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ABSTRACT: In this paper, we show that the standard second-order
vibrational perturbation theory (VPT2) for Abelian groups can be used
also for non-Abelian groups without employing specific equations for two-
or threefold degenerate vibrations but rather handling in the proper way all
the degeneracy issues and deriving the peculiar spectroscopic signatures of
non-Abelian groups (e.g., -doubling) by a posteriori transformations of
the eigenfunctions. Comparison with the results of previous conventional
implementations shows a perfect agreement for the vibrational energies of
linear and symmetric tops, thus paving the route to the transparent
extension of the equations already available for asymmetric tops to the
energies of spherical tops and the infrared and Raman intensities of
molecules belonging to non-Abelian symmetry groups. The whole procedure has been implemented in our general engine for vibro-
rotational computations beyond the rigid rotor/harmonic oscillator model and has been validated on a number of test cases.

1. INTRODUCTION

The reliability of quantum chemical (QC) models to support
experimental findings is related from one side to their accuracy
and from the other side to their feasibility, robustness, and ease
of use.1,2 Concerning the accuracy, electronic structure
computations of energies, geometries, and force fields are
nowadays able to rival high-resolution spectroscopy for small
systems and to help assignments and interpretation of all kinds
of spectra for larger molecular systems, provided that nuclear
motions and environmental effects are taken into proper
account.3−8 In the present contribution, we will be concerned
with molecular vibrations, which are directly sampled by
different conventional [infrared (IR), Raman] and chiral
(VCD, ROA) spectroscopies,2,9 but tune also the outcomes of
other spectroscopies (e.g., distortion constants in microwave
spectroscopy4 or line shapes in electronic spectroscopies10).
Until quite recently, except for exceedingly small systems, the
rigid rotor/harmonic oscillator model was nearly exclusively
employed to describe molecular vibrations. However, the
neglect of anharmonicity and ro-vibrational couplings can
introduce significant errors, sometimes leading to even
qualitatively wrong interpretations of experimental data.
Among the different approaches available to go beyond the

rigid rotor/harmonic oscillator approximation,11−35 those based
on perturbation theory applied to the expansion of the nuclear
Hamiltonian in the power series of products of vibrational and
rotational operators (hereafter referred to as vibrational
perturbation theory, VPT) are particularly appealing for their
remarkable cost/performance ratio, at least for semi-rigid

molecular systems. Moreover, some formulations of VPT,
such as the Van Vleck contact transformation method,36 fully
justify a generalizedmodel (GVPT2),37,38 allowing to couple the
advantages of perturbative (for weakly coupled modes) and
variational (for strongly coupled modes) treatments in a well-
sound and robust framework. Actually, the GVPT2 approach
belongs to the class of perturb-then-diagonalize many-body
models, which, although less widely used than diagonalize-then-
perturb models, have in the present context some appealing
advantages from both conceptual and implementative points of
view. Implementations of VPT2 approaches in general-purpose
QC software are now quite widespread,39−50 although fully
automatic and robust implementations of GVPT2 are less
common. The situation is different for intensities of IR, Raman,
VCD, and ROA spectra, which need to account for both
mechanical and electrical/magnetic anharmonicity. To the best
of our knowledge, the only general platform allowing GVPT2
computations for all the spectroscopic techniques mentioned
above is the one implemented by some of the present authors in
the Gaussian package.51 Extension of perturbative/variational
procedures to the treatment of flexible systems is underway
along different avenues including approaches based on reaction
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paths or surfaces following the decoupling of one or two large-
amplitude motions from a bath of small-amplitude modes and/
or the replacement of Cartesian coordinates by generalized
internal coordinates.52−55

Here, we tackle a different problem, related to the treatment of
molecular systems with non-Abelian point group symmetries,
namely, linear, symmetric, and spherical tops. As a matter of fact,
a significant ensemble of molecular systems, ranging from small
to large sizes and of interest in various research fields, belong to
these classes, including, for instance, organic and organometallic
compounds like coronene and ferrocene30,56−58 or acetylene
derivatives.59−70 The presence of degenerate modes raises
multiple practical and theoretical issues, which have been only
marginally addressed until now. A possible workaround is to lift
the degeneracies by reducing the symmetry of the molecular
system to the closest Abelian group symmetry,42 but this can
lower the accuracy of the results. The rotational problem is
actually simpler for non-Abelian groups because the rigid rotor
approximation leads to analytical solutions, but a proper account
of the degeneracy for the vibrational problem requires a careful
check of the relative orientations of the degenerate modes to
ensure that the anharmonic force fields and property surfaces are
correctly built and an alternative derivation able to account for
the couplings involving the degenerate modes. In a previous
work,71 we have presented a complete framework implementing
different equations for the vibrational frequencies based on the
symmetry for linear and symmetric tops and taking into proper
account both intrinsic and accidental degeneracies, leading to
additional terms in the Hamiltonian or to singularities in the
perturbative expansion, respectively. However, the current
situation is unsatisfactory at several levels. First, the formulation
derived from the work of Pliv́a72 cannot be extended
straightforwardly to spherical tops, and to the best of our
knowledge, no complete and correct derivation has been
proposed. Second, the current implementation is particularly
intricate due to the constant case switch depending on the
symmetry and degeneracy of the modes in the calculation of the
quantities of interest for the vibrational energies. Finally, it
requires the use of complex algebra in the variational treatment,
which leads to complex eigenvectors of the variational matrix,
and thus the transition moments, even if the final intensities
remain, of course, real.
Based on these premises, a unified treatment of Abelian and

non-Abelian symmetries would be more efficient and general,
provided that the results can be easily transformed to the more
standard representation for compatibility and/or interpretative
purposes. Furthermore, the simplicity of the new approach
could allow a more straightforward implementation of new
strategies based on VPT273 not only for linear and symmetric
tops but also for spherical tops. Finally, a general and robust
framework can be set for the calculation of both IR and Raman
intensities for all point groups without any need of complex
algebra. This has convinced us to follow a different route, that is,
to employ the asymmetric-top formulation also for the other
cases, handling in the proper way all the degeneracy issues and
deriving the customary spectroscopic signatures of non-Abelian
groups (e.g., -type doubling) by a posteriori transformations of
the eigenvectors. As will be shown in the following, the results
for frequencies are exactly the same as those delivered by our
previous conventional implementation (including resonance
contributions), but we are now able to compute also intensities
for both IR and Raman spectra.

The paper is organized as follows: In the Theory section, we
start with deriving energy expressions for linear and symmetric
tops, including resonance-free expressions for the zero-point
energy, and then move to a general treatment of resonances and
to intensities for all vibrational spectroscopies. The Results and
Discussion section is organized in the same way but also
considers different levels of electronic structure theory, starting
from Hartree−Fock (HF) and second-order Møller−Plesset
perturbation theory (MP2), which do not involve any
underlying noise connected to numerical integration, and then
moving to methods rooted in the density functional theory
(DFT) up to double hybrids. The main results, remaining
challenges, and perspectives are shortly outlined in the
concluding section.

2. THEORY
2.1. Framework. In order to set up the framework for our

discussion, let us consider a system of N vibrational normal
modes with a non-Abelian symmetry. These modes will
generally be identified by the indexes i, j, k, l. Where relevant,
and except if specified otherwise, different sets of indexes will be
used to distinguish degenerate modes (s, t, u, followed by a
subscript number for each mode) from the non-degenerate ones
(m, n, o). As an example, modes s1 and s2 are two degenerate
modes with the same harmonic wavenumber ωs, while m and n
are two non-degenerate modes.
The formalism introduced by Pliv́a for symmetric and linear

tops72 relies on a special set of coordinates for degenerate modes
based on a complex combination

= ±±q q iqs s s1 2 (1)

where qi represents the dimensionless normal coordinate
associated to mode i. This form can actually be directly related
to the definition of the harmonic vibrational wave function ψ.
Thus, it is convenient to first recall its representation for a system
withN′ non-degenerate modes andN″ sets of degenerate modes
(N″ = 0 for asymmetric tops). In the canonical representation
(C), ψ, associated to the vibrational state |v⟩, is given as a
product of one-dimensional functions
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whereNs″ is the degeneracy order associated to degeneratemode
s, vi is the number of vibrational quanta corresponding to mode i,
and φ q( )v

C
ii

are the well-known one-dimensional harmonic

oscillator wave functions. To make the discussion simpler, we
will consider only molecules with at most doubly degenerate
modes, that is, linear and symmetric tops. Extension to spherical
tops is deferred to a dedicated section. Equation 2 can thus be
written more explicitly as
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An alternative way to treat the degenerate coordinates is
through the polar representation,25 in which the wave function,
namely, ψv

P(q), assumes the following form:
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=
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where vs and = {− − + − }v v v v, 2, ... 2,s s s s s are respectively

the principal and angular quantum numbers, while φ ρ θ( , )v
P

s s,s s
is

the harmonic wave function of the two-dimensional isotropic
harmonic oscillator Hamiltonian expressed in terms of the polar
coordinates ρs and θs arising from a pair of degenerate modes.
It is worth recalling that both representations, canonical and

polar, have the same eigenvalues and hence vibrational energies
but different eigenstates. From a theoretical perspective, the
polar representation is preferable since it leads to an explicit
quantization of the vibrational angular momentum stemming
from each pair of degenerate vibrations. The formulation
proposed by Pliv́a takes these properties into account through a
transformation of the degenerate normal coordinates and the
associated force field.72,74

Having confirmed that the presence of degenerate modes
does not preclude the development of VPT2 equations for
symmetric and linear tops in the canonical representation (see
Appendix A), the main task is to define a suitable transformation
between the states obtained in each representation. At the
harmonic level, it is possible to build a linear transformation
between sets of degenerate states38

ψ ψ= Pv
P

v
T

v
C

(5)

where |ψv
P⟩ and |ψv

C⟩ are the column vectors containing the states
with the same harmonic energy, which implies in practice that vm
and vs = vs1 + vs2 are constant, and Pv is a unitary matrix
connecting the two sets of states. The complete set of rotation
matrices required for the conversion of fundamentals, first
overtones, and binary (1 + 1) combinations from the vibrational
ground state is reported in Section S1 of the Supporting
Information. Furthermore, following the recent extension of our
computational framework to the inclusion of three-quanta
states,75 the full set of the corresponding rotations is reported for
the sake of completeness.
Therefore, a unified framework can be set up, in which

calculations are run in two steps:

1. anharmonic calculations in the canonical framework;
2. if degenerate modes are present, application of the

necessary rotations to switch to the polar representation.

2.2. Vibrational Energies. Full derivations for the VPT2
energies of asymmetric11,32,42 and symmetric or linear71,72,74

tops have been reported elsewhere. Here, we will focus on the
novel aspects using refs48,71,76 as a basis. Based on Pliv́a’s
formalism, the vibrational energy for symmetric and linear tops
can be written
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where ε0
P is the zero-point vibrational energy (ZPVE) in the

polar representation, di is the degeneration of the ith normal
mode, and χP and g are respectively the anharmonic constant
matrix in polar representation and the matrix containing the
anharmonic contributions from the angular momenta, given in
ref 71 and reported in Section S2 of the Supporting Information.
Let us consider a set of degenerate harmonic states in the

canonical (|ψv
C⟩) and polar (|ψv

P⟩) representations. The
associated blocks of the contact-transformed vibrational

Hamiltonian are respectively H̃v,v
C and H̃v,v

P , where the subscript
“v” indicates that only matrix elements between states with the
same principal quantum numbers v are included in the block.
These blocks will be simply referred to as diagonal blocks in the
following. By construction, only the diagonal elements of the
corresponding matrices contribute to the anharmonic energies.
Using eq 5, the following identity can be written

̃ = ̃†H P H Pv v
P

v v v
C

v, , (7)

Since the trace of a matrix is invariant under similarity
transformation, we have
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Equation 7 can thus be systematically used to obtain the
energies in the polar representation, starting from both energies
and resonances (see later) evaluated within the canonical
representation.
After demonstrating that the expression of the resonance-free

ZPVE for asymmetric tops77−79
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(9)

can also be used for linear and symmetric tops (see Section S3 of
the Supporting Information for details and notation), that is,

ε ε=C P
0 0 (10)

Equation 7 can be applied to calculate the energies in the polar
representation for one- and two-quanta states involving at least
one degenerate mode. Combining the rotation matrices
reported in Section S1 of the Supporting Information with the
transformation of the Hamiltonian given in eq 7, it is
straightforward to prove that the anharmonic fundamental
energies do not vary under the change of representation, a
property true for any excited state involving only one degenerate
mode excited with a single quantum (vs = 1), for instance,
ψ| ⟩±

P
1 1 , 1m s s

, ψ| ⟩±
P

1 1 1 , 1m n s s
, ψ| ⟩±

P
2 1 , 1m s s

, and so on.

