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Abstract. Breast cancer (BC) is one of the most prevalent 
types of malignancy and a major cause of cancer‑related 
death. The purpose of the present study was to identify prog‑
nostic models of necroptosis‑related genes (NRGs) in BC at 
the single‑cell RNA‑sequencing level and reveal the role of 
NRGs in tumour immune microenvironment (TIME). A risk 
model was constructed based on Cox regression and LASSO 
methods. Next, high‑scoring cell populations were searched 
through AUCell scores, and cell subtypes were then analyzed 
by pseudotime analysis. Finally, the expression level of the 
model genes was verified by reverse transcription‑quantitative 
(RT‑qPCR). A new prognostic model was constructed and 
validated based on five NRGs (BCL2, BIRC3, AIFM1, IFNG 
and VDAC1), which could effectively predict the prognosis 
of patients with BC. NRGs were found to be highly active in 
CD4+ T cells and differentially expressed in their develop‑
mental trajectories. Finally, the RT‑qPCR results showed that 
most of the model genes were significantly overexpressed in 
MDA‑MB‑231 and MCF‑7 cells (P<0.05). In conclusion, an 
NRG signature with excellent predictive properties in prog‑
nosis and TIME was successfully established. Moreover, 
NRGs were involved in the differentiation and development 
of CD4+ T cells in TIME. These findings provide potential 
therapeutic strategies for BC.

Introduction

Breast cancer (BC) is currently the most prevalent cancer and 
the leading cause of cancer death in women, accounting for 
25% of all cancers and 15% of cancer deaths worldwide (1). 
The main factor leading to the difficulty of treatment is the 
high heterogeneity of BC, which is susceptible to relapse and 
metastasis (2). At present, it is mainly based on the TNM stage 
and estrogen receptor (ER), progesterone receptor (PR) and 
human epidermal growth factor receptor 2 (HER2) to predict 
the prognosis of BC and guide treatment. However, patients 
with the same molecular subtypes have different responses 
to treatment, resulting in different outcomes (3,4). Therefore, 
further searching for molecular therapeutic targets of BC and 
constructing its prognostic model have become the focus of 
research.

Necroptosis is a new form of programmed necrotic 
cell death, which is similar to apoptosis in mechanism and 
necrosis in morphology (5). When necroptosis occurs, the cell 
membrane breaks and the cell contents are released, which 
leads to a severe inflammatory response that does not depend 
on caspase  (6,7). Necroptosis is regulated by the receptor 
interacting protein kinase 3 (RIPK3) and the mixed lineage 
kinase domain‑like (MLKL) pseudokinase  (8). Emerging 
data indicated that necroptosis plays a considerable role in 
tumorigenesis, tumor progression and regulation of tumor 
immunity (9). In the past decade, necroptosis has been studied 
in a variety of cancers, most of which show low expression of 
RIPK3 or MLKL in tumors, which is related to short survival 
time and poor prognosis  (10,11). It has been reported that 
necrotic apoptosis is the main form of tumor cell death in 
mouse BC model (12). Therefore, inducing necroptosis of BC 
cells can become a new and promising therapeutic strategy 
for BC.

Immunotherapy for cancer has changed the course of 
cancer treatment (13). Although immunotherapy for BC helps 
to improve the overall survival (OS) rate of patients, the current 
response rate of immunotherapy (such as checkpoint blocking) 
is only 10‑30% (14). Therefore, it is necessary to find a new 
way of immunotherapy for BC. In tumor microenvironment 
(TME), necroptosis can increase tumor antigen load, enhance 
antitumor immunity, and cooperate with immune checkpoint 
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blocking to promote lasting tumor clearance (15). However, 
there is significant intratumoral heterogeneity in immune cell 
infiltration (16). A recent study has shown that single‑cell 
RNA‑sequencing (RNA‑seq) technology plays an important 
role in analyzing the immunosuppressive microenvironment 
of metastatic BC  (17). Therefore, identifying BC immune 
cell subpopulations at the single‑cell level and exploring the 
expression of necroptosis genes will contribute to the immu‑
notherapy of BC.

