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Abstract 

Despite the proven inhibitory effects of drugs targeting vascular endothelial growth factor receptor 2 (VEGFR2) 
on solid tumors, including non-small cell lung cancer (NSCLC), the development of anti-NSCLC drugs solely targeting 
VEGFR2 still faces risks such as off-target effects and limited efficacy. This study aims to develop a novel fingerprint-
enhanced graph attention convolutional network (FnGATGCN) model for predicting the activity of anti-NSCLC drugs. 
Employing a multimodal fusion strategy, the model integrates a feature extraction layer that comprises molecular 
graph feature extraction and molecular fingerprint feature extraction. The performance evaluation results indicate 
that the model exhibits high accuracy and stability in predicting activity. Moreover, we explored the relationship 
between molecular features and biological activity through visualization analysis, thus improving the interpretabil-
ity of the approach. Utilizing this model, we screened the ZINC database and conducted high-precision molecular 
docking, leading to the identification of 11 potential active molecules. Subsequently, molecular dynamics simula-
tions and free energy calculations were performed. The results demonstrate that all 11 aforementioned molecules 
can stably bind to VEGFR2 under dynamic conditions. Among the short-listed compounds, the top six exhibited 
satisfactory inhibitory activity against VEGFR2 and A549 cells. Especially, compound Z-3 displayed VEGFR2 inhibitory 
with IC50 values of 0.88 μM, and anti-proliferative activity against A549 cells with IC50 values of 4.23 ± 0.45 μM. This 
approach combines the advantages of target-based and phenotype-based screening, facilitating the rapid and effi-
cient identification of candidate compounds with dual activity against VEGFR2 and A549 cell lines. It provides new 
insights and methods for the development of anti-NSCLC drugs. Furthermore, further biological activity tests revealed 
that Z1-Z3 and Z6 manifested relatively strong antiproliferative activities against NCI-H23 and NCI-H460, and relatively 
low toxicity towards GES-1. The hit compounds were promising candidates for the further development of novel 
VEGFR2 inhibitors against NSCLC.
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Introduction
Lung cancer is the primary cause of cancer-related death 
worldwide, with an estimated 2.2 million new cases and 
nearly 1.8 million deaths each year [1]. Approximately 
85% of diagnosed cases belong to the non-small cell lung 
cancer (NSCLC) subtype [2, 3]. Despite the effective 
application of various targeted therapies and immuno-
therapies in some populations of patients with advanced 
NSCLC, these patients almost inevitably develop metas-
tases, chemotherapy resistance and subsequent tumor 
recurrence [4, 5]. The 5-year overall survival rate for 
patients afflicted with metastatic NSCLC registers at 
less than 5% [6–8], underscoring the imperative for the 
development of novel treatment strategies. Notably, the 
vascular endothelial growth factor receptor 2 (VEGFR2) 
plays a critical role in angiogenesis, which is essential for 
tumor growth and metastasis. NSCLC is a highly vascu-
larized tumor and suppressing angiogenesis has emerged 
as a promising treatment strategy [9]. Inhibition of 
VEGFR2 has been shown to significantly impair the pro-
liferation of various cancer cell lines, including A549 lung 
carcinoma cells [10]. Studies have demonstrated that 
blocking VEGFR2 signaling pathways leads to reduced 
endothelial cell proliferation, decreased vascular perme-
ability, and inhibited tumor growth [11, 12]. Agents such 
as Ramucirumab, Nintedanib, and Anlotinib, target-
ing VEGFR2, have demonstrated efficacy in inhibiting 
a spectrum of solid tumors, including NSCLC [13–15]. 
However, despite the potential effectiveness of VEGFR2 
inhibitors in the clinical management of NSCLC, current 
agents encounter challenges such as limited translatabil-
ity, moderate efficacy, and the emergence of drug resist-
ance. Moreover, the exclusive focus on VEGFR2-targeted 
therapies for NSCLC may yield suboptimal outcomes due 
to off-target effects and resistance mechanisms [16, 17].

Phenotype-based drug discovery holds promise in 
addressing this deficiency by enabling a more compre-
hensive evaluation of drugs [18, 19]. Integrating both 
phenotype-based screening and VEGFR2 targeting meth-
odologies can enhance the efficiency and success rate of 
anti-NSCLC drug discovery. However, current meth-
odologies encounter challenges stemming from the het-
erogeneity of data sources and the intricacies involved in 
feature extraction [20–22]. Further research is warranted 
to explore the potential of the phenotype-target combi-
nation drug screening model.

The emergence of Artificial Intelligence, particularly 
Deep Learning, has revolutionized large-scale data min-
ing. Developing reliable deep learning models requires 
precise algorithms and efficient techniques for extract-
ing molecular features [23]. Molecular structures often 
involve intricate many-body interactions and complex 
electronic structures. In contrast to traditional molecular 

descriptors, molecular graphs simplify this complex-
ity by representing atoms as nodes and bonds as edges. 
Recently, graph convolutional network (GCN) have 
shown promising performance in various aspects of drug 
design [24], including drug screening [25], prediction 
of drug-target affinity [26], changes in protein–protein 
binding affinity [27], and drug toxicity prediction [28]. 
While GCN demonstrates remarkable molecular repre-
sentation capability and multi-scale feature integration, 
its method of directly summing neighbor node features 
limits model complexity and expressive power [29, 30].

To overcome this limitation, the graph attention net-
work (GAT) was introduced, which adaptively weights 
neighboring node features and supports multi-head 
attention mechanisms [31]. The integration of GAT with 
GCN further amplifies the model’s representational 
capacity and flexibility [20, 32]. For instance, Yu et  al. 
predicted drug-disease associations through layer atten-
tion graph convolutional network [33], Sun et al. utilized 
a graph convolutional attention network to forecast drug 
similarity [34], and Wang et al. established residue-based 
graph attention and convolutional network RGN for pre-
dicting protein–protein interaction sites [35]. However, 
the issue of activity cliffs (molecules with highly simi-
lar structures but significantly different activities) leads 
to a decrease in the accuracy of this model [36]. Addi-
tionally, the GAT-GCN model still faces limitations in 
representing chemical molecular structures, including 
inadequate extraction of local features and loss of chemi-
cal information.