Following the procedure outlined for the fundamental states,
the rotation-based framework yields the expressions for the
polar energies of the first overtone associated to a degenerate
mode s
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where
∼

is the contact-transformed Hamiltonian,24 and

ε ε ε ε= + +C C C
2 2 2 1 1s s s s s1 2 1 2 (12)

as well as those of the binary (1+1) combination bands involving
two degenerate modes, namely, s and t
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ε ε ε ε ε= + + +st
C C C C

1 1 1 1 1 1 1 1s t s t s t s t1 1 2 2 1 2 2 1 (14)

Contrary to fundamental bands, the energy terms in polar
representation cannot be directly obtained from the canonical
representation but require additional, off-diagonal terms,
collectively called Darling−Dennison coupling terms, which
will be illustrated later. Finally, three-quanta transitions are
treated in the Section S1 of the Supporting Information.
2.3. Resonances and the Variational Correction. In the

following, we will consider three models for the calculation of
VPT2 energies. In the pure VPT2 approach (simply named
VPT2), resonances are ignored, in the sense that all terms
involved in the calculation of the quantities of interest are
systematically included. As a result, this approach has a tendency
to break down very quickly with the system size, often leading to
unphysical results. An improvement is offered by the
deperturbed VPT2 (DVPT2) scheme, where resonances are
identified, usually through a multi-step procedure,42,76,79,80 and
the related terms are discarded. Strong discrepancies are
prevented, but the selective removal of terms can result in an
unbalanced account of the anharmonic contributions, with
varying intensity. In the most refined version, the generalized
VPT2 (GVPT2) scheme,32,42,76,81 the resonant terms from
DVPT2 are introduced back through an additional variational
step, often together with other terms, broadly referred to as
Darling−Dennison interaction terms.82 For this reason, the
latter should be systematically considered for spectroscopic
applications like those here. The general construction and use of
polyads will be reviewed together with GVPT2.
2.3.1. Fermi Resonances and DVPT2 Energies. At the VPT2

level, the energies in the polar representation can be systemati-
cally obtained through linear combinations of canonical energies
and Darling−Dennison resonances. Let us first discuss the
extension of the theoretical framework developed so far to the
DVPT2 scheme, where each potentially resonant term in the χ
matrix is analyzed by applying specific criteria, and those which
are identified as resonant are discarded from the calculation. In
the present work, the identification of Fermi resonances is done
through a two-step procedure, which first considers the
energetic proximity of the interacting states, namely, ωi ≈ 2ωj
(type I) and ωi ≈ ωj + ωk (type II), and then the magnitude of
the term, using Martin’s test80 to estimate the deviation of the
term from the variational energy of a model, ad hoc system.
Currently, DVPT2 can be employed for both canonical and
polar representations, the only difference lying in the definition
of the χmatrix and the construction of the gmatrix in the second
case. However, it can be demonstrated that the formalism
described in Section 2.2 can be easily extended to DPVT2
calculations since eq 7 is valid for both resonant and non-
resonant terms separately

̃ = ̃†H P H Pv v
P

v v v
C

v,
,DVPT2

,
,DVPT2

(15)

At this point, the transformation becomes similar to the VPT2
case presented above. An analogous procedure can be employed
out to evaluate the χP and g matrices.
In practice, subtle differences could be observed because of

the numerical parameters and tests used to define the
resonances. However, for an equivalent set of resonances, the
results obtained through eqs 6 and 15 (χP and g matrices being
deprived of Fermi resonances) will converge.

2.3.2. Variational Correction in GVPT2. GVPT2 is built on
top of DVPT2 by adding a final step to calculate the anharmonic
energies as eigenvalues of a variational matrix, whose diagonal
elements are the DVPT2 energies, discussed in the previous
section, and the off-diagonal elements represent the corrective
terms to Fermi resonances, complemented by Darling−
Dennison interactions, evaluated over the basis of the canonical
harmonic-oscillator wave functions.
On the premise that our reference will remain the canonical

representation, which also fully fits the conditions of the
application of the GVPT2 scheme at first, we will discuss the
theory underlying the definition of the polar variational matrix
and then how a full equivalence can be reached between the two
representations.
The calculation of a specific resonant term can be carried out

by applying a simple generalization of eq 8 to the off-diagonal
block coupling states differing in terms of principal quanta (v ≠
v′), and it can be organized into two steps:

• Step 1: calculation of anharmonic energies and resonant
terms in the canonical representation through the
expressions reported in ref 78 (see Section S4 of the
Supporting Information for more details);

• Step 2: combination of the canonical quantities evaluated
in step 1 in order to obtain the polar resonant term of
interest.

Through the symmetry relations between the anharmonic
force constants of symmetric and linear tops, it is possible to
prove that the corrective terms due to the Fermi resonances are
equivalent in the two representations. Hence, the focus in the
following will be on the couplings between states, collectively
referred to as Darling−Dennison resonances or interactions.
In this context, particular importance is given to the

resonances between states for which the condition v = v′
holds, whose interaction generates the off-diagonal elements of
the blocks H̃v,v

P .
2.3.3. -Type Doubling in the Polar Representation. -type

doubling terms involve overtones of a given degenerate mode or
combination bands of two degenerate modes. Amat derived a
general rule24 for the a priori identification of the non-vanishing
off-diagonal terms

ψ ψ∼

= ± + + ± − ∓ ∓

±

±U v v v v( 4)( 2)( 2)( )

v
P

v
P

s s s s s s s s s

, ,( 4)s s s s s

(16)

ψ ψ∼

= ± + ∓ + ∓ ±

± ∓

±R v v v v( 2)( 2)( )( )

v v
P

v v
P

st s s t t s s t t

, ,( 2) ( 2)s t s t s t s s t t

(17)
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ψ ψ∼

= ± + ± + ∓ ∓

± ±

±S v v v v( 2)( 2)( )( )

v v
P

v v
P

st s s t t s s t t

, ,( 2) ( 2)s t s t s t s s t t

(18)

where the elements defined in eq 16 contribute to the energy
only if the order of the principal symmetry axis (n in Cn) is a
multiple of 4 and those in eq 18 only if n is even. The expressions
of the termsUs

±, Rst
±, and Sst

± have been first derived by Grenier
and Bresson83,84 and then re-derived in ref 71.
In the present derivation, there is no need of developing

specific equations for computing the matrix elements defined in
eqs 14−16 since they are off-diagonal elements of the diagonal
blocks H̃P

2 ,2s s
and H̃P

1 1 ,1 1s t s t
(the full equations in terms of

canonical quantities are reported in Section S5 of the Supporting
Information). As a matter of fact, the calculation of -type terms
can be performed concurrently with the conversion of the
anharmonic energies through eq 7.
2.3.4. Diagonalization and GVPT2 Energies. In the

preceding sections, it has been shown that the blocks of the
polar variational matrix (H̃P) can always be expressed in terms of
their canonical counterpart. In order to understand the effects of
such a connection on the GVPT2 energies, we will first consider
a H̃P matrix only containing the -type terms as off-diagonal
elements. In this context, the variational problem simplifies to
diagonalizing blocks of the type H̃P

2 ,2s s
and H̃P

1 1 ,1 1s t s t
, whose

eigenvalues are equal to those of their canonical counterparts.
Therefore, the inclusion of -type doubling at the variational
level implies the convergence of GVPT2 energies in the two
representations.
This result can be easily generalized, given that an equivalent

set of resonances is included in both representations, leading to
the following identity:

̃ = ̃†H P H PP C (19)

where P is a block-diagonal matrix composed of all rotation
matrices required for converting the different diagonal blocks
H̃v,v

C , and it is itself unitary.
In analogy with the treatment of -type doubling, the

invariance of the eigenvalues of a matrix under unitary
transformations can be exploited to state that canonical and
polar GVPT2 energies converge to the same values. Let us
remark that the -type terms are present even in the absence of
accidental resonances. Consequently, their inclusion is man-
datory in order to reach the convergence of the GVPT2 energies.
From a practical point of view, eq 19 prevents any ambiguity
connected to the representation choice since the set of GVPT2
energies is unique.
2.4. Transition Moments and Intensities. Starting from

the available literature (e.g., the study of Tarrago and co-
workers85 on the transition dipole moments of C3v-symmetry
systems), a general computational framework to calculate both
IR intensities and Raman activities of molecular systems with
non-Abelian symmetries has been devised and implemented in
our platform.
Let us start from the band intensities and the associated

transition moments of linear and symmetric tops taking into
account that thanks to the transformation shown in eq 5, it is
possible to use the formulas obtained for asymmetric tops (and
reported in Section S6 of the Supporting Information) to obtain
their counterparts in the polar representation.

If we look at the fundamental bands (the full equation is
reported in Sections S6.1.1 and S6.2.1 of the Supporting
Information for degenerate modes), terms of the form

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
∑ ∑

ω ω

δ

ω ω
−

+
−

−
−= =

s S
P

8
f

1 (1 )

j

N

k

N

s jkk j
s j

s j

s j

0

1 1
1

1

(20)

where Pj collects the Cartesian components of the first derivative
of the property P with respect to the jth dimensionless normal
coordinate, will present a singularity whenever j = s2. For this
reason, it is necessary to exclude those modes in the summation
so that the degenerate modes are assumed to be resonant, and
the “resonant” form (Section S6.2.1 in the Supporting
Information) is used instead. For simplicity, only transitions
from the ground state (noted 0) to a given final state f are
considered, noted “0;f”.
The quantities of interest here for IR and Raman spectros-

copies are the dipole strength and Raman activity, labeled in the
canonical representation D0;f

C and S0;f
C , respectively,

μ

γ

= |⟨ ⟩ |

= { } + { }

D

S a45 7

f
C

f
C

f
C

f
C

f
C

0; 0;
2

0;
2

0;
2

0; (21)

Here, the invariants {a2}0;f
C (isotropic) and {γ2}0;f

C (anisotropic)
for the most general case of a complex tensor are defined as86,87

α α

γ α α

α α
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0;

1
9 , , , , 0; 0;

2
0;

1
2 , , , , 0; 0;

0; 0; (22)

where τ and η run over the Cartesian axes, while ⟨μ⟩0;f
C and

⟨ατη⟩0;f
C represent respectively the transition integrals of the

electric dipole and a component of the polarizability tensor
between the canonical states |ψ0

C⟩ and |ψf
C⟩. Let us anticipate that

a closure relation having the same form as eq 8 also holds for
dipole strengths and Raman activities due to the unitarity of the
rotation matrices.
The theoretical framework currently used for the calculation

of transition moments can be straightforwardly extended to the
polar representation (for more details, see Appendix B). Thus,
once the transition dipole moments and polarizabilities are
converted through eq 60, the calculation of both IR and Raman
intensities in the polar representation is possible. It is worth
mentioning that even though the transition moments evaluated
in this way are generally complex, the corresponding intensities
are always real.

2.4.1. Infrared Intensities and Raman Activities at the VPT2
Level. For readability, the initial-state label will be dropped, so
D0;fwill be simply writtenDf. In analogy with energies, the dipole
strengths and Raman activities for fundamental states are the
same if they are degenerate so that their contribution to the
anharmonic spectra is independent of the representation. This
result simplifies considerably the whole conversion procedure
since among states with up to two quanta, the only states
potentially different with respect to the canonical representation
are the sets ψ| ⟩P

2s
and ψ| ⟩P

1 1s t
.

Concerning degenerate overtones, the dipole strengths of the
polar states are
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where μ⟨ ⟩C
2s1
and μ⟨ ⟩C

2s2
are respectively the vectors containing

the Cartesian components of the transition dipole moments
associated with the states ψ| ⟩C

2s1
and ψ| ⟩C

2s2
, and D C

2s
is defined as

= + +D D D Ds
C C C C
2 2 2 1 1s s s s1 2 1 2 (24)

The Raman activities can be expressed in a compact notation
through the introduction of the variables Ar;s

C , Γr;s
C , and Sr;s
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which can be interpreted respectively as the “off-diagonal” terms
of {a2}r

C, {γ2}r
C, and Sr

C.
As a consequence, the expressions of the Raman activities of

the polar states of interest are
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where

= + +S S S SC C C C
2 2 2 1 1s s s s s1 2 1 2 (27)

A similar analysis applied to the transition moments of binary
combination bands involving degenerate modes yields the
dipole strengths of the polar states

μ μ μ μ
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where

= + + +D D D D Dst
C C C C C

1 1 1 1 1 1 1 1s t s t s t s t1 1 1 2 2 1 2 2 (29)

Finally, the corresponding Raman activities are
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where

= + + +S S S S Sst
C C C C C

1 1 1 1 1 1 1 1s t s t s t s t1 1 1 2 2 1 2 2 (31)

From a comparison of eqs 25 and 26 with eqs 11a and 11b and
eqs 28 and 30 with eqs 13a and 13b, it is possible to observe that
the conversion of dipole strengths and Raman activities is ruled

by expressions similar to those employed for the anharmonic
energies.

2.4.2. Introduction of the Variational Correction. It has
been demonstrated that if the variational matrix H̃P in the polar
representation can be expressed by a rotation of the canonical
one H̃C (see eq 19), the anharmonic energies within the two
representations converge to the same values. This result can be
easily extended to vibrational intensities. Indeed, while the
definition of variational states is dependent on the representa-
tion of the reference states, polar and canonical variational states
are equivalent when projected onto the same basis. In this
context, the canonical basis is chosen as a reference.
As a matter of fact, the variational states, and hence the

intensities, do not depend on the representation. Let us remark
that the equality of the variational states holds even when only
-type doubling terms are included as off-diagonal elements of the
variational matrix, that is, even in the absence of accidental
resonances.
In summary, the anharmonic spectrum is completely

independent of the representation, with the only difference
being the harmonic-state basis. Thus, the computational
protocol currently employed for asymmetric tops can be
straightforwardly extended to the treatment of symmetric/linear
tops without any loss of accuracy.