In the present study, it was aimed to comprehensively 
analyze the expression pattern of necroptosis related‑genes 
(NRGs) in BC, construct NRGs' signature to predict the prog‑
nosis of patients with BC, and explore the relationship between 
necroptosis and BC tumour immune microenvironment 
(TIME) at the single‑cell level. It was found that NRGs were 
highly active in CD4+ T cells and differentially expressed in 
their developmental trajectories. Then, based on NRGs, three 
necroptosis‑associated subtypes that could also differentiate 
patient outcomes were found. Next, a new prognostic model 
based on NRGs, which could effectively predict the prognosis 
of patients with BC, was constructed and validated. Finally, 
the prognostic genes were analyzed from the perspectives of 
immune checkpoints, immune cell infiltration and somatic 
mutations, revealing that they could serve as a novel potential 
BC prognostic biomarker.

Materials and methods

Data acquisition and processing. The BC related single‑cell 
dataset GSE114724 was downloaded from the GEO database 
(https://www.ncbi.nlm.nih.gov/geo/) through the GEOquery 
package. The data source is Homo sapiens, and its data 
platform is GPL16791. A total of three BC samples were 
selected for follow‑up analysis: GSM3148575, GSM3148577 
and GSM3148578. Sample GSM3148575 included 7,096 cells, 
sample GSM3148577 included 4,926  cells and sample 
GSM3148577 included 5,232 cells.

In the present study, R packet ‘Seurat’ (18) was used to 
create single‑cell data as Seurat objects, and the propor‑
tion of mitochondria in each cell was calculated by the 
‘PercentageFeatureSet’ function of Seurat package. 
Low‑quality cells were excluded based on three quality 
measures: Mitochondrial gene content >5%, feature <500, and 
unique molecular identifier (UMI) count >20,000. After the 
aforementioned steps, 10,261 cells were obtained.

Subsequently, the samples were integrated and the Canonical 
Correlation Analysis (CCA) method was used to remove the 
batch effect. For Seurat objects, linear dimensionality reduc‑
tion was performed and the most variable genes expressed in 
the dataset were used to calculate principal component (PC). 
Then, the ‘FindNeighbors’ and ‘FindClusters’ functions of 
Seurat were used to group the cells into the optimal number 
of cluster in order to identify the cell types, and Uniform 
Manifold Approximation and Projection (UMAP) was used 
to reduce the information captured in the selected important 
PCs to two dimensions, and the visual clustering of cells was 
realized based on graphics.

BC transcriptome data was downloaded from The Cancer 
Genome Atlas Genomic Data Commons (TCGA GDC) official 
website (https://portal.gdc.cancer.gov/), and the selected data 

type was Fragments Per Kilobase Million. And the clinical 
data of patients with BC were downloaded from the TCGA 
GDC website (n=1,285). After removing samples that lacked 
clinical information, TCGA‑BC included 878 BC samples and 
41 paracancerous tissue samples. Details of patients with BC 
are listed in Table I.

In addition, the BC dataset GSE42568 was downloaded from 
the GEO database through the GEOquery package to verify the 
accuracy of the prognostic model. The GSE42568 (19) data set 
comes from Homo sapiens, and its data platform is GPL570. It 
contains a total of 121 samples, including 104 cases of BC and 
17 cases of normal samples. BC samples were selected from 
these samples for survival analysis.

In the present study, NRGs were obtained from previous 
literature for follow‑up analysis, including 101 NRGs 
(Table SI) (20). At the same time, the immune checkpoint genes 
(ICGs) were obtained from the previous literature for follow‑up 
analysis; a total of 47 ICGs were obtained (Table SII) (21). 
To analyze somatic mutations in TCGA patients with BC, 
‘TCGAbiolinks’ R package was used to download the patient's 
‘Masked Copy Number Segment’ data (n=897).