Multimodal deep learning is an exciting subfield in 
the field of artificial intelligence, focusing on develop-
ing advanced models that can simultaneously process 
and learn multiple types of data. In this study, we intro-
duce FnGATGCN, an advanced framework that utilizes 
a multimodal feature fusion strategy, integrating finger-
print data with graph data. The methodology overview 
is depicted in Fig. 1. Firstly, we compiled a dataset com-
prising molecules exhibiting both active and inactive 
attributes against VEGFR2 and the A549 cell line. This 
dataset was randomly divided into training, validation, 
and testing subsets, as illustrated in Fig. 1A. Then, lever-
aging molecular fingerprints and graphs, we encoded the 
chemical structures of the compounds. Our FnGATGCN 
model was then trained and assessed, as demonstrated in 
Fig. 1B. Subsequently, we employed this model to rapidly 
screen candidate compounds with dual activity against 
VEGFR2 and the A549 cell line from the ZINC database 
(https://​zinc.​docki​ng.​org/). Following this, we conducted 
sequential screening and validation through molecular 
docking, drug-likeness analysis, and molecular dynamics 
simulation. Finally, we evaluated the biological activity of 
the hit compounds, as shown in Fig.  1C. This approach 

https://zinc.docking.org/
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aims to leverage the strengths of different data modalities 
to enhance model predictive performance and provide 
novel insights for NSCLC therapy.

Materials and methods
Problem definition and FnGATGCN Architecture
We consider a problem of drug activity prediction, focus-
ing on a binary classification task with cross-entropy as 
the loss function. Our training set D = (xi, yi) comprises 
n drug molecules, where xi denotes the combined finger-
print and graph representation of each molecule, and yi 
denotes its true activity label. In our classification task, 
our goal is to classify each drug molecule as active or 
inactive, linking f (x ) to a binary classification output 
that represents the probability of being active using the 
sigmoid function. We aim to minimize the cross-entropy 
loss and strive for an area under the curve (AUC) value 
as close to 1 as possible, indicating outstanding model 
performance in terms of classification accuracy and class 
separation.

Data preprocessing
Data description
In this study, compounds exhibiting inhibitory activity 
against both VEGFR2 and A549 cell lines were sourced 
from the ChEMBL database (https://​www.​ebi.​ac.​uk/​
chembl/) for model training and evaluation. For VEGFR2 
inhibitors, following data cleaning procedures including 
deduplication and removal of missing entries, a total of 
5907 compounds with IC50 < 1 μM were designated as the 
active dataset, while 1554 compounds with IC50 > 10 μM 

were identified as the inactive dataset. Given that the 
number of the collected inactive compounds is lower 
than that of the active compounds, this scenario does not 
comply with the natural distribution of active and inac-
tive compounds in the unknown database. Hence, it is 
highly meaningful to broaden the applicability domain of 
the model and enrich the inactive compound dataset. To 
achieve this, approximately 15 million compounds were 
retrieved from the PubChem database (https://​pubch​
em.​ncbi.​nlm.​nih.​gov/). Subsequently, SDF files were 
processed in Python using RDKit to compute extended 
connectivity fingerprints 4 (ECFP4, radius = 2). Employ-
ing the k-means algorithm, compounds were clustered, 
and 3000 central compounds were selected to represent 
the negative supplementary dataset, resulting in a total 
of 4554 compounds within the inactive dataset. For the 
A549 cell line, to mitigate the influence of varied experi-
mental conditions, compound data were selected based 
on assays utilizing MTT or CCK8 colorimetric agents, 
with cells treated for 72 h. This selection process yielded 
1662 active compounds and 4697 inactive compounds. 
During each model training iteration, the dataset was 
randomly partitioned into training, validation, and test 
subsets in an 8:1:1 ratio.

Standardization of SMILES sequences
The simplified molecular input line entry specification 
(SMILES) of a molecule is simply an ASCII string encod-
ing the molecular structure information. SMILES strings 
and molecular graphs can be converted bidirectionally 
using the RDKit package. We standardized the above 

Fig. 1  Overview of FnGATGCN model-based screening of potentially active molecules anti-NSCLC. A Data Collection and Splitting. B The overall 
architecture of FnGATGCN model. C The virtual screening pipeline based on FnGATGCN model.

https://www.ebi.ac.uk/chembl/
https://www.ebi.ac.uk/chembl/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
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SMILES sequences using MolVS (https://​molvs.​readt​
hedocs.​io/​en/​latest/​index.​html), which involved nor-
malizing structures, desalting, neutralizing charges, and 
removing duplicate molecules. The inhibitory activity of 
compounds is measured in binary values of “1” and “0”, 
where molecules with a value of “1” are considered to 
have inhibitory effects on VEGFR2 and A549.

Fingerprint‑enhanced graph attention convolutional 
network
Molecular featurization
Prior to graph encoding, defining node features is essen-
tial. This study utilizes nine types of atomic features and 
four types of bond features to characterize atoms and 
their local environments. The node features have a size 
of 44, while the edge features have a size of 14. Most of 
these features are encoded in one-hot form, while for-
mal charge and the number of free radical electrons are 
encoded as integers due to their additive nature [37]. To 
create one-hot encoded features, all possible categorical 
variables for the feature are listed, then matched with 
these variables and labeled as 1 or 0 (one-hot or null) for 
encoding. The size of each one-hot encoding equals the 
desired range of values plus one to accommodate unusual 
values and increase data sparsity. These details are com-
prehensively presented in Table 1.

GAT‑GCN encoding module
In GAT, the hidden layer state of each node is computed 
based on its features and those of its neighbors. By intro-
ducing an attention mechanism, the model discerns the 
varying importance of neighbors to the target node, 

translating this into weight parameters for aggregating 
neighbor information [38, 39]. The input to a single-head 
graph attention layer consists of feature vectors of the 
target node, with the output comprising updated node 
features. This process entails three main steps: alignment, 
weighting, and contextualization (Fig. 2B).