2.5. Extension to Spherical Tops. In this section, we will
show how the framework devised for symmetric and linear tops
can be extended to spherical tops. For the sake of concision, the
rotation-based formulation will be applied to systems presenting
at most threefold degenerate vibrations. Actually, the eigenstates
of the three-dimensional isotropic harmonic oscillator are again
complex linear combinations of the canonical wave functions.
This type of combinations can be extended to higher degeneracy
orders, in which case, the following derivation can be
straightforwardly adapted to systems exhibiting such character-
istics.
Back to our application, the starting point remains the

canonical representation since the specificity of the spherical top
lies in the definition of the rotation matrices necessary for the
transformation of the wave functions. While the canonical wave
function is still given by eq 2, the so-called spherical wave
function has the following form, where non-degenerate and
doubly and triply degenerate modes are gathered in different
terms

∏ ∏ ∏ψ φ φ ρ θ φ γ ϕ=
=
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where φ γ ϕ′ ′ ′′ ′ ′
r( , , )v k m

S
s s ss s s

are the solutions of the three-dimen-

sional isotropic harmonic oscillator Hamiltonian expressed with
respect to the spherical coordinates stemming from a trio of
degenerate modes, rs, γs, and ϕs, and the quantum numbers vs′,
ks′, and ms′ can assume the following values:

=

= − −

= − − + −
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0, 1, 2, ...
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s

s s s s

s

s s s s s (33)

In analogy with symmetric and linear tops, the analysis of the
spherical wave functions enables the definition of the rotation
matrices Qv

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00240
J. Chem. Theory Comput. 2021, 17, 4332−4358

4337

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00240?rel=cite-as&ref=PDF&jav=VoR


ψ ψ| ⟩ = | ⟩Qv
S

v v
CT

(34)

where |ψv
S⟩ contains the spherical states sharing the same

principal angular number v and |ψv
C⟩ is the corresponding

canonical counterpart. Let us stress that when the states |ψv
S⟩

only involve non-degenerate and doubly degenerate modes, the
rotation matrix is Pv.
Let us now analyze the effect of rotations in deeper detail,

highlighting the analogies with symmetric and linear tops. The
canonical expression of ZPVE, whose expression is reported in
eq 9, can be equivalently expressed through the following
formula:

ε ψ ψ= ⟨ | ∼ | ⟩C C C
0 0 0 (35)

whereψ0
C represents the harmonic ground-state wave function in

the canonical representation. The main advantage of the
rotation-based framework is that the specific properties of the
rotor are collected in the definition of the wave function, more
specifically through the use of rotation matrices to carry out the
conversion procedure described above. As a result, the reference
basis is always the canonical one, and the operators depending
on the normal coordinates and their conjugate momenta are
never subject to any modifications. Based on this, the expression
of the spherical counterpart ε0

S is

ε ψ ψ= ⟨ | ∼ | ⟩S S S
0 0 0 (36)

where ψ0
S is the harmonic ground-state wave function in the

spherical representation. Since the ground-state wave function is
independent of the representation (see Appendix B for more
details), we can conclude that

ε ε=C S
0 0 (37)

Hence, the resonance-free ZPVE in the spherical representa-
tion can be still evaluated through the customary expression,
which can be then used for systems presenting both doubly and
triply degenerate modes without any restriction.
In the previous sections, all different types of bands involving

up to two-quanta excitations characterizing symmetric and
linear tops have been derived and analyzed separately. In general
terms, this separation is not necessary since only a few rotation
matrices are actually sufficient to build all the other ones. With
the aim of treating all the states up to two quanta, the largest
value that the quantum numbers vm, vs, and vs′ reported in eq 34
can assume is 2 so that the matrices P1s, P2s,Q1s, andQ2s allow to
express any spherical state in terms of canonical ones (the
extension to three-quanta states would only require additional
matrices, P3s and Q3s).
In the same way as symmetric and linear tops, both transition

energies and intensities for states only involving one excited
quantum of a threefold degenerate vibration are still
independent of the representation, and this is also true for the
ZPVE. Concerning overtones and binary combination bands
involving triply degenerate modes, a complete derivation of both
energies and intensities in the spherical representation for states
up to two quanta is reported in Section S7 of the Supporting
Information.
Finally, it is worth mentioning that the equivalence of

representations at the GVPT2 level is not affected by the
presence of triply degenerate vibrations, with it being strictly
related to the connection of the wave functions by unitary

matrices. Therefore, the GVPT2 results remain independent of
the representation.

3. COMPUTATIONAL DETAILS
The theoretical framework presented in the previous sections
has been implemented in a development version of the Gaussian
package.88 Most of the available electronic structure computa-
tions allowing analytic computation of second energy and first
property derivatives have been employed. These includeHF and
second-order Møller−Plesset (MP2) wave-function methods
together with different flavors of DFT including representative
hybrid (B3LYP89−92) and double-hybrid (B2PLYP93,94) ex-
change−correlation functionals, with the inclusion of empirical
dispersion contributions by means of Grimme’s D3 model with
Becke−Johnson damping95,96 (hereafter noted B3D3 and
B2D3, respectively). As the core of this work concerns the
development, functionals with a well-documented reliability on
the molecular systems chosen here for illustration purposes were
selected. The reliability of the B2PLYP functional in the
calculation of both harmonic and anharmonic frequencies has
been demonstrated in the literature.97,98 The B3LYP functional
has been used for the calculation of both harmonic and
anharmonic frequencies only for linear systems, where B2PLYP
results have also been shown. Concerning symmetric and
spherical tops, the B3LYP functional has been only used for the
calculation of the anharmonic corrections in the hybrid scheme.
In this respect, it has been demonstrated that the quality of the
harmonic frequencies is much more critical if compared with
that of the corresponding anharmonic corrections.2 The so-
called calendar basis sets jun-cc-pVDZ and jun-cc-pVTZ99 have
been consistently employed (referred to in the following as
JnDZ and JnTZ, respectively).
The anharmonic data required for the VPT2 calculation of

frequencies and intensities have been obtained by finite
differences of analytical force constants (full cubic and semi-
diagonal quartic force constants) and first-order derivatives of
the properties (full second and semi-diagonal third derivatives),
employing a default displacement of δQi = 0.01 √amu·Å along
eachmass-weighted normal coordinateQi.

42,100 From a practical
point of view, the generation of the anharmonic force field and
higher-order property derivatives is the most expensive step
once the equilibrium structure has been found. Indeed, 2N
frequency calculations are needed in addition to the one at the
reference geometry, required to generate the displacement
vectors. Being independent from one another, they can be run in
parallel on separate machines, with the final constants built at the
end of the process. Hence, in an optimal scenario, the
computational cost can be reduced to roughly twice what is
needed at the harmonic level. The VPT2 calculations themselves
on systems of this size last a few minutes, independent of the
scheme chosen.
For the treatment of resonances, the protocol detailed in ref

76 was used with the default parameters.
In addition to the basic formulation of VPT2, the DVPT2 and

GVPT2 schemes are also used for the calculation of both
anharmonic energies and intensities. The use of DVPT2 is
necessary in the presence of Fermi resonances to avoid the
unphysical results issuing from the standard VPT2 equations. In
addition to recovering the discarded terms from DVPT2, the
GVPT2 scheme allows a straightforward account of Darling−
Dennison resonances, which are not explicitly considered within
the purely perturbative approach. Besides improving the overall
agreement with experimental energies, they can be critical to

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00240
J. Chem. Theory Comput. 2021, 17, 4332−4358

4338

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.1c00240/suppl_file/ct1c00240_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.1c00240/suppl_file/ct1c00240_si_001.pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00240?rel=cite-as&ref=PDF&jav=VoR


obtain correct band shapes. However, the induced trans-
formation can result in a significant deviation from the harmonic
oscillator-based description of the vibrational states preserved by
VPT2, thus requiring some extra work for the band assignment.
Further details concerning the different VPT2 schemes
concerning both vibrational energies and intensities have been
recently reported in ref 101.
The so-called hybrid force field scheme has also been

employed.2,102−105 In this approach, harmonic and anharmonic
contributions are treated at different levels of theory in view of
their different contribution to the final VPT2 result. In
particular, anharmonic contributions have been consistently
computed with the JnDZ basis set and harmonic terms with
JnTZ. In some cases, which will be explicitly mentioned in the
discussion, the results at the CCSD(T) level in conjunction with

extended basis sets, already available in the literature, were

employed for the latter. It should be noted that the higher-level

harmonic frequencies are not simply added to anharmonic

corrections but are also employed in the conversion of the

anharmonic force constants and property derivatives, in the

construction of the χmatrix, the definition of the resonant terms,

and for the intensity. The JnTZ basis set has been employed for

the calculation of anharmonic contributions of aromatic systems

since it is well known that out-of-plane vibrations of these

molecules are particularly sensitive to the basis-set dimen-

sion.106−109 An analogous remark applies to CO2.
110

Table 1. Comparison of Experimental and Computed Anharmonic Fundamental Wavenumbers (in cm−1) for the Linear
Molecules HCN, HNC, and C2H2

a

MP2//MP2b B3D3//B3D3b B2D3//B2D3b

symm. ω νVPT2 ω νVPT2 ω νVPT2 exp.

HCNc

|11⟩ Σ 3459 3328 3440 3309 3455 3322 3312
|12⟩ 2023 1989 2199 2172 2125 2094 2097
|13,±13⟩ Π 710 704 757 738 740 726 714
MAE 45 34 8

HNCd

|11⟩ Σ 3819 3658 3801 3632 3816 3650 3653
|12⟩ 2019 1986 2103 2070 2060 2025 2029
|13,±13⟩ Π 492 479 471 436 470 445 477
MAE 17 34 13

C2H2
e

|11⟩ Σg 3525 3389 3512 3378 3524 3389 3372
|12⟩ 1969 1930 2068 2036 2024 1988 1975
|13⟩ Σu 3437 3312 3412 3287 3431 3305 3289
|14,±14⟩ Πg 592 561 663 621 638 602 613
|15,±15⟩ Πg 748 718 768 735 762 730 730
MAE 30 16 11

aMean absolute errors (MAEs) are also reported. The polar vibrational states are indicated as | ⟩v ,i i .
bAnharmonic calculations performed with the

JnDZ basis set based on a set of harmonic frequencies evaluated through the JnTZ basis set. cExperimental values from ref 69. dExperimental values
from ref 111. eExperimental values from ref 112.

Table 2. Comparison of Experimental and Computed Anharmonic VPT2, DVPT2, and GVPT2Wavenumbers (in cm−1) of CO2
in the Polar Representationa

MP2b B3D3b B2D3b

state ω νVPT2 νDVPT2 νGVPT2 ω νVPT2 νDVPT2 νGVPT2 ω νVPT2 νDVPT2 νGVPT2 exp.

Fundamentals
|11,±11⟩ 659 657 657 657 674 670 670 670 666 662 662 662 668c,d,e,f

|12⟩ 1326 1697 1309 1262 1369 1492 1349 1291 1341 1646 1321 1272 1285c,d,e,f,g

|13⟩ 2405 2367 2367 2367 2403 2356 2356 2356 2387 2342 2342 2342 2349c,d,e,f,g

Overtones
|21,±21⟩ 1319 1315 1315 1315 1347 1341 1341 1341 1332 1326 1326 1326 1336d,e,f

|21,01⟩ 1319 933 1320 1368 1347 1203 1346 1403 1332 1005 1330 1379 1388d,e,f,g

|22⟩ 2652 3389 2614 2614 2739 2979 2692 2692 2682 3287 2635 2635 2548g

|23⟩ 4810 4714 4714 4714 4806 4688 4688 4688 4774 4660 4660 4660 4673f,g

Combinations
|1112,±11⟩ 1986 2736 1960 1960 2043 2300 2013 2013 2007 2628 1978 1978 2077d,f

|1113,±11⟩ 3065 3013 3013 3013 3076 3014 3014 3014 3053 2992 2992 2992 3004f,g

|1213⟩ 3731 4051 3664 3664 3772 3830 3686 3686 3728 3970 3644 3644 3613d,e,f,g

MAE 291 43 38 130 43 34 244 36 29
aThe polar vibrational states are indicated as | ⟩vv ,i j i .

bBasis set: JnTZ. cReference 113. dReference 114. eReference 115. fReference 116. gReference
117.
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4. RESULTS AND DISCUSSION

The framework previously discussed has been validated through
a series of applications to linear and symmetric tops, illustrative
of representative non-Abelian symmetry groups.
4.1. Linear Molecules. First, a set of three- and four-atom

molecules, including hydrogen cyanide (HCN), hydrogen
isocyanide (HNC), and acetylene (C2H2), has been considered.
The absence of Fermi and 1−1 Darling−Dennison resonances
(between fundamental states) implies that the anharmonic
fundamentals do not vary going from VPT2 to DVPT2 or
GVPT2 schemes. The fundamental harmonic and anharmonic
frequencies obtained with the hybrid force-field model
described above are reported in Table 1.
As can be seen from Table 1, the computed fundamental

energies are in good agreement with the experimental
counterparts, with the largest discrepancy concerning the
degenerate mode of HNC. At the B3D3 and B2D3 levels of
theory, such an error is most likely due to the underestimation of
the corresponding harmonic frequency, which is lower of the
experimental value in both cases.
As an example of comparison between the polar and canonical

representations, the vibrational frequencies of CO2 for all states
up to two quanta in the polar representation have been
calculated and analyzed. The set of wavenumbers in the polar
representation is reported in Table 2 and compared with
reference experimental values.
For comparison purposes, the VPT2, DVPT2, and GVPT2

wavenumbers in the canonical representation are reported in
Table 3.
As expected, the states involving at most one vibrational

quantum in the degenerate bending mode have the same
frequency irrespective of the chosen representation. Conversely,
the frequencies of the first overtones related to the bending
mode change between the representations, even though the
energies converge to the same values when the GVPT2 model is
applied.
By comparing Tables 2 and 3, it is straightforward to verify

that the sum of the energies of the states ψ| ⟩±
P

2 , 21 1
and ψ| ⟩P

2 ,01 1

equals that of the states ψ| ⟩C
2 a1

, ψ| ⟩C
2 b1

, and ψ| ⟩C
1 1a b1 1

. Such an

outcome is in full agreement with eq 8.
Due to the strong Fermi resonance between the overtone of

the bending mode and the fundamental of the symmetric
stretching (2ω1 ≈ ω2), the CO2 molecule has been widely used
as a prototype in the study of resonances. Let us underline that
only the state ψ| ⟩P