Cell annotation. A total of 14 clusters were visualized by 
UMAP, and 7 different cell types were revealed by artificial 
annotation of cell type marker genes, including B cells, CD4+ 
T cell, CD8+ T cell, progenitor cells, endothelial cells, natural 
killer (NK) T cells and regulatory T cells. Cell group marker 
genes were displayed in Table II. In order to understand the 
expression pattern of diagnostic markers in patients with BC, 
the differences of gene expression were compared in different 
cell groups.

Identification of differential genes in cell groups. For the 
seven cell groups that had been annotated, the function 
‘FindAllMarkers’ was used to calculate the differential genes 
among all cell groups, and the genes selected according to the 
criteria of |log2FoldChange|>0.25 and P<0.05 were used as the 
single‑cell differentially expressed genes (scDEGs) for further 
study. Then, NRGs and scDEGs were intersected, and the 
obtained genes were used as the key genes in the present study.

Using AUCell to score the cell populations. AUCell could 
identify cells with active gene sets in single‑cell RNA‑seq 
data. AUCell used ‘Area Under Curve’ (AUC) to calculate 
whether the key subset of the input gene set was enriched 
in the expressed genes of each cell. Key genes for AUCell 
scoring were selected and high‑scoring cell populations were 
searched.

Gene Ontology (GO) and Kyoto Encyclopedia of Genome 
and Genomes (KEGG) pathway functional enrichment 
analysis. The differential genes in CD4+ T  cell popula‑
tion were analyzed by GO annotation and KEGG pathway 
enrichment analysis using ‘clusterProfiler’ package of R, and 
the critical value of FDR <0.05 was considered to be statisti‑
cally significant. The first 8 results with the lowest P‑value 
of biological processes (BP), cellular components (CC) and 
molecular functions (MF) in GO and the top 10 results with 
the lowest P‑value of KEGG were shown in bar chart and 
bubble chart, respectively.
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Pseudotime analysis. Pseudotime analysis could arrange each 
cell on the corresponding track according to the time sequence 
gene expression, and divide the sample into several differen‑
tiated cell groups according to the gene expression status to 
generate an intuitive tree map of pedigree development, which 
could predict the differentiation and development trajectory of 
cells. For the subsets of CD4+ T cells, pseudotime analysis was 
used to predict the differentiation and development of subsets, 
and the changes of NRGs during the pseudotime process were 
analyzed.

Disease typing based on key genes. Consistent clus‑
tering is a method that could determine the number and 
members of possible clusters in a dataset. The R‑packet 
‘ConsensusClusterPlus’ was used to cluster the TCGA‑BC 

dataset consistently using the aforementioned key genes in 
order to improve distinguishing different subtypes of BC. In 
addition, PC analysis (PCA) was used to analyze different BC 
molecular subtypes.

Construction of prognostic risk model based on key genes. In 
order to determine the effect of key genes on the prognosis of 
patients with BC, the Least Absolute Shrinkage and Selection 
Operator (LASSO) algorithm was used to construct the prog‑
nostic risk model of BC. The ‘glmnet’ package of R was used 
to select the LASSO feature genes. The selected features were 
screened in the process of model construction, and the genes in 
the best model were selected as the BC prognostic genes. Finally, 
according to the risk regression coefficients of all genes in the 
model, a formula for calculating the risk score was constructed:

In the present study, a prognostic risk model for BC samples 
was constructed from TCGA datasets, and R‑packet ‘maxstat’ 
was used to calculate the best cut‑off value of the ability to 
predict the survival time of patients with BC. Based on cut‑off 
value, the patients were divided into high‑ and low‑risk groups. 
The Kaplan‑Meier (KM) method of R‑packet ‘survival’ was 
used for survival analysis, and R‑packet ‘survminer’ was used 
to visualize the results. In addition, GEO datasets were used to 
validate the prognostic model.