Alignment

Weighting

Context

where v represents the target node, hv denotes the state 
vector of node v , and hu represents the state vector of 
the neighbor nodes u . (1) By utilizing a trainable weight 
matrix W  for linear transformation, the alignment opera-
tion produces the output evu ; (2) The output evu is then 
normalized using the softmax function to obtain the 
weight avu of the neighbor nodes u with respect to the 
target node v . Subsequently; (3) combining the state vec-
tor hu of the neighbor nodes, the weight avu , and a non-
linear activation function, the new feature Cv of the target 
node v is obtained.

To enhance the expressiveness and stability of the 
model, we utilized Multi-head attention. Specifically, 

(1)evu = leaky−relu(W · [hv , hu])

(2)avu = softmax(evu) =
exp (evu)

∑

u∈N (v) exp (evu)

(3)Cv = σ





�

u∈N (v)

avu ·W · hu





Table 1  Initial atomic and bond features

Atom feature Size Description

Atom symbol 16 [B, C, N, O, F, Si, P, S, Cl, As, Se, Br, Te, I, At, other] (one-hot)

Degree 6 number of covalent bonds [0,1,2,3,4,5] (one-hot)

Formal charge 1 electrical charge (integer)

Radical electrons 1 number of radical electrons (integer)

Hybridization 6 [sp, sp2, sp3, sp3d, sp3d2, other] (one-hot)

Aromaticity 1 whether the atom is part of an aromatic system [0/1] (integer)

Hydrogens 5 number of connected hydrogens [0,1,2,3,4] (one-hot)

Chirality 1 whether the atom is a chiral center [0/1] (integer)

Chirality type 2 [R, S] (one-hot)

Bond feature Size Description

Bond type 4 [single, double, triple, aromatic] (one-hot)

Conjugation 1 whether the bond is conjugated [0/1] (integer)

Ring 1 whether the bond is in ring [0/1] (integer)

Stereo 6 [StereoNone, StereoAny, StereoZ, StereoE, StereoIs, Stere-
oTrans] (one-hot)

https://molvs.readthedocs.io/en/latest/index.html
https://molvs.readthedocs.io/en/latest/index.html
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we conducted K  independent attention calculations for 
each target node, resulting in K  vector representations of 
the target node v , Then concatenated these K  vectors to 
obtain the final output vector.

where αk
vu is the normalization coefficient of the K-th 

attention mechanism, Wk corresponds to the weight 
matrix of the K-th linear transformation.

In GCN, each node aggregates its features with those of 
neighboring nodes to update the feature representation 
of the target node [40]. Unlike GAT, these weights are 
typically determined by the degrees of neighboring nodes 

(4)h′v =�Kk=1 σ

(

∑

u∈N(v)

αk
vu ·W

k · hu

)

(Fig. 2C). Subsequently, after feature updating, the ReLU 
activation function is applied to introduce non-linearity, 
thereby enhancing the model’s expressive power. Addi-
tionally, pooling layers are utilized to downsample the 
data, reducing the data volume while retaining key infor-
mation. Specifically, both average pooling and max pool-
ing strategies are applied to the node features (440 * n) 
processed by GAT-GCN, resulting in vectors of size 440 
* 1 each. These vectors are then concatenated to obtain a 
feature vector of size 880 * 1.

Molecular fingerprint encoding module
In this section, we initially use the GetMorganFinger-
printAsBitVect function from the RDKit package to con-
vert the SMILES of compounds to a 1024-bit ECFP4 with 

Fig. 2  The architecture of FnGATGCN model. A Overview of the FnGATGCN network architecture. B Molecular feature representation based 
on attention mechanisms. C Molecular feature representation based on graph convolutional networks
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a radius of 2. Next, the encoded molecular fingerprint 
features of ECFP4 are fed into the input layer of the mul-
tilayer perceptron (MLP) consisting of 1024 neurons. The 
data is then subjected to processing and feature learning 
via the ReLU non-linear activation function across two 
hidden layers, comprising 100 and 25 neurons, respec-
tively. Finally, the outcomes are computed using the 10 
neurons in the output layer.

Feature fusion module and activity prediction
In this part, we integrate the previously extracted molec-
ular graph features and molecular fingerprint features 
using a fully connected layer to create an augmented 
feature vector. Subsequently, the study utilizes an output 
layer with a sigmoid function for classification. The sig-
moid activation function, characterized by its continuous 
and smooth ’S’ shaped curve, is widely used and defined 
by a straightforward mathematical expression, as illus-
trated in the formula.

It maps real number inputs to the (0,1) interval, nor-
malizes the output of each neuron, and is suitable for 
probability prediction in classification problems.

FnGATGCN model training and evaluation
Experimental setting
In this study, we utilize the Adam optimizer within the 
PyTorch 1.13.1 framework to train the FnGATGCN 
model on the A549 dataset and the VEGFR2 dataset 
respectively, Model parameters were fine-tuned using 
the gradient descent optimization algorithm. The binary 
cross-entropy (BCE) loss function was minimized during 
training to reduce the disparity between predicted out-
comes and actual labels, thereby enhancing the model’s 
performance and accuracy. To mitigate overfitting during 
model training, we introduced L2 weight decay, adjusted 
the learning rate, and applied dropout. Furthermore, to 
prevent overfitting and expedite training, an early-stop-
ping strategy was implemented. The maximum number 
of training epochs was capped at 800. If a model’s AUC 
does not improve for 18 consecutive training rounds, 
and the loss of the validation set does not decrease for 28 
consecutive rounds, training will be stopped. Then, the 
model with the lowest validation set loss among all mod-
els at the time of stopping is selected as the final model. 
Throughout the experiments, we utilized an NVIDIA 
GeForce RTX 3080 graphics card with 10 GB of memory 
and 8704 CUDA cores.

(5)f (x) =
1

1+ e−x

Model evaluation
We assessed our FnGATGCN model alongside several 
other advanced graph neural networks, including GAT-
GCN, GAT, GIN, ECC, and GraphSAGE. To mitigate 
data imbalance, we repeated the data sampling pro-
cess for each model 10 times and computed the average 
results. Performance metrics, including AUC, balanced 
accuracy (BA), F1-measure (F1) score, and Matthews 
correlation coefficient (MCC), were calculated for both 
validation and test sets using a Python script. The calcu-
lation formula is detailed in Table 2.