2 ,01 1
is involved in the resonance since the

coupling between the states ψ| ⟩±
P

2 , 21 1
and ψ| ⟩C

12
is symmetry-

forbidden. In order to show this from the mathematical point of
view, let us consider the general case of a Fermi resonance
between the fundamental of a non-degenerate mode m and the
overtone of a degenerate mode s. Both possible resonant terms,

ψ ψ⟨ | ∼ | ⟩C P
1 2 ,0m s s

and ψ ψ⟨ | ∼ | ⟩±
C P

1 2 , 2m s s
, can be conveniently expressed

in terms of canonical interaction terms

ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ

ψ ψ

⟨ | ∼ | ⟩ = − [⟨ | ∼ | ⟩ + ⟨ | ∼ | ⟩]

= −

⟨ | ∼ | ⟩ = [⟨ | ∼ | ⟩ − ⟨ | ∼ | ⟩]

± ⟨ | ∼ | ⟩

= [ ± ]

±
i

i

1
2
f

2
1
2

2
1
4

2f f

C P C C C C

C P C C C C

C C

1 2 ,0 1 2 1 2

mss
(I)

1 2 , 2 1 2 1 2

1 1 1

mss
(III)

mss
(IV)

m s s m s m s

m s s m s m s

m s s

1 2

1 2

1 2

(38)

where the expressions of the matrix elements associated to the
Fermi resonances in the canonical representation76 have been
used in conjunction with the symmetry rules and the definition
of the force constants fmss

(σ) (σ = I, III, IV) reported in Table A2 of
ref 71. For linear molecules, the only non-vanishing force

constant fmss
(σ) corresponds to σ = I so that ψ ψ⟨ | ∼ | ⟩±

P P
1 2 , 2m s s

always

vanishes for this kind of systems.
The results obtained at the B3D3/JnTZ level of theory have

been employed in the calculation of both IR and Raman spectra,

Table 3. Computed Anharmonic VPT2, DVPT2, and GVPT2Wavenumbers (in cm−1) of CO2 in the Canonical Representation
a

MP2b B3D3b B2D3b

state ω νVPT2 νDVPT2 νGVPT2 ω νVPT2 νDVPT2 νGVPT2 ω νVPT2 νDVPT2 νGVPT2

Fundamentals
|11a⟩ 659 657 657 657 674 670 670 670 666 662 662 662
|11b⟩ 659 657 657 657 674 670 670 670 666 662 662 662
|12⟩ 1326 1697 1309 1262 1369 1492 1349 1291 1341 1646 1321 1272
|13⟩ 2405 2367 2367 2367 2403 2356 2356 2356 2387 2342 2342 2342

Overtones
|21a⟩ 1319 1124 1318 1315 1347 1272 1344 1341 1332 1166 1328 1326
|21b⟩ 1319 1124 1318 1315 1347 1272 1344 1341 1332 1166 1328 1326
|11a11b⟩ 1319 1315 1315 1368 1347 1341 1341 1403 1332 1326 1326 1379
|22⟩ 2652 3389 2614 2614 2739 2979 2692 2692 2682 3287 2635 2635
|23⟩ 4810 4714 4714 4714 4806 4688 4688 4688 4774 4660 4660 4660

Combinations
|11a12⟩ 1986 2736 1960 1960 2043 2300 2013 2013 2007 2628 1978 1978
|11b12⟩ 1986 2736 1960 1960 2043 2300 2013 2013 2007 2628 1978 1978
|11a13⟩ 3065 3013 3013 3013 3076 3014 3014 3014 3053 2992 2992 2992
|11b13⟩ 3065 3013 3013 3013 3076 3014 3014 3014 3053 2992 2992 2992
|1213⟩ 3731 4051 3664 3664 3772 3830 3686 3686 3728 3970 3644 3644

aThe canonical vibrational states are indicated as |vivj⟩, and the subscripts “a” and “b” distinguish degenerate modes. bBasis set: JnTZ.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00240
J. Chem. Theory Comput. 2021, 17, 4332−4358

4340

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00240?rel=cite-as&ref=PDF&jav=VoR


with the harmonic and anharmonic results obtained within the
VPT2, DVPT2, and GVPT2 schemes being compared with the
experimental data in Figure 1. As expected, the best agreement
between theoretical and experimental spectra is reached within
the GVPT2 scheme. This is particularly evident in the Raman
spectrum, in which the inclusion of the Fermi resonance
discussed above at the variational level leads to an excellent
reproduction of the relative intensities characterizing the Fermi
diad present in the experimental spectrum.
As a last example of linearmolecules, dicyanoacetylene (C4N2,

see Figure 2) is considered.
Dicyanoacetylene has been detected on the Titan moon of

Saturn by IR spectroscopy, and it is used as a prototype for
similar astrochemical systems, such as cyanopolyynes.120

The IR and Raman spectra of this system have been the object
of several experimental works,121−128 while a theoretical analysis
has been recently presented by Dargelos and Pouchan.120 With
the aim of showing the application of our computational
framework to longer chain systems, the VPT2, DVPT2, and
GVPT2 fundamentals at different levels of theory have been
calculated and compared with their experimental counterparts in
Table 4.
At both B3D3 and B2D3 levels, two Fermi resonances of the

first type coupling the states |14⟩ and |25⟩, and |13⟩ and |27,07⟩ are

Figure 1. Comparison of the computed IR (top) and Raman (bottom) spectra of CO2 at the B3D3/JnTZ level of theory with the experimental data.
Spectral line shapes have been convoluted by Lorentzian distribution functions with HWHMs of 5 cm−1. Experimental IR spectrum from the NIST
Web Book.118 Experimental Raman spectrum from ref 119. All spectra are normalized by setting the intensity of their highest peak to unity.

Figure 2. Molecular structure of dicyanoacetylene.
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detected, with only the former being present at the MP2 level.
Within the GVPT2 scheme, such Fermi resonances have been
included variationally, together with the proper -type doubling
terms, and 2−2 Darling−Dennison resonances, with the latter
being present only at the B3D3 and B2D3 levels.
The best agreement between theoretical and experimental

fundamentals is reached at the B2D3 level, despite an out-of-
scale discrepancy detected for the degenerate states |16,±16⟩
regardless of the electronic level of theory. The corresponding
normal mode is depicted in Figure 3.

At the MP2 level, such a difference can be ascribed to an
underestimation of the harmonic frequency (which is lower than
the experimental value), whereas density functional calculations
show an excessive anharmonic correction (229 and 158 cm−1 for
B3D3 and B2D3, respectively). Interestingly, theMP2 harmonic
energies of the |16,±16⟩ fundamentals are very close to those of
the experiment, a trend observed for all modes below 1000 cm−1.
4.2. Symmetric Tops. Shifting to symmetric-top systems,

we analyze a set of six molecules, namely, bromotrifluoro-
methane (CF3Br), mono- and tri-deuterated methane (CH3D
and CHD3, respectively), the cyclopentadienyl anion (C5H5

−),
benzene (C6H6), and pentaborane (B5H9), which are
characterized by a principal axis of order ranging from 3 to 6
and belong to themolecular point groupsCnv andDnh. As already
pointed out, anharmonic corrections at the MP2 level are free
from the issues of numerical integration, which is not always true
for methods rooted into DFT. In this respect, MP2 is more
suitable for validation purposes of the new rotation-based
framework, significantly reducing the possibility of errors in the
symmetry relations proposed by Amat and Henry, and
characterizing the anharmonic force field of symmetric and
linear tops. As a matter of fact, while MP2 corrections will be
used for all symmetric tops studied in the following, the use of
DFT will be limited to the C3v systems.
Let us start from CF3Br (see Figure 4), whose anharmonic IR

spectrum has been simulated at the MP2/JnDZ level of theory

with harmonic frequencies corrected by CCSD(T)/aug-cc-
pVTZ-PP129 calculations. In the former case, no Fermi
resonances are present, while in the latter case, a single Fermi
resonance of the second type, involving the non-degenerate
fundamental |11⟩ and combination |1213⟩, has been detected. In
both cases, the only Darling−Dennison resonances detected
correspond to the -type doubling of type R (which is the only
one present when the principal axis order is 3).
The set of anharmonic fundamental frequencies, together

with the energy of state |1213⟩ (the only two-quanta state
involved in a Fermi resonance within the CC//MP2 scheme), is
compared with the experimental data in Table 5 where, as
expected, the improvement of the results due to the use of
coupled-cluster (CC) harmonic frequencies leads to excellent
agreement.
The hybrid CC//MP2 results have also been used in the

calculation of the anharmonic IR spectrum. Furthermore, in
order to show the importance of anharmonic effects in the
reproduction of both the position and intensity of the bands of
the spectrum, the theoretical spectra have been evaluated by a
stepwise inclusion of the anharmonic corrections. More
specifically, the IR spectrum has been first evaluated at the
purely harmonic level (HH), followed by the inclusion of the
anharmonic corrections to the energies (AH) and finally to both
energies and intensities (AA). A full comparison of theoretical
and experimental spectra is reported in Figure 5.
As can be seen from the top panel of Figure 5, a remarkable

improvement in the position of the bands is obtained by
correcting the transition energies. Conversely, the bottom panel
is characterized by a total absence of theoretical peaks unless the
anharmonic contributions to the intensities are included.
Indeed, in the spectral window corresponding to the bottom
panel, only overtones and combination bands have been
detected experimentally, while only fundamental bands have

Table 4. Comparison of Experimental and Computed Anharmonic Fundamental VPT2, DVPT2, and GVPT2 Wavenumbers (in
cm−1) of Dicyanoacetylenea

MP2//MP2b B3D3//B3D3b B2D3//B2D3b

symm. ω νVPT2 νDVPT2 νGVPT2 ω νVPT2 νDVPT2 νGVPT2 ω νVPT2 νDVPT2 νGVPT2 exp.

|11⟩ Σg 2235 2174 2187 2178 2377 2607 2340 2315 2313 2236 2269 2254 2270
|12⟩ 2031 1991 1991 1991 2219 2190 2190 2190 2144 2110 2110 2110 2123
|13⟩ 600 606 606 606 617 634 611 617 610 623 604 610 606
|14⟩ Σu 2152 2105 2105 2105 2342 2309 2309 2309 2261 2221 2221 2221 2245
|15⟩ 1155 1149 1149 1149 1186 1186 1186 1186 1174 1171 1171 1171 1155
|16,±16⟩ Πg 504 422 422 422 559 330 330 330 537 375 375 375 505
|17,±17⟩ 263 203 203 203 285 233 233 233 277 219 219 219 261
|18,±18⟩ Πu 478 463 463 463 510 475 475 475 497 469 469 469 472
|19,±19⟩ 109 82 82 82 114 94 94 94 112 87 87 87 107
MAEc 58 57 58 71 35 33 21 15 17
aMean absolute errors (MAEs) are also reported. The polar vibrational states are indicated as | ⟩v ,i i .

bAnharmonic calculations performed with the
JnDZ basis set based on a set of harmonic frequencies evaluated with the JnTZ basis set. cStates |16,±16⟩ excluded.

Figure 3. Graphical representation of normal mode 6 of dicyanoace-
tylene.

Figure 4. Molecular structure of CF3Br and CH3D.
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non-vanishing intensities within the harmonic oscillator model.
The anharmonic corrections to the intensities allow not only to
bypass this limit but also to produce a spectral profile in full
agreement with the experimental one.
With the aim of showing the application of the new framework

to the calculation of isotopomers belonging to different point
groups, the CH3D and CHD3 molecules (symmetric tops) will
be compared to the CH2D2 isotopomer (asymmetric top),
whereas the spherical top isotopomers (CH4 and CD4) will be
analyzed in a later section. In this context, four hybrid schemes
have been used for computing the wavenumbers of the systems
under consideration, namely, the MP2//MP2, B2D3//B3D3,
CC//MP2, and CC//B3D3 models in conjunction with the
JnDZ (B3D3 and MP2), JnTZ (B2D3), and cc-pVQZ (CC)
basis sets.134 A full comparison of all sets of theoretical data with
the corresponding experimental counterparts is reported in
Table 6.

