,
the ability to automatically estimate calcium scores from such
scans could provide the added benefit of identifying patients at
increased cardiovascular risk.

ETHICS, LIMITATIONS AND STANDARDS
OF ARTIFICIAL INTELLIGENCE IN CAD
IMAGING

The ease in which ML can acquire data can present ethical
dilemmas. Big data can be analyzed in minutes (11) raising
issues such as proper consent and safe storage of protected
health information (PHI). The “black box” nature of AI may
lead to uncertainty for physicians seeking to apply these
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approaches to practice. Clinicians must be aware of the specific
validation of AI (65) and the limitations to avoid unintended
extrapolation and biased results. As automated analysis improves
to better address gaps in expert level care, the field of
cardiovascular imaging training may be inadvertently depleted
of the “Human Neural Network” when there is overreliance
on AI to create the foundations of analyzing images (66). The
use of AI in cardiovascular medicine needs to be tailored to
specific patient-centered goals to avoid unintended or false
discoveries (9).

In the imaging of coronary artery disease, it is important to
establish appropriate ground truth standards such as quantitative
coronary angiography, fractional flow reserve and invasive
ultrasound. In addition, new artificial intelligence and machine
learning based approaches should be validated in randomized
controlled trials (RCT). An RCT in which one arm receives usual
care and the other arm receives AI assisted care can be extremely
influential and may be a novel trial approach to further create an
evidence base for the use AI in clinical practice. It is important
that these tools are vetted by the Food and Drug Administration
and similar regulatory bodies, through peer-reviewed studies as
well as through the professional societies. The field will also need
to further develop models for integration into clinical practice,
its use as a clinical decision support tool as well as addressing
scenarios in which the AI/ML tool disagrees with clinical readers.
It is also expected there may be clinical scenarios in which the
AI/ML has not been fully trained. For example, in an acute
coronary syndrome, the AI/ML may be able to identify severity
of stenosis and adverse plaque characteristics, but not recognize
a coronary artery dissection. With its various application to
cardiovascular medicine, there will be a continued and ongoing
need to apply ethnical and scientific standards in AI/ML in
coronary imaging.

CONCLUSIONS

The promise of artificial intelligence lies in leveraging modern
algorithms to improve decision making and risk prediction
beyond current models that are patient-centered (Figure 2) (11).
In the opinion of this author group, the recently validated
stenosis and atherosclerosis quantification methods discussed
in this paper, with their FDA approval and clinical availability
represent a practice ready approach. Application of an AI/ML
guided CCTA approach opens several new frontiers in the
assessment and treatment of atherosclerosis. Specific examples
include the opportunity to evaluate rapid disease progressors
and those that do not respond to lipid lowering therapies.
AI/ML may also allow for non-invasive evaluation of those
that demonstrate plaque regression after intensified, personalized
medical therapies. AI/ML guided atherosclerosis evaluation may
better predict ischemia as well as those patients that will require
invasive angiography

A future paradigm includes utilization of AI so that
the cardiologist may use the AI/ML guided information to
make improved clinical decisions and enhance patient-centered
outcomes. With continued research in the field and promising

outcomes it is expected that the next decade will see AI applied
broadly in clinical practice to allow improved outcomes while
care remains led by the cardiovascular clinician.
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