Here, TP, FP, TN, and FN represent the counts of true 
positive, false positive, true negative, and false negative 
labels, respectively. TPR stands for True Positive Rate, 
calculated as TP/(TP + FN). FPR stands for False Positive 
Rate, calculated as FP/(FP + TN). TNR stands for True 
Negative Rate, calculated as TN/(TN + FP). PPV stands 
for Positive Predictive Value, calculated as TP/(TP + FP).

FnGATGCN model and molecular docking co‑screening
Firstly, we retrieved 3 million small molecules from the 
ZINC database and converted them into SMILES format. 
Each small molecule was then subjected to screening 
using the FnGATGCN model. Molecules with predicted 
probabilities exceeding 50% for activity against both 
VEGFR2 and the A549 cell line were selected for molecu-
lar docking analysis.

In the molecular docking section, the ligand’s X-ray 
diffraction structure was obtained from the RCSB PDB 
(https://​www.​rcsb.​org/) and imported into Discovery 
Studio 2019. Subsequently, it was processed using the 
“Prepared Protein” module, which involved removing 
all water molecules, inserting missing loops, and adding 
hydrogen atoms. The active site was defined as a 12.0 Å 
radius around the endogenous ligand [41]. The hits 
underwent energy minimization using the CHARMm 
force field. Following that, the ligands and prepared pro-
tein were utilized for CDOCKER docking with default 
parameters. The interaction energy values were analyzed 
to assess the strength of binding between the ligands 
and proteins, with higher values indicating stronger 
interactions.

Table 2  Calculation formulas for evaluation metrics

Evaluation metric Equation

AUC​ TPR

FPR

BA TPR+TNR

2

F1-score 2 ∗ PPV∗TPR
PPV+TPR

MCC TP∗TN−FP∗FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

https://www.rcsb.org/
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Molecular dynamics simulation
Molecular dynamics simulations were conducted 
using the GROMACS software employing the AMBER 
ff99SB-ILDN force field. Atomic charges for the small 
molecules were determined using Multiwfn 3.8 (dev) 
and ORCA 5.0.2 software, and then converted into 
Amber (GAFF) force field files using Sobtop 1.0 (dev3.1) 
[42–44]. The entire complex system was solvated into 
a cubic box with TIP3P water model, and appropriate 
Na+ and Cl− ions were added to neutralize the system’s 
charge. A minimum distance of 1.2 nm was maintained 
between each amino acid and the edges of the cubic 
box. The simulation system underwent energy mini-
mization with 1000 steps of steepest descent and 5000 
steps of conjugate gradient optimization. Pre-equili-
bration was performed with 100  ps of NVT (constant 
Number of particles, Volume, and Temperature) and 
100 ps of NPT (constant Number of particles, Pressure, 
and Temperature) simulation at 300  K. Subsequently, 
each system underwent a 50 ns simulation with a time 
step of 2  fs, and trajectories were recorded at 10  ps 
intervals. Root mean square deviation (RMSD) and 
root mean square fluctuations (RMSF) were analyzed 
to assess molecular structural deviations and atomic 
flexibility throughout the simulation [45]. Binding free 
energy was calculated using the Molecular Mechanics/
Poisson-Boltzmann surface area (MM/PBSA) method, 
employing the specific formula outlined below:

�EMM represents the field of force of molecule, 
including van der Waals ( �Evdw ) and electrostatic 
forces ( �Eele ), �Gpolar denotes the polar solvation-free 
energy, �Gnonpolar indicates the nonpolar solvation-free 
energy, and—T�S represents the entropy change.

Biological evaluation
In vitro VEGFR2 inhibition assay
The inhibitory activity of the hit compounds on the 
VEGFR2 enzyme in vitro was assessed using the Caliper 
Mobility-Shift method. The compound (3.0 mg, Chem-
div, USA) was accurately weighed, dissolved in DMSO, 
and diluted to various concentrations using 1 × kinase 
buffer. A 250 nL aliquot of the solution was transferred 
to the assay plate via Echo550. A 2.5 × protein solu-
tion was prepared with 1 × kinase buffer, and 10 μL was 
added to the compound, positive control, and negative 
control wells, followed by 10 μL of 1 × kinase buffer. The 
plate was centrifuged at 1000  rpm for 30  s and incu-
bated at room temperature for 10  min. A mixture of 
5 × ATP and kinase substrate was then added (15 μL per 

(6)
�Gbind = �EMM +�Gpolar +�Gnonpolar − T�S

well), centrifuged at 1000 rpm for 3 s, and incubated at 
room temperature for 30  min. Finally, 30 μL of detec-
tion solution was added, the plate was centrifuged at 
1000  rpm for 30  s, and the conversion rate was meas-
ured using a microplate reader. IC50 values were calcu-
lated via curve fitting in GraphPad Prism 9.0.

In vitro cell proliferation inhibition test
NSCLC cell lines and GES-1 cell (5 × 103 per well) were 
seeded in 96-well plates and incubated for 24 h. The cells 
were then treated with Sorafenib (Macklin, China) as a 
positive control and various concentrations of the target 
compounds for 72  h. After treatment, 5  mg/mL MTT 
(Sigma, USA) was added, and the cells were incubated 
for 4 h. The supernatant was then removed, and 100 μL 
of DMSO was added to dissolve the formazan crystals. 
Absorbance at 490 nm was measured using a microplate 
reader, and IC50 values were calculated using GraphPad 
Prism 9.0.

Results and discussion
Performance of FnGATGCN
In this study, we first developed an activity prediction 
model, FnGATGCN. The overall workflow and architec-
ture of the model are depicted in Fig. 2.