Concerning CH2D2, two Fermi resonances, namely,ω2≈ 2ω7

and ω8 ≈ ω4 + ω9, have been found at all levels of calculation,
with an additional one (ω1≈ 2ω3) detected at the B2D3//B3D3
level. Conversely, 1−1 and 2−2 Darling−Dennison resonances
have not been identified. The resonance analysis carried out for
CH3D shows the presence of a Fermi resonance of type I (ω1 ≈
2ω5) and a 1−1 Darling−Dennison resonance (ω1 ≈ ω4) at all
the computational levels employed here. A second Fermi
resonance of type I (ω2≈ 2ω6) is also present at theMP2//MP2
level. Furthermore, a series of 2−2 Darling−Dennison
interactions have been detected (including -type terms).
Finally, CHD3 is consistently characterized by two Fermi
resonances (ω2 ≈ 2ω3 and ω4 ≈ ω3 + ω5), with the addition of
ω4≈ 2ω6 at the CC//MP2 level. While 1−1 Darling−Dennison
resonances have not been found, different 2−2 Darling−
Dennison resonances have been included at the variational level.
Let us remark that in agreement with the analysis performed by

Table 5. Comparison of Experimental and Computed Anharmonic VPT2, DVPT2, and GVPT2 Wavenumbers (in cm−1) of
CF3Br

a

MP2//MP2b CC//MP2c

state symm. ω νVPT2 νDVPT2 νGVPT2 ωd νVPT2 νDVPT2 νGVPT2 exp.e,f,g

|11⟩ A1 1101 1080 1080 1080 1104 1082 1091 1086 1085
|12⟩ 770 764 764 764 763 757 757 757 761
|13⟩ 363 361 361 361 353 351 351 351 350
|14,±14⟩ E 1221 1196 1196 1196 1230 1206 1206 1206 1209
|15,±15⟩ 553 547 547 547 548 542 542 542 550
|16,±16⟩ 309 307 307 307 304 302 302 302 305
|1213⟩ 1132 1132 1132 1132 1116 1119 1110 1115 1120
MAE 7 7 7 3 4 4

aThe polar vibrational states are indicated as | ⟩v ,i i .
bAnharmonic calculations performed with the JnDZ basis set based on a set of harmonic

frequencies evaluated with the JnTZ basis set. cAnharmonic calculations performed at the MP2/JnDZ level based on a set of harmonic frequencies
evaluated at the CCSD(T)/aug-cc-pVTZ-PP level. dReference 130. eReference 131. fReference 132. gReference 133.

Figure 5. Comparison of the computed IR spectrum of CF3Br at the hybrid CC//MP2 level of theory with the experimental data. The labels HH and
AA indicate respectively the full harmonic and anharmonic spectra, while the label AH indicates the inclusion of anharmonic effects only for the
correction of the energies. The spectral range has been segmented to highlight the structure in the region above 1400 cm−1, with the panel below
reporting the spectrum scaled by a factor 100 with respect to the above one. Spectral line shapes have been convoluted by Lorentzian distribution
functions with HWHMs of 5 cm−1. Experimental IR spectrum from ref 133. All spectra are normalized by setting the intensity of their highest peak to
unity.
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Lee and co-workers,134 the state |11⟩ of CH3D is strongly
coupled with |27,07⟩ (but not with |27,±27⟩ since the coupling
element vanishes based on eq 38) so that at the GVPT2 level, the
states with energies (see Table 6) 2931, 2995, 2978, and 2983
cm−1 for MP2//MP2, B2D3//B3D3, CC//MP2, and CC//
B3D3, respectively, and those with energies 3017, 2911, 2890,
and 2899 cm−1 are basically equal mixtures of |11⟩ and |27,07⟩.
As expected, the results closer to those of the experiment are

those based on CC harmonic frequencies, although the B2D3//
B3D3 scheme leads to quite satisfactory results. Besides, the
results presented here are in good agreement with those
reported in ref 134, as confirmed by a comparison of the χP and g

matrices, for which only the diagonal elements are reported in
Table 7 for readability.
The next case studies are two planar aromatic systems,

namely, the cyclopentadyenil anion and benzene (see Figures 6
and 7), with the former being noted Cp− in the following.
As already anticipated, the presence of out-of-plane vibrations

makes the use of a triple-ζ basis set mandatory for the calculation
of the anharmonic force field so that the MP2/JnTZ level of
theory has been employed for both systems. The assignment of
the normal vibrations of the cyclopentadyenil anion has been
recently revisited by Bencze and co-workers137 on the basis of
previous studies.138 As outlined in ref 137, the cyclopentadienyl
anion cannot exist without a counter cation under normal

Table 7. Comparison of Extrapolated and Computed Anharmonic VPT2 and DVPT2 χP and g Diagonal Elements (in cm−1) of
CH2D2, CH3D, and CHD3

a

MP2//MP2b B2D3//B3D3c CC//MP2d CC//B3D3e

νVPT2 νDVPT2 νVPT2 νDVPT2 νVPT2 νDVPT2 νVPT2 νDVPT2 CC.f exp.g

CH2D2

χ11
C −28.1 −28.1 −27.3 −27.3 −30.7 −30.7 −27.9 −27.9 −27.3 −26.4
χ22
C −14.4 −14.4 −14.1 −14.1 −15.7 −15.7 −14.4 −14.4 −14.1 −13.5
χ33
C −7.5 −7.5 −7.2 −0.5 −8.6 −1.3 −7.3 −0.5 −6.7 −9.1
χ44
C −5.2 −5.2 −5.0 −5.0 −6.0 −6.0 −5.0 −5.0 −4.5 −7.1
χ55
C −2.0 −2.0 −1.9 −1.9 −2.2 −2.2 −2.0 −2.0 −2.2 −3.6
χ66
C −32.2 −32.2 −31.5 −31.5 −35.2 −35.2 −32.1 −32.1 −31.6 −32.7
χ77
C −28.2 −2.3 −999.2 −1.7 −144.7 −2.4 −132.3 −1.7 −1.9 8.9
χ88
C −18.8 −18.8 −18.5 −18.5 −20.5 −20.5 −18.9 −18.9 −18.6 −19.3
χ99
C −5.2 −5.2 −4.4 −4.4 −5.8 −5.8 −4.5 −4.5 −4.4 −13.4
MAEh 3.4 0.5 111.0 0.8 17.6 2.2 14.8 1.0
MAEi 6.0 3.1 114.0 3.9 19.4 4.4 17.7 3.9

CH3D
χ11
P −17.8 −17.8 −17.2 −17.2 −19.3 −19.3 −17.6 −17.6 −17.2 −15.9
χ22
P −31.5 −31.5 −31.4 −31.4 −34.6 −34.6 −31.9 −31.9 −31.2 −31.0
χ33
P −7.5 −7.5 −6.9 −6.9 −8.2 −8.2 −7.0 −7.0 −6.8 −20.3
χ44
P −32.1 −32.1 −31.5 −31.5 −35.1 −35.1 −32.2 −32.2 −31.6 −32.6
χ55
P −8.4 −1.7 −9.4 −1.5 −10.5 −1.8 −9.8 −1.5 −1.9 −19.3
χ66
P 1.5 −2.8 0.8 0.8 0.5 0.5 1.0 1.0 0.3 −6.1
g44 12.6 12.6 12.7 12.7 13.8 13.8 12.9 12.9 12.6 13.3
g55 6.9 0.2 7.8 −0.1 8.7 0.4 8.2 −0.1 0.4 15.9
g66 −1.0 3.3 −0.1 −0.1 0.2 0.2 −0.3 −0.3 0.7 3.3
MAEh 2.0 0.9 1.9 0.3 3.2 1.4 2.2 0.5
MAEi 5.3 5.9 5.0 6.8 5.2 7.1 4.9 6.7

CHD3

χ11
P −60.4 −60.4 −59.7 −59.7 −66.3 −66.3 −60.6 −60.6 −59.2 −59.5
χ22
P −9.1 −9.1 −8.8 −8.8 −9.8 −9.8 −9.1 −9.1 −8.8 −8.1
χ33
P −7.4 −0.8 −7.5 −0.4 −8.5 −0.8 −7.6 −0.4 −7.2 −18.1
χ44
P −18.9 −18.9 −18.6 −18.6 −20.6 −20.6 −19.0 −19.0 −18.6 −19.3
χ55
P −5.0 −5.0 −4.4 −4.4 −5.7 −5.7 −4.5 −4.5 −4.6 −7.4
χ66
P −5.9 −5.9 −6.0 −6.0 −6.9 −2.2 −6.0 −6.0 −5.5 −12.4
g44 8.2 8.2 8.3 8.3 9.0 9.0 8.4 8.4 8.3 8.7
g55 5.7 5.7 5.5 5.5 6.2 6.2 5.5 5.5 5.4 6.7
g66 3.3 3.3 3.3 3.3 4.0 −0.7 3.4 3.4 3.3 7.7
MAEh 0.4 1.1 0.2 1.0 1.8 3.0 0.4 1.1
MAEi 3.1 3.8 3.1 3.9 3.5 5.4 3.1 3.9

aMean absolute errors (MAEs) are also reported. bAnharmonic calculations performed with the JnDZ basis set based on a set of harmonic
frequencies evaluated with the JnTZ basis set. cAnharmonic calculations performed at the B3D3/JnDZ level based on a set of harmonic frequencies
evaluated at the B2D3/JnTZ level. dAnharmonic calculations performed at the MP2/JnDZ level based on a set of harmonic frequencies evaluated
at the CCSD(T)/cc-pVQZ level. eAnharmonic calculations performed at the B3D3/JnDZ level based on a set of harmonic frequencies evaluated at
the CCSD(T)/cc-pVQZ level. fTheoretical values obtained from CCSD(T)/cc-pVTZ anharmonic force constants in conjunction with harmonic
frequencies at the CCSD(T)/cc-pVQZ level (see Tables V and VI of ref 134 for more details) and reported with one decimal place. gValues from
ref 136 and reported with one decimal place. hComputed with respect to the reference theoretical (CC) values. iComputed with respect to the
experimental data.
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experimental conditions of IR and Raman spectroscopies. By
means of a detailed analysis, the authors showed that the
structural parameters of the Cp− ring in the solid-state CpK
should be close to those of the hypothetical free anion employed
in the QC computations. Furthermore, the experimental
frequencies of CpLi and CpNa in tetrahydrofuran (THF)
were found to be very close to those of solid CpK. Experimental

and theoretical anharmonic fundamental frequencies of Cp− are
reported in Table 8.
The results reported in Table 8 show that the VPT2 results are

in good agreement with the experiment and that inclusion of the
variational correction improves the agreement. The largest
discrepancies concern the |112⟩ and |113,±113⟩ states. There are,
of course, systematic shifts related to the difference between the
structure of the cyclopentadienyl anion in the experimental
complexes and that of the free anion, with the lowest frequencies
being, as usual, the most sensitive to environmental effects.
The next molecule studied is benzene (see Figure 7), a D6h

symmetric-top system, which has been extensively studied by
both IR and Raman spectroscopies.30,140−143

The anharmonic calculations have been carried out at the
MP2/JnTZ level or coupling the MP2/JnTZ anharmonic
contributions to harmonic frequencies evaluated at the CCSD-
(T)/ANO4321′ level.144 The VPT2, DVPT2, and GVPT2
fundamentals of benzene computed at both levels of theory are
compared with experimental data in Table 9.
Concerning the GVPT2 scheme, Fermi resonances of type II

(ωi ≈ ωj + ωk) as well as 2−2 DD resonances, were found, with
the latter including -type doubling of types R and S. On the
other hand, 1−1 DD resonances have not been identified. The
use of the hybrid scheme leads to a remarkable improvement of
the fundamentals, and this is particularly true for the state |114⟩,
with the corresponding MP2/JnTZ harmonic frequency being
clearly overestimated. On top of this, the inclusion of the
variational correction further improves the agreement with the
experimental data for all the transitions involved in resonances.
The IR spectrum evaluated by means of the CC//MP2 hybrid
scheme is compared with that of the experiment in Figure 8.
All spectra show a very strong band between 650 and 700

cm−1 corresponding to the fundamental transition to |112⟩,
associated to the out-of-plane bending vibration sketched in
Figure 9.
Since such a state is not involved in any resonance, its position

is independent of the adopted VPT2 scheme.

Figure 6. Molecular structure of the cyclopentadienyl anion.

Figure 7. Molecular structure of benzene.