Evaluation model of prognostic risk model. Based on the 
TCGA‑BC dataset, univariate and multivariate COX regres‑
sion analysis was used to evaluate the ability of risk scores 
combined with clinicopathological features of patients with 
BC to predict OS, and the results were shown through forest 
maps. In addition, according to the clinical information of 
the sample in the present study, R‑packet ‘rms’ was used to 
construct a line chart to study the relationship between clinical 
factors and prognosis, and the calibration curves of 1‑, 3‑ and 
5‑year, respectively, were drawn.

Immune infiltration analysis. CIBERSORT (22) calculation 
method was used to analyze the data of high‑ and low‑risk 
groups in TCGA‑BC dataset to obtain immune infiltration infor‑
mation, and R ‘ggplot2’ package was used to draw a bar chart 
to show the distribution of 22 kinds of immune cell infiltration 
in each sample. Subsequently, a heat map was drawn to reflect 
the correlation between prognostic genes and immune cells. 
Finally, the scores of different immune cells were compared 
between high‑ and low‑risk groups, so as to obtain immune 
cells with different infiltration levels between the two groups.

In the study of Ru et al (23), the data of 28 kinds of immune 
cells were collected, R‑packet Gene Set Variation Analysis was 
used to explore the difference of immune infiltration among 
different BC molecular subtypes, and the results were shown 
by box chart.

Estimate. In the present study, Estimate R package was 
used to estimate the proportion of immune components and 
stromal components of each sample in TME in the form of 
ImmuneScore, StromalScore and ESTIMATEScore. The 

Table I. TCGA‑breast cancer sample baseline data in TCGA 
database.

Characteristics	 Number of cases (%)

T stage	
  T1	 236 (27)
  T2	 515 (59)
  T3	 97 (11)
  T4	 30 (3)
N stage	
  N0	 429 (49)
  N1	 299 (34)
  N2	 96 (11)
  N3	 54 (6)
M stage	
  M0	 860 (98)
  M1	 18 (2)
Overall survival	
  Dead	 130 (15)
  Alive	 748 (85)
Sex	
  Female	 867 (99)
  Male	 11 (1)

TCGA, The Cancer Genome Atlas.

Table II. Cell population marker gene information.

Cluster/subsets	 Cells (N)	 Marker gene

CD8+ T cells	 2804	 GZMK, CD8A, KRT86
CD4+ T cells	 1337	 IL7R, CCR7
B cells	 1720	 KLF2, SELL
Progenitor cells	 81	 MCM7, TUBA1B
Endothelial cells	 30	 STMN1, HMGN2
Regulatory T cells	 1647	 IL2RA, FOXP3
Natural killer T cells	 2642	 ZNF683, MT‑ND6
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higher the score, the greater the proportion of corresponding 
components in TME.

Analysis of somatic mutation and differential expression of 
HLA gene family. R‑packet ‘maftools’ was used to visualize 
somatic mutations in high‑ and low‑risk groups in TCGA‑BC 
datasets, and the mutation differences between the two groups 
were compared; the results were shown in the waterfall map. 
At the same time, the differential expression of human leuko‑
cyte antigen (HLA) family genes was analyzed in high‑ and 
low‑risk groups.

Cell culture. The MDA‑MB‑231 cell line (CL‑0150, Procell Life 
Science & Technology Co., Ltd.) was cultured at 37˚C with 5% CO2 
in DMEM (cat. no. PM150210; Procell Life Science & Technology 
Co., Ltd.) with 10% fetal bovine serum (FBS) (cat. no. 10091148; 
Gibco; Thermo Fisher Scientific, Inc.), 100 µg/ml streptomycin 
and 100 U/ml penicillin (cat. no. SV30010; Hyclone; Cytiva). The 
MCF10A cell line (cat. no. CRL‑10317; Shanghai Zhong Qiao 
Xin Zhou Biotechnology Co., Ltd.) was cultured in 37˚C, 5% 
CO2, complete medium (cat. no. ZQ‑1311; Shanghai Zhong Qiao 
Xin Zhou Biotechnology Co., Ltd.) containing 5% horse serum 
and 1% penicillin/streptomycin (Hyclone; Cytiva). MCF‑7 cells 
were borrowed from Key Laboratory of Fertility maintenance, 
Ministry of Education (Professor Jing Chen). However, appro‑
priate measures were received to ensure that the source and 
quality of these cells were reliable, and these cells were used for 
the present research to explore some of the characteristics of BC.