We assessed the efficacy of the FnGATGCN model in 
comparison to five other graph neural network models. 
Notably, to mitigate the effects of data imbalance and 
ensure fair model comparisons within the same parti-
tion, we randomly generated 10 sets of training, valida-
tion, and test data. These models were then trained and 
evaluated on each of these partitions. The value range for 
AUC, BA, F1 is 0 to 1, and for MCC, it is -1 to 1, with 
higher values indicating better prediction performance. 
For simplicity, we present these values as percentages in 
this paper. As illustrated in Fig. 3, FnGATGCN surpassed 
all five alternative graph neural network models across 
both the A549 and VEGFR2 datasets, with GATGCN 
closely trailing behind. Specifically, as detailed in Table 3, 
on the A549 dataset, FnGATGCN demonstrated nota-
ble enhancements relative to the suboptimal GATGCN 
in terms of AUC, BA, F1, and MCC metrics, achieving 
increases of 1.76% (1.57%), 3.28% (3.68%), 3.83% (4.82%), 
and 5.23% (6.14%) on the test set (validation set), respec-
tively. Likewise, on the VEGFR2 dataset, FnGATGCN 
outperformed GATGCN with relative improvements in 
AUC, BA, F1, and MCC metrics, exhibiting increases of 
0.93% (1.14%), 1.84% (1.93%), 1.55% (1.69%), and 3.61% 
(3.94%) on the test set (validation set), respectively. 
These findings underscore the superior performance 
of the FnGATGCN model, which integrates molecular 
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Fig. 3  Performance comparison of FnGATGCN with other models. A Performance evaluation of the FnGATGCN model in the VEGFR2 dataset. B 
Performance evaluation of the FnGATGCN model in the A549 dataset

Table 3  Performance evaluation of the FnGATGCN model

Bold indicates the evaluation parameters of the optimal model

Sets Models Validation set Test set

AUC (%) BA (%) F1(%) MCC (%) AUC (%) BA (%) F1(%) MCC (%)

A549 ECC 88.36 ± 2.74 77.12 ± 4.19 67.16 ± 6.44 58.71 ± 5.73 87.20 ± 2.14 76.79 ± 3.33 66.56 ± 5.35 57.69 ± 6.33

GAT​ 91.42 ± 1.19 79.82 ± 2.30 72.31 ± 3.06 65.63 ± 3.06 90.70 ± 1.03 79.57 ± 1.57 72.14 ± 1.89 66.07 ± 2.26

GIN 92.20 ± 0.98 84.89 ± 2.01 77.77 ± 2.88 70.46 ± 3.71 90.94 ± 1.06 83.63 ± 0.89 76.64 ± 1.94 69.16 ± 3.05

GraphSAGE 93.64 ± 1.01 85.50 ± 2.39 78.51 ± 2.80 71.66 ± 2.81 92.14 ± 0.51 84.03 ± 1.73 76.32 ± 2.17 68.86 ± 2.47

GATGCN 95.04 ± 1.28 87.33 ± 1.19 82.05 ± 2.26 76.35 ± 2.84 93.62 ± 0.69 86.38 ± 1.45 81.00 ± 1.57 75.12 ± 2.04

FnGATGCN 96.61 ± 1.14 91.01 ± 2.13 86.87 ± 2.91 82.49 ± 3.65 95.38 ± 0.83 89.66 ± 1.40 84.83 ± 1.87 80.35 ± 3.28
VEGFR2 ECC 91.68 ± 0.50 83.67 ± 1.68 87.16 ± 1.24 68.96 ± 2.37 91.49 ± 0.96 83.30 ± 1.61 86.83 ± 1.21 67.73 ± 1.84

GAT​ 93.84 ± 0.72 85.74 ± 1.10 88.98 ± 0.86 73.78 ± 1.73 94.18 ± 1.04 85.50 ± 1.60 88.89 ± 1.16 73.37 ± 2.60

GIN 95.50 ± 0.90 89.13 ± 1.17 91.18 ± 0.94 79.37 ± 2.31 95.40 ± 1.09 88.76 ± 1.39 91.00 ± 1.08 78.79 ± 2.44

GraphSAGE 95.96 ± 0.50 89.63 ± 1.61 91.28 ± 1.03 79.77 ± 2.28 95.73 ± 0.71 89.21 ± 1.63 91.00 ± 0.94 78.94 ± 2.31

GATGCN 96.96 ± 0.41 91.55 ± 0.73 92.76 ± 0.44 83.29 ± 1.00 96.84 ± 0.63 91.11 ± 1.07 92.44 ± 0.67 82.47 ± 1.58

FnGATGCN 98.10 ± 0.36 93.48 ± 0.99 94.45 ± 0.68 87.23 ± 1.33 97.77 ± 0.52 92.95 ± 1.16 93.99 ± 0.86 86.08 ± 1.95
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fingerprinting into the GATGCN framework, thereby 
offering the potential for enhanced screening of active 
molecules.

The results of each model run ten times are in Supple-
mentary Tables S1-S8, taken together, VEGFR2-FnGAT-
GCN-08 and A549-FnGATGCN-04 exhibit superior 
performance in both validation and test sets. VEGFR2-
FnGATGCN-08 achieves 98.47% (98.66%), 94.04% 
(94.10%), 94.97% (94.64%), and 88.32% (88.25%) on the 
test set (validation set) for AUC, BA, F1 score, and MCC 
metrics, respectively. A549-FnGATGCN-04 achieves 
96.01% (99.01%), 90.65% (95.26%), 87.24% (92.21%), and 
82.70% (89.73%) on the test set (validation set) for the 
same metrics, respectively. Hence, we have chosen these 
two models for subsequent study.

Feature visualization
FnGATGCN models offer better interpretability com-
pared to the inherent “black box” nature of traditional 
machine learning models [46]. They achieve this by intui-
tively understanding the relationship between molecular 
structure and prediction results through the output of node 
weights within the molecular structure. In this section, 
we selected four molecules from each of the two datasets 
with prediction accuracies exceeding 98%. We utilized the 
model to calculate the attention weights of the top 30% 
of atoms in the molecular graph and mapped them to the 

corresponding two-dimensional substructures, thus visual-
izing some important atoms and functional groups hidden 
in the data. Furthermore, we conducted molecular docking 
analyses to investigate the interaction between these fea-
tures and the VEGFR2 target.