Table 8. Comparison of Experimental and Computed Anharmonic Fundamental VPT2, DVPT2, and GVPT2 Wavenumbers (in
cm−1) of the Cyclopentadienyl Aniona

MP2b exp.

state symm. ω νVPT2 νDVPT2 νGVPT2 CpLic CpNad CpKe

|11⟩ A1′ 3218 3087 3087 3087 3104 3090 3088
|12⟩ 1140 1118 1118 1118 1114 1114 1119
|13⟩ A2′ 1262 1237 1237 1237 1260
|14,±14⟩ A2″ 663 652 652 652 710 722 686
|15,±15⟩ E1′ 3196 3066 3066 3068 3082 3067 3061
|16,±16⟩ 1448 1415 1415 1415 1433 1440
|17,±17⟩ 1014 996 996 996 1006 998 1008
|18,±18⟩ E2′ 3171 3043 3043 3042 3080 3060 3068
|19,±19⟩ 1420 1612 1382 1375 1346 1342 1370
|110,±110⟩ 1061 1043 1043 1043 1067 1062 1070
|111,±111⟩ 830 819 819 819 854 848 854
|112⟩ E1″ 638 638 638 638 759 730 719
|113,±113⟩ E2″ 780 787 787 787 735 722 686
|114,±114⟩ 616 612 612 612 600
MAEf 40 23 22

aMean absolute errors (MAEs) are also reported. The polar vibrational states are indicated as | ⟩v ,i i .
bBasis set: JnTZ. cSolution of CpLi dissolved

in THF (ref 139). dSolution of CpNa dissolved in THF (ref 139). eSolid CpK (refs 137 and 139). fMAE computed with respect to the
experimental values of CpK, excluding the states |113,±113⟩.
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Finally, the simulation of the IR spectrum of pentaborane (see
Figure 10), a C4v system, has been carried out.
Among the systems considered in the present study,

pentaborane is the only one showing all types of -type doubling
within theGVPT2 scheme since the order of its principal axis is a
multiple of 4. The simulation has been performed by employing
the same hybrid scheme as for the other systems, namely, by
coupling MP2/JnDZ anharmonic contributions to MP2/JnTZ

harmonic frequencies. A full comparison of the theoretical and
experimental fundamentals is reported in Table 10.
At the DVPT2 level, several Fermi resonances (most of type

II) have been detected, which have been successively included at
the variational level within the GVPT2 scheme, together with
the proper -type doubling terms and the other identified 2−2
Darling−Dennison resonances. Most of the frequencies are
qualitatively correct and consistent with those reported in a

Table 9. Comparison of Experimental and Computed Anharmonic Fundamental VPT2, DVPT2, and GVPT2 Wavenumbers (in
cm−1) of Benzenea

MP2b CC//MP2b

state symm. ω νVPT2 νDVPT2 νGVPT2 ω νVPT2 νDVPT2 νGVPT2 exp.c

|11⟩ A1g 3235 3091 3107 3101 3210 3072 3072 3072 3074
|12⟩ 1011 997 997 997 1003 988 988 988 993
|13⟩ A2g 1371 1338 1350 1346 1380 1348 1359 1355 (1350)
|14⟩ B2g 996 1019 1019 1019 1009 1030 1030 1030 (990)
|15⟩ 710 709 709 709 709 708 708 708 (707)
|16,±16⟩ E1g 864 858 858 858 865 858 858 858 847
|17,±17⟩ E2g 3207 3084 3084 3084 3183 3061 3061 3061 3057
|18,±18⟩ 1636 1601 1601 1601 1637 1600 1600 1600 1601
|19,±19⟩ 1195 1180 1180 1180 1194 1179 1179 1179 1178
|110,±110⟩ 606 603 603 603 611 609 609 609 608
|111⟩ A2u 691 683 683 683 687 678 678 678 674
|112⟩ B1u 3195 3106 3072 3026 3173 3117 3047 3047 (3057)
|113⟩ 1019 1014 1014 1014 1020 1015 1015 1015 (1010)
|114⟩ B2u 1460 1418 1418 1418 1326 1288 1288 1288 1309
|115⟩ 1169 1156 1156 1156 1163 1149 1149 1149 1150
|116,±117⟩ E1u 3224 3111 3111 3111 3200 3089 3073 3045 3047
|117,±117⟩ 1503 1476 1476 1476 1509 1481 1481 1481 1484
|118,±118⟩ 1060 1040 1040 1040 1056 1035 1035 1035 1038
|119,±119⟩ E2u 977 978 978 978 985 985 985 985 976
|120,±120⟩ 404 401 401 401 406 403 403 403 398
MAE 18 17 17 11 8 7

aThe polar vibrational states are indicated as | ⟩v ,i i .
bBasis set: JnTZ. cReference 30, the values in parentheses have not been observed directly but

have been deduced from combination bands.

Figure 8.Comparison of the computed harmonic and anharmonic (GVPT2) IR spectra of benzene at the MP2/JnTZ level of theory with those of the
experiment. Spectral line shapes have been convoluted by Lorentzian distribution functions with HWHMs of 1 cm−1. The experimental IR spectrum is
from refs 145 and 146. All spectra are normalized by setting the intensity of their highest peak to unity.
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recent study performed by Maillard and co-workers150 for
several B−H systems (including, for instance, the out-of-scale
discrepancy characterizing the states |120,±120⟩). For the sake of
completeness, the IR spectrum of B5H9 is reported in Figure 11,
where the theoretical data obtained by means of the VPT2,
DVPT2, and GVPT2 schemes are compared.
While DVPT2 and GVPT2 spectra show a common pattern,

the atypical behavior of the VPT2 spectrum is due to the strong
Fermi resonances between the fundamentals |122,±122⟩ and the
combination bands |118127,±127⟩, which lead to a huge value for
the transition dipole moment of the |122,±122⟩ states so that the
corresponding band is the only one clearly visible in the
theoretical spectrum. This problem is fixed within the DVPT2
scheme through the elimination of the resonant term, and the
result is further refined at the GVPT2 level by the successive
variational treatment.

4.3. Paving the Route to Spherical Tops.With the aim of
showing the extension of our computational framework to
spherical tops, we now analyze a series of systems of both
tetrahedral and octahedral symmetries, including, for instance,
tetraphosphorus (P4), methane (CH4) and its fully deuterated
isotopologue (CD4), and sulfur hexafluoride (SF6), whose
structures are sketched in Figure 12.
In the case of linear and symmetric tops, our computational

protocol performs by default a full check of all the symmetry
relations present between the anharmonic force constants.71

Such a procedure has not yet been implemented for tetrahedral
XY4-

136,151 and octahedral XY6-like
152 systems so that some

slight (and generally negligible) discrepancies can be detected
between anharmonic force constants which should be in
principle identical. With the aim of limiting this issue as much
as possible, the pruned (99,590) grid employed before for DFT
calculations (which are in principle the most sensitive to this
problem) will be replaced with a larger one (175,974 and
250,974 for first-row atoms and atoms in the second and later
rows, respectively).

4.3.1. Tetrahedral Molecules. The fundamental frequencies
of the P4 molecule obtained through the MP2//MP2 and
B2D3//B3D3 hybrid schemes are compared with their
experimental counterparts in Table 11.
The P4 system does not show any Fermi or 1−1 Darling−

Dennison resonance so that the values of the fundamentals do
not vary going from VPT2 to DVPT2 or GVPT2 schemes. As
can be seen from Table 11, the frequencies of the states |11⟩ and
|12,±12⟩ are significantly improved within the B2D3//B3D3
scheme, reaching values within 1 cm−1 from the experimental
counterparts. Concerning the triply degenerate states
|11,11,±1 or 01⟩, the best estimate is reached by the MP2//
MP2 scheme, even though in both cases, the value of the
frequency is not as accurate as the previous ones. The origin of
such a discrepancy can be traced back to the experimental
conditions at which the gas-phase spectrum has been
recorded,153 as pointed out by Persson and co-workers154 in
their very detailed vibrational analysis of P4. For the sake of
completeness and as a consistency check of our calculations, the
fundamentals calculated within the MP2//MP2 scheme have
been compared with the MP2 results of ref 154, showing good
agreement in terms of both harmonic frequencies and
anharmonic corrections (see Table III of ref 154 for more
details).
A strategy often used to deal with systems presenting

degeneracies is that of modifying slightly one or more masses/
coordinates in order to lower the symmetry134,140 and then

Figure 9. Vibration associated to the strongest band of the IR spectrum
of benzene.

Figure 10. Molecular structure of pentaborane.

Table 10. Comparison of Experimental and Computed
(VPT2, DVPT2, and GVPT2) Anharmonic Fundamental
Wavenumbers (in cm−1) of Pentaborane

MP2a

state symm. ω νVPT2 νDVPT2 νGVPT2 Exp.

|11⟩ A1 2773 2675 2675 2677 2628b

|12⟩ 2755 2657 2657 2651 2610b

|13⟩ 2026 1865 1852 1852 1844b

|14⟩ 1167 1125 1125 1125 1126b

|15⟩ 1011 981 981 981 985c

|16⟩ 825 801 801 801 799b

|17⟩ 725 709 709 709 701b

|18⟩ A2 1523 1361 1373 1372 1450c

|19⟩ 883 849 849 849
|110⟩ B1 1987 1721 1839 1787 1870d

|111⟩ 1038 1010 1010 1010 1036b

|112⟩ 784 752 752 752 741b

|113⟩ 620 604 604 604 599b

|114⟩ B2 2742 2640 2640 2639 2610b

|115⟩ 1718 1554 1568 1565 1500c

|116⟩ 812 792 792 792 785b

|117⟩ 729 706 706 705
|118⟩ 491 473 473 473 470d

|119,±119⟩ E 2751 2649 2649 2649 2610b

|120,±120⟩ 1988 1817 1851 1812 1634b

|121,±121⟩ 1585 1467 1440 1436 1410b

|122,±122⟩ 1086 1101 1047 1041 1035b

|123,±123⟩ 958 927 927 927 918b

|124,±124⟩ 907 886 886 886 890b

|126,±126⟩ 649 624 624 624 618b

|127,±127⟩ 595 576 576 576 569b

MAE 30 21 22
aMean absolute error (MAE) does not include state |120,±120⟩.
bReference 147. cReference 148. dReference 149.
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employ a theoretical model able to treat only lower- or non-
degenerate modes. This procedure has been applied to P4 in
order to perform a consistency check of our new implementa-
tion. More specifically, the Td symmetry of this system has been
gradually reduced without any geometry modification by slightly
increasing (by 0.1%) the masses of a single and then a couple of
phosphorous atoms, thus obtaining a symmetric (C3v point
group) or an asymmetric (C2v point group) top, respectively. A
comparison of the VPT2 fundamentals of the lower-symmetry
systems with those of the fully symmetric molecule is reported in
Figure 13.
As expected, triply degenerate states |13,13,±13 or 03⟩ are no

more present, being replaced with a non-degenerate state of A1

symmetry and a couple of doubly degenerate states belonging to
the irreducible representation E in the C3v system and with three
non-degenerate states with irreducible representations A1, B1,
and B2 in the C2v structure. This is clearly visible since the blue
bars (C3v) corresponding to the states |13,13,±13⟩ are equal to
each other but different from that of |13,13,10⟩, while the

Figure 11.Comparison of the computed harmonic, VPT2, DVPT2, and GVPT2 IR spectra of pentaborane. Spectral line shapes have been convoluted
by Lorentzian distribution functions with HWHMs of 1 cm−1. All the spectra are normalized by setting the intensity of their highest peak to unity.

Figure 12. Molecular geometries of methane, tetraphosphorus, and sulfur hexafluoride.

Table 11. Comparison of Experimental and Computed
Anharmonic Fundamental VPT2 Wavenumbers (in cm−1) of
Tetraphosphorusa

MP2//MP2b B2D3//B3D3c

symm. ω νVPT2 ω νVPT2 exp.d

|11⟩ A1 613 607 606 601 600
|12,±12⟩ E 365 363 363 361 361
|13,13,±13 or 03⟩ T2 463 459 458 454 467
MAEc 6 5

aMean absolute errors (MAEs) are also reported. The spherical and
polar vibrational states are indicated respectively as |vi,ki,mi⟩ and | ⟩v ,i i .
bAnharmonic calculations performed with the JnDZ basis set based
on a set of harmonic frequencies evaluated with the JnTZ basis set.
cAnharmonic calculations performed at the B3D3/JnDZ level based
on a set of harmonic frequencies evaluated at the B2D3/JnTZ level.
dReference 153.
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corresponding orange bars (C2v) are all different. The couple of
states |12,±12⟩ belonging to the irreducible representation E are
still present in the C3v system, while they are replaced with two
non-degenerate states with representations A1 and A2 in the C2v

system. Again, the blue bars of the states |12,±12⟩ are equal, while
the corresponding orange ones are different, following the
symmetry breaking.
As a further test, CH4 and CD4 are considered. In addition to

the MP2//MP2 and B2D3//B3D3 schemes employed for P4,
two hybrid calculations have been performed at the MP2/JnDZ
and B3D3/JnDZ levels in conjunction with a set of harmonic
frequencies at the CCSD(T)/cc-pVQZ level.134 The VPT2
wavenumbers are compared with the experimental data in Table
12.
Both systems do not show any Fermi or 1−1 Darling−

Dennison resonance, except for CD4 within the CC//MP2

hybrid scheme, where a Fermi resonance of type I (ω1 ≈ 2ω4)
has been detected, leading the vibrational frequency of |11⟩ shifts
from 2064 to 2099 cm−1 between the DVPT2 and GVPT2
levels. The presence of 2−2 Darling−Dennison resonances has
been detected in the GVPT2 model, and the resonances
between states possessing the same principal quanta have been
properly included. Concerning CH4, the best agreement
between theory and experiments is reached with the CC//
B3D3 hybrid scheme (MAE = 7 cm−1), even if all sets of VPT2
theoretical wavenumbers are close to those of the experiment,
with the only exception being the MP2//MP2 scheme (MAE =
28 cm−1), for which larger discrepancies are observed.
The results for CD4 present a trend similar to that of CH4,

with the MP2//MP2 scheme showing again the worst
agreement with the experiment, although it is able to match
exactly the experimental value of the fundamental band

Figure 13. Errors between anharmonic fundamentals of P4 and the corresponding counterparts of the C3v and C2v symmetry-broken geometries
obtained through the MP2//MP2 hybrid scheme.

Table 12. Comparison of Experimental and Computed Anharmonic Fundamental VPT2 Wavenumbers (in cm−1) of CH4 and
CD4

a

MP2//MP2b B2D3//B3D3c CC//MP2d CC//B3D3e

symm. ω νVPT2 ω νVPT2 ω νVPT2 ω νVPT2 exp.

CH4
f

|11⟩ A1 3073 2945 3051 2928 3036 2902 3036 2911 2921
|12,±12⟩ E 1586 1551 1575 1543 1570 1534 1570 1538 1532
|13,13,±13 or 03⟩ T2 3209 3067 3163 3027 3157 3007 3157 3017 3022
|14,14,±14 or 04⟩ 1352 1319 1353 1323 1345 1311 1345 1316 1308
MAE 28 10 10 7

CD4
f

|11⟩ A1 2173 2124 2158 2113 2148 2098 2148 2102 2124
|12,±12⟩ E 1122 1103 1114 1097 1111 1092 1111 1094 1093
|13,13,±13 or 03⟩ T2 2376 2295 2342 2264 2337 2252 2337 2258 2260
|14,14,±14 or 04⟩ 1022 1003 1023 1006 1017 998 1017 1000 1001
MAE 17 6 10 7

aMean absolute errors (MAEs) are also reported. The spherical and polar vibrational states are indicated respectively as |vi,ki,mi⟩ and | ⟩v ,i i .
bAnharmonic calculations performed with the JnDZ basis set based on a set of harmonic frequencies evaluated with the JnTZ basis set.
cAnharmonic calculations performed at the B3D3/JnDZ level based on a set of harmonic frequencies evaluated at the B2D3/JnTZ level.
dAnharmonic calculations performed at the MP2/JnDZ level based on a set of harmonic frequencies evaluated at the CCSD(T)/cc-pVQZ level.
eAnharmonic calculations performed at the B3D3/JnDZ level based on a set of harmonic frequencies evaluated at the CCSD(T)/cc-pVQZ level.
fReference 135.
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associated to the state |11⟩. The hybrid schemes based on CC
harmonic frequencies (particularly CC//B3D3) are quite close
to the experimental data, even though in this case, the best
agreement is reached by the B2D3//B3D3 scheme (MAE = 6
cm−1).
The anharmonic frequencies and intensities at the CC//

B3D3 level have been employed in the simulation of the IR
spectrum, which is compared with the harmonic and
experimental ones in Figure 14.
As expected, the inclusion of anharmonic effects improves the

agreement between theory and experiments, especially for the
band around 3000 cm−1, corresponding to the excitation of the
triply degenerate fundamental |13,13,±13 or 03⟩.
4.3.2. Octahedral molecules. Finally, sulfur hexafluoride has

been chosen as a test case for the Oh point group. The
anharmonic calculations have been performed at the MP2/
JnDZ and B3D3/JnDZ levels of theory, in conjunction with
harmonic frequencies at the MP2/JnTZ and B2D3/JnTZ levels,
respectively. A comparison between the VPT2 fundamental
wavenumbers and their experimental counterparts is reported in
Table 13.
This system does not show any Fermi or 1−1 Darling−

Dennison resonance at the levels of theory employed here, while
2−2 Darling−Dennison resonances have been identified and
included at the GVPT2 level. The best agreement with the
experimental fundamentals is obtained at the MP2//MP2 level
(MAE = 11 cm−1), while the B2D3//B3D3 scheme is in this
case characterized by a significant underestimation of all
harmonic wavenumbers. For this reason, the anharmonic results
obtained at the MP2//MP2 level have been employed in the
simulation of the IR spectrum. Both theoretical harmonic and
GVPT2 spectra are compared with the experimental one in
Figure 15.
Similar to CH4, the inclusion of anharmonic contributions

leads to a spectral profile closer to the experimental one,
especially for the position of the band around 1000 cm−1,

corresponding to the triply degenerate fundamentals |13,13,±13
or 03⟩.

5. CONCLUSIONS
In this work, we have shown how the canonical representation
used for the development of VPT2 equations of asymmetric tops
can be extended to linear and symmetric tops, followed by a
series of a posteriori transformations, to give results identical to
those obtained with the polar representation, thus offering the
possibility of an ease of choice of the most convenient form for
any application in vibro-rotational and vibrational spectros-
copies. Such a strategy offers a number of advantages with
respect to previous, ad hoc procedures. The first aspect concerns
the ease of implementation since the new approach does not
require any heavy modification of the codes already supporting
VPT2 for asymmetric tops. The second aspect is the simplicity

Figure 14. Comparison of the computed harmonic and GVPT2 IR spectra of methane at the CC//B3D3 level of theory with the experimental data.
Spectral line shapes have been convoluted by Lorentzian distribution functions withHWHMs of 1 cm−1. The experimental IR spectrum is from ref 145.
All spectra are normalized by setting the intensity of their highest peak to unity.

Table 13. Comparison of Experimental and Computed
Anharmonic Fundamental VPT2 Wavenumbers (in cm−1) of
Sulfur Hexafluoridea

MP2//MP2b B2D3//B3D3c

symm. ω νVPT2 ω νVPT2 exp.d

|11⟩ A1g 771 762 748 740 775
|12,±12⟩ Eg 646 638 629 622 643
|13,13,±13 or 03⟩ T1u 953 937 928 915 948
|14,14,±14 or 04⟩ 606 600 592 586 615
|15,15,±15 or 05⟩ T2g 515 511 502 498 524
|16,16,±16 or 06⟩ T2u 342 339 334 330 348
MAE 11 27

aMean absolute errors (MAEs) are also reported. The spherical and
polar vibrational states are indicated respectively as |vi,ki,mi⟩ and | ⟩v ,i i .
bAnharmonic calculations performed with the JnDZ basis set based
on a set of harmonic frequencies evaluated with the JnTZ basis set.
cAnharmonic calculations performed at the B3D3/JnDZ level based
on a set of harmonic frequencies evaluated at the B2D3/JnTZ level.
dReference 155.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00240
J. Chem. Theory Comput. 2021, 17, 4332−4358

4351

https://pubs.acs.org/doi/10.1021/acs.jctc.1c00240?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00240?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00240?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00240?fig=fig14&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00240?rel=cite-as&ref=PDF&jav=VoR


of the extension to spherical tops. Once the transformation
matrix between the representations is known, it is possible to
derive the necessary equations for any quantity of interest, which
can be coded in small, specialized routines. However, the most
important advantage is the availability of general equations for
the intensities of all vibrational spectroscopies without the need
of resorting to complex numbers. Actually, to the best of our
knowledge, this is the first completely general implementation of
intensities in the framework of the double-perturbation theory.
The results show that we dispose now of a general and robust

implementation of GVPT2 for Abelian and non-Abelian groups
allowing the effective treatment of medium- to large-sized
molecules for all electronic structure methods for which
analytical Hessians and first derivatives of properties are
available. Hybrid methods in which harmonic and anharmonic
contributions are treated at different levels can further extend
the range of applications of the general platform. Studies in
condensed phases can also be performed by means of mixed
discrete-continuum models in which the solute and, possibly,
some molecules of its cybotactic region are embedded in a
polarizable continuum mimicking bulk solvent effects. Also in
this case, the availability of analytical Hessians and first
derivatives of properties allows an effective GVPT2 treatment.
Of course, all the intrinsic problems of a low-order

perturbative treatment based on Cartesian normal modes are
still present, especially concerning large-amplitude motions.
Besides, the harmonic-oscillator wave functions do not always
provide a suitable basis for the representation of vibrations,
regardless of both the method used for the inclusion of
anharmonic effects and the level of electronic theory employed.
However, semi-rigid molecules can be routinely analyzed with
remarkable results, largely sufficient for interpretation and
assignment tasks. Extension to flexible systems can be pursued
by coupling reduced-dimensionality treatments of large-
amplitude motions to GVPT2 for small-amplitude motions. In
this connection, use of curvilinear in place of rectilinear
coordinates is an appealing option. While work in this and

related connections is underway in our laboratory, we think that
already the present implementation offers a number of
interesting perspectives for the study of molecular systems of
current scientific and technological interest.

A.1 Degeneracies in the Perturbative Treatment
One of the obvious issues in the VPT2 expansion based on the
canonical representation is the risk of singularity arising from the
degeneracy of the vibrational modes and the related harmonic
states. Let us consider the calculation of the energy εR of a
vibrational state |ψR⟩ (the superscript “C” has been dropped for
clarity). Following the Rayleigh−Schrödinger perturbation
theory, the following relations are obtained:

ε ε ε ε= + +R R R R
(0) (1) (2)

with
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where the vectorial form |vR⟩ = |vR,1...vR,i...vR,N⟩ was preferred to
represent the harmonic state |ψR

(0)⟩.
The problem lies in the second term of the right-hand side of

eq 39c since if |vR⟩ and |vS⟩ are degenerate, the denominator
would be null. For the sake of simplicity but without loss of
generality, let us consider that both states involve the same set of
degenerate modes, {s1, s2}. In order to have εR

(0) = εS
(0), the total

number of quanta vs = vs1 + vs2 must be kept constant, and the
number of quanta involving non-degenerate modes cannot vary.
Mathematically, this translates in an even number of bosonic

Figure 15. Comparison of the computed harmonic and GVPT2 IR spectra of sulfur hexafluoride obtained through the MP2//MP2 hybrid scheme of
theory with the experimental data. Spectral line shapes have been convoluted by Lorentzian distribution functions with HWHMs of 1 cm−1. The
experimental IR spectrum is from ref 145. All spectra are normalized by setting the intensity of their highest peak to unity.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00240
J. Chem. Theory Comput. 2021, 17, 4332−4358

4352

https://pubs.acs.org/doi/10.1021/acs.jctc.1c00240?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00240?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00240?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00240?fig=fig15&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00240?rel=cite-as&ref=PDF&jav=VoR


ladder operators involving the degenerate modes. By con-

struction, ̂ (1)
is defined as
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which implies that three creation/annihilation operations are

carried out. Hence, ⟨ | ̂ | ⟩ =v v 0S R
(1)

if |vR⟩ and |vS⟩ are

degenerate. In other words, the representation matrix of ̂ (1)

over the degenerate state basis is null so that the canonical
representation can be safely applied to treat systems with
degenerate modes.
B.1 Calculation of Properties in the Polar Representation
In the following, we will describe the theoretical framework
underlying the calculation of molecular properties (including
transition ones) in the polar representation. Let us point out that
even if the derivation reported below focuses on symmetric and
linear tops, it still holds for systems presenting threefold
degenerate vibrations.
Let us consider the operator Θ̂ describing a molecular

property depending on normal coordinates or their conjugate
momenta. Following previous works,34,47,98 a generic element of
the representation matrix of Θ̂ over the canonical states can be
written as

ψ ψ
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The perturbative expansion of both Θ̂ and canonical states
enables to write a generic element ΘR;S

C as
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Similar expressions stand for the polar representation. Since
we already know that polar and canonical harmonic wave
functions are linked through the customary expression

ψ ψ| ⟩ = | ⟩PP T C(0) (0)
(43)

we will focus on the first- and second-order corrections to the
wave functions.

B.1.1 Perturbative Corrections to the Polar States. B.1.1.1
First-Order Correction to the Wave Function. In the canonical
representation, the first-order correction |ψR

C(1)⟩ to the Rth state
is given by
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The diagonal elements of the first-order Hamiltonian over the
harmonic states are null as well as the off-diagonal ones when
two degenerate states are considered. As a matter of fact, we can
define the matrix H̅C as

l

m
oooooo

n
oooooo ε ε

̅ =

−

H

R S

H

0 if and degenerate

otherwise
SR
C

SR

R S

(1)

(0) (0)
(45)

so that eq 44 can be rewritten as

∑ψ ψ| ⟩ = ̅ | ⟩
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S R
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S
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(46)

By defining |ψC(0)⟩ and |ψC(1)⟩, the vectors collecting
respectively the harmonic states and the corresponding first-
order corrections in the canonical representation, eq 46 can be
recast in the matrix form

ψ ψ| ⟩ = { ̅ } | ⟩HC C T C(1) (0)
(47)

and a similar expression holds in the polar representation

ψ ψ| ⟩ = { ̅ } | ⟩HP P T P(1) (0)
(48)

The diagonal blocks of H̅P and H̅C are null, and the energy
difference εi

(0) − εj
(0) reported above is constant within an off-

diagonal block. As a matter of fact, we obtain the following
identity:

̅ = ̅†H P H PP C (49)

By substituting eqs 43 and 49 into eq 48, we obtain that

ψ ψ| ⟩ = | ⟩PP T C(1) (1)
(50)

B.1.1.2 Second-Order Correction to the Wave Function. In
the canonical representation, the second-order correction to the
wave function is given by
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Let us define H̿C as
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Equation 51 can be rewritten as follows:
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Due to the presence ofHSR
C(2) in eq 53, the terms for which the

harmonic states |ψR
C(0)⟩ and |ψS

C(0)⟩ are degenerate must be
excluded from the summation. From this, an analysis analogous
to the one reported for the first-order correction leads to the
following identity:

ψ ψ| ⟩ = | ⟩PP T C(2) (2)
(54)

B.2.1 Molecular Properties: From the Canonical to the
Polar Representation. Let us now consider the general
expression for the conversion of a molecular property at the
second order of perturbation. An element of the representation
matrix of the operator Θ̂ over the perturbed polar states is given
by an expression similar to eq 41

Θ = ⟨Θ⟩ + ⟨Θ⟩ + ⟨Θ⟩R S
P

R S
P

R S
P

R S
P

; ;
(0)

;
(1)

;
(2)

(55)

where ΘP(0), ΘP(1), and ΘP(2) are given by expressions similar to
eq 42 that, recast in the matrix form, have the following
expressions in the polar representation:

ψ ψ

ψ ψ ψ ψ
ψ ψ

ψ ψ ψ ψ
ψ ψ

ψ ψ ψ ψ
ψ ψ

ψ ψ
ψ ψ ψ ψ

Θ

Θ

Θ

⟨ ⟩ = ⟨ |Θ̂ | ⟩

⟨ ⟩ = ⟨ |Θ̂ | ⟩ + ⟨ |Θ̂ | ⟩
+ ⟨ |Θ̂ | ⟩

⟨ ⟩ = ⟨ |Θ̂ | ⟩ + ⟨ |Θ̂ | ⟩
+ ⟨ |Θ̂ | ⟩

+ ⟨ |Θ̂ | ⟩ + ⟨ |Θ̂ | ⟩
+ ⟨ |Θ̂ | ⟩

− ⟨ |Θ̂ | ⟩ [⟨ | ⟩ + ⟨ | ⟩]
2

P P P

P P P P P

P P

P P P P P

P P

P P P P

P P

P P
P P P P

N

(0) (0) (0) (0)

(1) (0) (1) (0) (1) (0) (0)

(0) (0) (1)

(2) (0) (2) (0) (2) (0) (0)

(0) (0) (2)

(1) (1) (0) (0) (1) (1)

(1) (0) (1)

(0) (0) (0)
(1) (1) (1) (1)

(56)

where the subscript N indicates a compact matrix notation for
the normalization term.
By combining eqs 43, 50 and 54 with eq 56, the following

identity is obtained:

Θ Θ⟨ ⟩ = ⟨ ⟩†P PP C
(57)

where ⟨Θ⟩P and ⟨Θ⟩C are respectively the representation
matrices of the operator Θ̂ over the perturbed polar and
canonical states. Consequently, the conversion of molecular
properties at the anharmonic level is ruled by expressions similar
to those used for the transformation of the contact-transformed
Hamiltonian.
B.2.1.1 Transition Properties from the Ground State.