Figure  4A displays the heatmaps of the four VEGFR2 
inhibitors, the attention weights highlight the pyrimidine 
and two chlorine atoms in CHEMBL3942082, the amide 
and sulfur dioxide structure in CHEMBL3740721, the 
urea and pyrrole carboxylic acid in CHEMBL3660294, 
and CHEMBL3907102 similarly contains urea, along 
with an additional trifluoromethyl group. In addition, the 
nitrogen atom serving as the core hydrogen bond accep-
tor focused on by the model effectively constrains the 
movement of the compound within the protein pocket, 
these key nodes constitute the fundamental scaffold of 
VEGFR2 inhibitors. The molecular docking results are 
depicted in Fig.  4B. We can observe that the atoms or 
functional groups interacting with the key amino acid 
residues in the active pocket of the VEGFR2 protein 
include pyrimidine, amide, urea, and nitrogen atoms, 
which are essentially consistent with the atoms focused 
on in the model. These observations suggest that the 
attention weights of the FnGATGCN model at the atomic 
level do possess chemical significance. The compounds 
inhibiting A549 cell proliferation, unlike VEGFR2 inhibi-
tors, possess a more varied structure, as depicted in 

Fig. 4  Feature visualization. A Visualization analysis of atomic attention weights for VEGFR2 inhibitors. B Molecular docking of VEGFR2 inhibitors, 
the PDB code for CHEMBL3942082 is 3WZD, and the rest are 3WZE. C Visualization analysis of atomic attention weights for A549 cell inhibitors
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Fig. 4C. The heatmap displays the crucial atoms of four 
A549 cell inhibitors, which receive extra attention in the 
model, possibly correlating with their exhibited anti-
A549 cell proliferation activity.

Screening of potentially active compounds from databases
In this section, we integrated the VEGFR2-FnGATGCN 
and A549-FnGATGCN models to construct a compre-
hensive drug screening model targeting NSCLC, which 
combines both target-based and phenotype-based 
screening strategies. Subsequently, we screened 3 mil-
lion molecules from the ZINC database, resulting in a 
total of 2096 compounds with the potential to simulta-
neously inhibit VEGFR2 and suppress A549 proliferation 
(EstPGood > 0.5), and these 2096 compounds were not 
included in the datasets used for model training.

Furthermore, Drug repurposing is a strategy aimed 
at identifying alternative applications for approved or 
investigational drugs beyond their originally intended 
medical indications. In this study, we also employed the 
FnGATGCN model for cross-screening and identified 
390 potential molecules with VEGFR2 inhibitory activ-
ity from the A549 cell activity dataset. Similarly, within 
the VEGFR2 activity dataset, we discovered 508 poten-
tial molecules with anti-A549 proliferation activity. 
These molecules were clustered into 10 groups using the 
k-means algorithm and all central molecules adhere to 
Lipinski’s Rule of Five. Detailed results are in Supplemen-
tary Tables S9 and S10.

Docking and Visual Inspection
Molecular docking provides a nuanced understanding at 
the molecular level of ligand–protein interactions, while 
also evaluating the stability of resulting complexes [47]. 
Initially, we retrieved the endogenous ligand Sorafenib 
from the VEGFR2 crystal structure (PDB ID: 3WZE; res-
olution 1.90 Å) and redocked it into the receptor’s active 
pocket. Remarkably, the RMSD value of the redocked 
pose was 0.28  Å, falling below the threshold of 1.90  Å, 
thus demonstrating the precision of our docking meth-
odology and parameters [48]. Subsequently, we docked 
the 2096 compounds obtained from the previous step 
with VEGFR2. The screening process considered several 
key factors: (1) Ensuring the ligand’s chemical structure 
orientation complements the protein’s active pocket. (2) 
Establishing stable hydrogen bond interactions between 
the ligand and key amino acid residues within the pro-
tein’s active pocket, such as Cys 919 and Cys 917 in the 
hinge region, as well as Asp 1046 and Glu 885 near the 
DFG sequence. (3) Ensuring that the CDOCKER inter-
action energy is less than -50  kcal·mol−1. (4) Encourag-
ing diversity in compound structures. Based on these 

criteria, a total of 11 compounds were identified as prom-
ising candidates (Table 4).

The molecular docking analysis of potential active mol-
ecules and Sorafenib  interacting with VEGFR2 is pre-
sented in Fig.  5.  Concretely, Sorafenib fits well into the 
VEGFR2 protein pocket, with its core N-methylpicolina-
mide located in the hinge region forming hydrogen bonds 
at distances of 2.3 Å and 2.4 Å with amino acid residues, 
respectively. The 4-phenoxy group adopts a nearly per-
pendicular conformation to the core through certain 
bond angles. Meanwhile, the 4-chloro-3-trifluoromethyl 
phenyl group extends into the rear pocket region, engag-
ing in hydrophobic interactions. The urea structure forms 
three hydrogen bonds with Glu 885 and Asp 1046 at dis-
tances of 2.2 Å, 2.0 Å, and 1.9 Å, respectively.

It is notable that the 11 compounds exhibit analo-
gous spatial orientation and functional mechanisms to 
Sorafenib. Specifically, their structures can be divided 
into three parts: the core part near the protein hinge 
region, the part near the DFG sequence and extending 
the terminal group into the protein’s rear pocket, and 
the linker part connecting the first two. Compound Z1 
exemplifies this, as its core docks near the hinge, form-
ing a hydrogen bond with Cys919, while the urea group 
near the DGF sequence forms three hydrogen bonds with 
Glu 885 and Asp 1046, and the terminal group inserts 
into the rear pocket, fostering hydrophobic interactions. 
Additionally, compounds Z-2, Z-3, Z-4, and Z-5 display 
similar spatial orientation and interactions as Z-1. Z-6 
shares sorafenib’s core structure, exhibiting analogous 
activity near the hinge, with its imidazole and amino 
groups also forming hydrogen bonds with Glu 885 and 
Asp 1046. Moreover, Z-7, Z-8, and Z-11 form hydrogen 
bonds with Glu 885 and Asp 1046 through their amide or 
urea structures, while Z-9 and Z-10, featuring the same 
quinoline core, form hydrogen bonds with Cys 919 in the 
hinge region through their nitrogen atoms.

Principal Component Analysis (PCA) discloses that 
compounds Z1 to Z11 are located within the chemical 
space of active compounds in both the A549 dataset and 
the VEGFR2 dataset. This finding suggests that Z1-Z11 
have chemical structures similar to those of the active 
compounds. Moreover, to some extent, this result verifies 
the reliability of the activity predictions of Z1-Z11 by the 
FnGATGCN model, since it is based on an understand-
ing of the known chemical space (Figure S1).

Molecular dynamics simulation analysis
Molecular dynamics simulation and molecular docking 
are regarded as two complementary strategies for under-
standing the interaction between receptors and ligands 
[49]. We utilized molecular dynamics simulation to eval-
uate the stability of the 11 complex systems mentioned 
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Table 4  Structural, CDOCKER interaction energy, and drug-likeness analysis of potentially active molecules

Compounds ZINC ID Structure CDOCKER 
interaction energy
(kcal·mol−1)

RO5

Sorafenib –

N
H

N
H

O
O

N
N
H

O
Cl

F3C

− 72.3670 0

Z1 ZINC33068301

N

N

Cl
O

O

N
H

N
H

O
FF

− 62.2536 0

Z2 ZINC33067816

N
H

N
H

OF

O
N

N

O

F

− 61.7714 0

Z3 ZINC8598095

N
H

N
H

O

O
N

N

O

F3C

− 61.5327 0

Z4 ZINC33067799 F O

N
H

O

O

N

N

− 59.2919 0

Z5 ZINC41089729

N

N

O

S

N
H

N
H

O

F

F

O

− 58.7570 0

Z6 ZINC85393782

Cl

H
N

H
N

N

O

O
N
H

N

− 58.7475 0

Z7 ZINC65460318 N

N

O N
H

N
H

O

− 58.4082 0

Z8 ZINC33326674

N

N

N
H
N

F

O

N
H

N
H

− 57.2331 0

Z9 ZINC23353178 O
O N

H O

H
N

N

− 56.4581 0
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above, contrasting them with Sorafenib. The RMSD 
of 12 protein–ligand complexes is depicted in Fig.  6A. 
Compounds Z1-Z7, Z9, and Z10 display similar RMSD 
trends to the positive control Sorafenib, with no signifi-
cant marginal effects observed, and their RMSD values 
are all less than 0.15  Å. They show stable fluctuations 
within a certain range over 50 ns, indicating their ability 
to stably bind in the VEGFR2 protein pocket. At the ini-
tial stage, noticeable marginal effects were observed for 

Z8 and Z10, but they both converged after 10  ns, with 
convergent RMSD values less than 0.2  Å and 0.25  Å, 
respectively. Among them, Z10 underwent the larg-
est conformational change compared to the initial con-
formation. Upon examining its trajectory, a significant 
conformational change occurred in the sulfamoyl group 
of Z10, leading to the disruption of its original hydro-
gen bonds with Glu 885 and Asp 1046. However, stable 

Fig. 5  Molecular docking analysis of potential active molecules interacting with VEGFR2

a RO5: Besides the Lipinski’s rule of five

Compounds ZINC ID Structure CDOCKER 
interaction energy
(kcal·mol−1)

RO5

Z10 ZINC170642714

N

N
H

O
S

HN

O

O

F − 53.6049 0

Z11 ZINC64801237

F
N
H

N
H

O
H
N

N

N
H
N

− 52.7258 0

Table 4  (continued)
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hydrogen bonds could still be formed with Cys 919 in the 
hinge region.

RMSF is employed to assess the flexibility of protein 
residues. Figure  6B illustrates the fluctuation of amino 
acid residues during the Molecular dynamics simula-
tion of 12 systems. Overall, all compounds display highly 
analogous variation trends to the Sorafenib. Notably, a 
deletion is observed in the amino acid sequence of the 
VEGFR2 protein used, spanning positions 944–993. This 
deletion is located within the kinase insert domain (KID), 
situated in the kinase C-terminal lobe and linking helices 

αD and αE (933–1000), a region distant from the cata-
lytic site. Studies indicate that while the majority of the 
KID is dispensable for catalysis, a few residues are neces-
sary to form a bridge between αD and αE, ensuring the 
integrity of the kinase structure [50]. Consequently, the 
partial deletion in the protein sequence is not anticipated 
to unduly impact the outcomes. Within our systems, Pro 
937-Glu 943 and Asp 994-Phe 999 in the KID region 
exhibit increased flexibility, suggesting their non-criti-
cal role in ligand–protein binding. Conversely, regions 
915–935 and 1015–1050 demonstrate considerable 

Fig. 6  Simulation trajectory analysis of 12 protein—ligand complexes. A RMSD plots of the ligands; B RMSF plots of the proteins

Table 5  Complex combined with free energy analysis (kJ·mol−1)

Complex C
ontribution

ΔEvdw ΔEele ΔGpolar ΔGnonpolar ΔH -TΔS ΔGbind

Sorafenib − 247.664 − 108.609 195.857 − 30.97 − 191.386 22.888 − 168.498

Z1 − 234.286 − 85.119 200.748 − 30.983 − 149.64 9.19 − 140.45

Z2 − 271.283 − 76.399 216.318 − 30.644 − 162.008 15.318 − 146.69

Z3 − 263.889 − 94.331 211.432 − 31.446 − 178.234 25.824 − 152.41

Z4 − 241.392 − 70.387 183.865 − 28.857 − 156.771 19.538 − 137.233

Z5 − 30.665 − 288.366 202.333 − 30.665 − 147.363 16.457 − 130.906

Z6 − 247.358 − 114.651 213.991 − 28.466 − 176.484 14.408 − 162.076

Z7 − 246.843 − 57.449 193.834 − 30.262 − 140.72 10.313 − 130.407

Z8 − 224.756 − 80.035 174.499 − 31.575 − 161.867 32.862 − 129.005

Z9 − 231.982 − 47.99 174.409 − 28.257 − 133.82 10.035 − 123.785

Z10 − 250.256 − 52.985 192.322 − 29.924 − 140.843 31.289 − 109.554

Z11 − 221.546 − 75.332 177.818 − 29.672 − 148.732 35.324 − 113.408
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stability, implying their significance in ligand–protein 
interactions. These regions encompass the protein’s hinge 
region, DFG motif, and represent stable hydrogen inter-
action zones. The above results support the stability and 
reliability of the docking results.