Finally, let us consider the ground state as the initial state. It is
worth mentioning that the matrix P only mixes polar and
canonical states that are degenerate at the harmonic level so that
the perturbed wave function associated to the ground state is
independent of the representation

ψ ψ| ⟩ = | ⟩P C
0 0 (58)

As a result, the row vector ⟨Θ⟩0;S
P , containing the values of the

transition property (e.g., a component of the dipole moment or
polarizability) from the ground state to a set of states sharing the

set of principal quantum numbers vS, is related to its canonical
counterpart ⟨Θ⟩0;S

C as follows:

Θ Θ⟨ ⟩ = ⟨ ⟩ PS
P

S
C

0; 0; (59)

or equivalently,

Θ Θ⟨ ⟩ = ⟨ ⟩PS
P T

S
C

0; 0; (60)

where in eq 60, ⟨Θ⟩0;S
P and ⟨Θ⟩0;S

C are column vectors.
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Radau normal coordinates for linear triatomic molecules. Application
to CO2. Chem. Phys. 1993, 175, 255−264.
(118) NIST Mass Spec Data Center; Stein, S.E. Chapter Infrared
Spectra. In NIST Chemistry WebBook, NIST Standard Reference
Database Number 69; Linstrom, P. J., Mallard, W. G., Eds.; National
Institute of Standards and Technology: Gaithersburg MD, 20899,
2015. (retrieved September 20, 2014). http://webbook.nist.gov.
(119) Howard-Lock, H. E.; Stoicheff, B. P. Raman intensity
measurements of the Fermi diad ν1, 2ν2 in 12CO2 and 13CO2. J.
Mol. Spectrosc. 1971, 37, 321−326.
(120) Dargelos, A.; Pouchan, C. Ab Initio Modeling of the IR Spectra
of Dicyanoacetylene in the Region 100−4800 cm−1. J. Phys. Chem. A
2016, 120, 6270−6273.
(121) Miller, F. A.; Hannan, R. B., Jr The infrared and Raman spectra
of dicyanoacetylene. J. Chem. Phys. 1953, 21, 110−114.
(122) Miller, F. A.; Hannan, R. B., Jr; Cousins, L. R. Infrared and
Raman Spectra of Dicyanoacetylene. II. J. Chem. Phys. 1955, 23, 2127−
2129.
(123) Winther, F.; Ketelsen, M.; Guarnieri, A. The infrared and
Raman spectrum of dicyanoacetylene. The ν9 fundamental. J. Mol.
Struct. 1994, 320, 65−73.
(124) Winther, F.; Schönhoff, M. The Fundamental Vibrations of
NC−CC−CN (Dicyanoacetylene). J. Mol. Spectrosc. 1997, 186, 54−65.
(125) Khlifi, M.; Paillous, P.; Bruston, P.; Guillemin, J. C.; Bénilan, Y.;
Daoudi, A.; Raulin, F. Gas infrared spectra, assignments, and absolute
IR band intensities of C4N2 in the 250−3500 cm- 1 region:
implications for Titan’s stratosphere. Spectrochim. Acta, Part A 1997,
53, 707−712.
(126) Fayt, A.; Vigouroux, C.; Winther, F. Analysis of the ν9 band
complex of dicyanoacetylene and application of a theory of relative
intensities to all subbands. J. Mol. Spectrosc. 2004, 224, 114−130.
(127) Jolly, A.; Cottini, V.; Fayt, A.;Manceron, L.; Kwabia-Tchana, F.;
Benilan, Y.; Guillemin, J.-C.; Nixon, C.; Irwin, P. Gas phase
dicyanoacetylene (C4N2) on Titan: New experimental and theoretical
spectroscopy results applied to Cassini CIRS data. Icarus 2015, 248,
340−346.
(128) Couturier-Tamburelli, I.; Gudipati, M. S.; Lignell, A.; Jacovi, R.;
Piétri, N. Spectroscopic studies of non-volatile residue formed by
photochemistry of solid C4N2: A model of condensed aerosol
formation on Titan. Icarus 2014, 234, 81−90.
(129) Peterson, K. A.; Figgen, D.; Goll, E.; Stoll, H.; Dolg, M.
Systematically convergent basis sets with relativistic pseudopotentials.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00240
J. Chem. Theory Comput. 2021, 17, 4332−4358

4357

https://doi.org/10.1063/1.464913
https://doi.org/10.1063/1.464913
https://doi.org/10.1103/physrevb.37.785
https://doi.org/10.1103/physrevb.37.785
https://doi.org/10.1139/p80-159
https://doi.org/10.1139/p80-159
https://doi.org/10.1139/p80-159
https://doi.org/10.1021/j100096a001?ref=pdf
https://doi.org/10.1021/j100096a001?ref=pdf
https://doi.org/10.1021/j100096a001?ref=pdf
https://doi.org/10.1063/1.2148954
https://doi.org/10.1063/1.2148954
https://doi.org/10.1063/1.2191044
https://doi.org/10.1063/1.2191044
https://doi.org/10.1063/1.3382344
https://doi.org/10.1063/1.3382344
https://doi.org/10.1063/1.3382344
https://doi.org/10.1002/jcc.21759
https://doi.org/10.1002/jcc.21759
https://doi.org/10.1021/ct100212p?ref=pdf
https://doi.org/10.1021/ct100212p?ref=pdf
https://doi.org/10.1021/ct100212p?ref=pdf
https://doi.org/10.1039/c3cp53413h
https://doi.org/10.1039/c3cp53413h
https://doi.org/10.1039/c3cp53413h
https://doi.org/10.1021/ct200106a?ref=pdf
https://doi.org/10.1021/ct200106a?ref=pdf
https://doi.org/10.1016/0009-2614(89)87263-x
https://doi.org/10.1016/0009-2614(89)87263-x
https://doi.org/10.1021/jp0406114?ref=pdf
https://doi.org/10.1021/jp0406114?ref=pdf
https://doi.org/10.1021/jp0406114?ref=pdf
https://doi.org/10.1002/jcc.20170
https://doi.org/10.1002/jcc.20170
https://doi.org/10.1063/1.2969820
https://doi.org/10.1063/1.2969820
https://doi.org/10.1063/1.2969820
https://doi.org/10.1002/wcms.1349
https://doi.org/10.1002/wcms.1349
https://doi.org/10.1063/1.5013026
https://doi.org/10.1063/1.5013026
https://doi.org/10.1063/1.5013026
https://doi.org/10.1021/acs.jctc.8b00164?ref=pdf
https://doi.org/10.1021/acs.jctc.8b00164?ref=pdf
https://doi.org/10.1021/acs.jctc.8b00164?ref=pdf
https://doi.org/10.1039/d0cp01889a
https://doi.org/10.1039/d0cp01889a
https://doi.org/10.1016/j.saa.2020.119148
https://doi.org/10.1016/j.saa.2020.119148
https://doi.org/10.1021/ct200507e?ref=pdf
https://doi.org/10.1021/ct200507e?ref=pdf
https://doi.org/10.1021/j100137a018?ref=pdf
https://doi.org/10.1021/j100137a018?ref=pdf
https://doi.org/10.1021/j100137a018?ref=pdf
https://doi.org/10.1063/1.475429
https://doi.org/10.1063/1.475429
https://doi.org/10.1063/1.3070236
https://doi.org/10.1063/1.3070236
https://doi.org/10.1063/1.3070236
https://doi.org/10.1103/physrev.43.716
https://doi.org/10.1103/physrev.43.716
https://doi.org/10.1016/s0022-2852(68)80018-9
https://doi.org/10.1016/s0022-2852(68)80018-9
https://doi.org/10.1016/j.jms.2003.11.001
https://doi.org/10.1016/j.jms.2003.11.001
https://doi.org/10.1016/0301-0104(93)85154-z
https://doi.org/10.1016/0301-0104(93)85154-z
https://doi.org/10.1016/0301-0104(93)85154-z
http://webbook.nist.gov
https://doi.org/10.1016/0022-2852(71)90302-x
https://doi.org/10.1016/0022-2852(71)90302-x
https://doi.org/10.1021/acs.jpca.6b03266?ref=pdf
https://doi.org/10.1021/acs.jpca.6b03266?ref=pdf
https://doi.org/10.1063/1.1698557
https://doi.org/10.1063/1.1698557
https://doi.org/10.1063/1.1740681
https://doi.org/10.1063/1.1740681
https://doi.org/10.1016/0022-2860(93)08005-o
https://doi.org/10.1016/0022-2860(93)08005-o
https://doi.org/10.1006/jmsp.1997.7408
https://doi.org/10.1006/jmsp.1997.7408
https://doi.org/10.1016/s1386-1425(96)01827-6
https://doi.org/10.1016/s1386-1425(96)01827-6
https://doi.org/10.1016/s1386-1425(96)01827-6
https://doi.org/10.1016/j.jms.2004.01.004
https://doi.org/10.1016/j.jms.2004.01.004
https://doi.org/10.1016/j.jms.2004.01.004
https://doi.org/10.1016/j.icarus.2014.10.049
https://doi.org/10.1016/j.icarus.2014.10.049
https://doi.org/10.1016/j.icarus.2014.10.049
https://doi.org/10.1016/j.icarus.2014.02.016
https://doi.org/10.1016/j.icarus.2014.02.016
https://doi.org/10.1016/j.icarus.2014.02.016
https://doi.org/10.1063/1.1622924
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00240?rel=cite-as&ref=PDF&jav=VoR


II. Small-core pseudopotentials and correlation consistent basis sets for
the post-d group 16−18 elements. J. Chem. Phys. 2003, 119, 11113−
11123.
(130) Carnimeo, I.; Puzzarini, C.; Tasinato, N.; Stoppa, P.; Charmet,
A. P.; Biczysko, M.; Cappelli, C.; Barone, V. Anharmonic theoretical
simulations of infrared spectra of halogenated organic compounds. J.
Chem. Phys. 2013, 139, 074310.
(131) Drage, E. A.; Jaksch, D.; Smith, K. M.; McPheat, R. A.;
Vasekova, E.; Mason, N. J. FTIR spectroscopy and estimation of the
global warming potential of CF3Br and C2F4. J. Quant. Spectrosc.
Radiat. Transfer 2006, 98, 44−56.
(132) Martins Filho, H. P.; Guadagnini, P. H. Infrared vibrational
intensities and polar tensors of CF3Br and CF3I. J. Mol. Struct.:
THEOCHEM 1999, 464, 171−182.
(133) Charmet, A. P.; Tasinato, N.; Stoppa, P.; Baldacci, A.;
Giorgianni, S. Jet-cooled diode laser spectrum and FTIR integrated
band intensities of CF3Br: rovibrational analysis of 2ν5 and ν2+ν3 bands
near 9 μm and cross-section measurements in the 450−2500 cm−1

region. Mol. Phys. 2008, 106, 1171−1179.
(134) Lee, T. J.; Martin, J. M. L.; Taylor, P. R. An accurate ab initio
quartic force field and vibrational frequencies for CH4 and
isotopomers. J. Chem. Phys. 1995, 102, 254−261.
(135) Albert, S.; Bauerecker, S.; Boudon, V.; Brown, L. R.; Champion,
J.-P.; Loëte, M.; Nikitin, A.; Quack, M. Global analysis of the high
resolution infrared spectrum of methane 12CH4 in the region from 0 to
4800 cm-1. Chem. Phys. 2009, 356, 131−146.
(136) Gray, D. L.; Robiette, A. G. The anharmonic force field and
equilibrium structure of methane. Mol. Phys. 1979, 37, 1901−1920.
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