Binding free energy analysis
To assess the binding affinity of the 11 potential VEGFR2 
inhibitors, we utilized the MM-PBSA method by cal-
culating the binding free energy (ΔGbind) of the system 
(Table  5). The ΔGbind values for all compounds inter-
acting with the target protein were found to be below 
−  100  kJ·mol−1, indicating their ability to stably bind 
within the active pocket of VEGFR2. Notably, com-
pound Z6 displayed the lowest binding free energy of 
−  162.076  kJ·mol−1, closely resembling that of the posi-
tive control sorafenib at − 168.498 kJ·mol−1.

Biological evaluation
Upon retrieval, there were no reports on the biologi-
cal activities of the screened compounds Z1-Z11 against 
VEGFR2, A549, and other NSCLC cell lines. To fur-
ther validate the reliability of the model and screen-
ing method, we assessed the biological activity of the 
top six compounds (Z1-Z6) (Figure S2) with the high-
est predicted binding affinities. As shown in Table  6, 
all six compounds exhibited effective inhibitory activ-
ity against VEGFR2, with IC50 values ranging from 0.88 
to 18.92  μM. Additionally, these compounds demon-
strated notable anti-proliferative activity against A549 
cells, with IC50 values ranging from 4.23 to 18.58  μM. 
Notably, compound Z3 demonstrates strong inhibi-
tory activity against both VEGFR2 (IC50 = 0.88 μM) and 
A549 cells (4.23 ± 0.45 μM). Although its activity against 
VEGFR2 is not as potent as Sorafenib (IC50 = 0.034 μM), 
it remains a promising candidate. This result demon-
strates that through screening, the hit compounds have 

been successfully targeted to VEGFR2 and A549, further 
validating the reliability of the FnGATGCN model.

We further evaluated the in vitro antiproliferative activ-
ities of Z1-Z6 in two NSCLC cell lines (NCI-H23 and 
NCI-H460) and a normal cell line (GES-1). The results 
showed that the compounds also had good antiprolifera-
tive activities against NCI-H23 and NCI-H460 with IC50 
values ranging from 4.78 to 16.55  μM. Compared with 
their antiproliferative activities against NSCLC cell lines, 
except for Z5, the compounds had lower toxicity to GES-
1. Although the toxicity of Z1-Z3 and Z6 to GES-1 may 
be lower than that of positive drugs, it is still not ideal. 
This may be related to the hit compounds acting on mul-
tiple targets. Considering the weak VEGFR2 inhibitory 
activity of Z4 and the high toxicity of Z5, Z1-Z4 and Z6 
may be compounds with greater potential for drug devel-
opment, and they require further extensive in  vitro/in 
vivo experimental evaluations.

Conclusion
Active molecules screened against VEGFR2 may not 
necessarily be effective against NSCLC phenotype 
cell line A549. Therefore, the development of anti-
NSCLC drugs targeting VEGFR2 still faces challenges. 
This study integrated the biological activity data of 
VEGFR2 and A549 to construct a novel deep learning 
framework called FnGATGCN. This model integrates 
GAT-GCN with molecular fingerprint-based feature 
extraction methods and demonstrates outstanding 
accuracy and robustness in anti-NSCLC drug screen-
ing. The model performance evaluation indicates that 
the AUC, BA, F1, and MCC values of FnGATGCN are 
superior to those of other published graph neural net-
work models. Additionally, the feature visualization 
results demonstrate that the FnGATGCN model can 
allocate different weights to atoms based on active mol-
ecule characteristics and the attention weights do have 

Table 6  In vitro VEGFR2 inhibitory activity and antiproliferative activity of Z1-Z6

a  IC50 values are presented as the means ± SD of triplicate experiments

Complex IC50 (μM)

VEGFR2 A549a NCI-H23a NCI-H460a GES-1a

Z1 7.05 6.71 ± 0.56 5.04 ± 0.82 6.43 ± 1.08 35.44 ± 3.34

Z2 4.29 8.56 ± 0.91 9.26 ± 0.77 7.45 ± 0.43 26.56 ± 2.03

Z3 0.88 4.23 ± 0.45 4.78 ± 0.62 5.24 ± 1.13 19.78 ± 1.93

Z4 18.92 12.46 ± 1.06 9.47 ± 1.23 11.24 ± 1.60 32.95 ± 2.54

Z5 8.25 18.59 ± 1.28 16.55 ± 3.13 14.56 ± 0.52 17.56 ± 2.11

Z6 2.68 9.19 ± 0.66 8.45 ± 1.31 9.56 ± 0.98 28.34 ± 2.88

Sorafenib 0.034 5.58 ± 0.88 4.25 ± 0.42 3.81 ± 0.71 11.09 ± 1.08
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chemical significance. This further underscores the 
model’s strong interpretability.

Subsequently, the model was employed to screen 2475 
compounds from 3 million small molecules, all exhibiting 
activity against both targets with a predicted probability 
exceeding 50%. After considering the molecular docking 
results comprehensively, 11 potential active compounds 
were selected. They can form stable hydrogen bonds with 
key amino acid residues Asp1046, Glu885, and Cys919 
within the active pocket of VEGFR2. Molecular dynam-
ics results show that the simulation trajectories of these 
11 complexes are essentially consistent with those of 
the positive control drug sorafenib, with relatively small 
binding free energy (ΔGbind) values, indicating high 
affinity binding to VEGFR2 and stable interaction with 
amino acid residues. Furthermore, based on the results 
of molecular dynamics simulations, biological activ-
ity tests were conducted on the top 6 compounds, and 
Z1-Z3 and Z6 exhibited good biological activities. How-
ever, since selectivity tests have not been performed yet, 
the observed effects may also be related to interactions 
with off-target proteins. Further in  vivo/in vitro experi-
ments are needed to clarify the mechanism of action 
and biological activity of the hit compounds to discover 
potential clinical candidate compounds. Despite some 
shortcomings, this model is a promising tool for screen-
ing anti-NSCLC drugs, enhancing screening efficiency 
and success rates. It can be further refined and its appli-
cation can be extended to other targets. This approach 
will hopefully become a powerful means of accelerating 
the discovery of clinical candidate drugs.
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