Reverse transcription‑quantitative (RT‑qPCR). Total 
RNA was isolated using TRIZOL (Ambion; Thermo 
Fisher Scientific, Inc.). Afterwards, the RNA underwent 

phenol‑chloroform extractions to further purify it. The quan‑
tity and quality (the acceptable ratio of A260/A280 was ≤1.8 
and ≥2.2) of the purified RNA were assessed by measuring 
the absorbance at 260/280 nm (A260/A280) using Nanodrop 
One (NanoDrop Technologies; Thermo Fisher Scientific, Inc.). 
The level of gene expression was assessed using GAPDH as 
a control gene. cDNA synthesis [HiScript® III RT SuperMix 
for qPCR (+gDNA wiper), Vazyme Biotech Co., Ltd.] was 
performed using standard procedures (37˚C for 15 min, 85˚C 
for 5 sec, and then maintained at 4˚C) and RT‑qPCR analysis 
was carried out on the Bio‑Rad S1000 instrument with HieffÔ 
qPCR SYBR® Green Master Mix (Low Rox Plus) (Shanghai 
Yeasen Biotechnology Co., Ltd.). The procedure was as 
follows: 95˚C for 5 min, then 40 cycles at 95˚C for 10 sec, 
and 30 sec at 60˚C. Afterwards, the concentration of each 
transcript was normalized to the level of GAPDH mRNA 
using the 2‑ΔΔCq method (24). The primer sequences were as 
follows: GAPDH forward, 5'GGT​CGG​AGT​CAA​CGG​ATT​
TG‑3' and reverse, 5'‑GGA​AGA​TGG​TGA​TGG​GAT​TTC‑3'; 
BCL2 forward, 5'‑TCA​TGT​GTG​TGG​AGA​GCG​TCA​AC‑3' 
and reverse, 5'‑GTG​TGC​AGG​TGC​CGG​TTC​AG‑3'; BIRC3 
forward, 5'‑TAT​CCA​CAT​CAG​ACA​GCC​CAG​GAG‑3' and 
reverse, 5'‑TTC​CAC​GGC​AGC​ATT​AAT​CAC​AGG‑3'; AIFM1 
forward, 5'‑GGC​GGC​GGG​TGC​TTT​GAA​G‑3' and reverse, 
5'‑CAT​GCC​ATC​GCT​GGA​ACA​AGT​TG‑3'; IFNG forward, 
5'‑TGA​CTT​GAA​TGT​CCA​ACG​CAA​AGC‑3' and reverse, 
5'‑CGA​CCT​CGA​AAC​AGC​ATC​TGA​CTC‑3'; and VDAC1 
forward, 5'‑GAT​TGA​CCC​TGA​CGC​CTG​CTT​C‑3' and 
reverse, 5'‑CTT​GCC​ATC​CAG​AAG​AGC​TGA​CAG‑3'.

Statistical analysis. All data calculation and statistical 
analysis were carried out by R software (https://www.r‑project.

Figure 1. Overall analysis flowchart. PCA, principal component analysis; UMAP, uniform manifold approximation and projection; NRGs, necroptosis‑related 
genes; scDEGs, single‑cell differentially expressed genes; GO, Gene Ontology.
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org/; 4.1.2). For the comparison of two groups of continuous 
variables, the statistical significance of normal distribution 

variables was estimated by independent Student t‑test, and 
the difference between non‑normal distribution variables was 

Figure 2. Cellular heterogeneity in single‑cell data. (A) Uniform Manifold Approximation and Projection clustering diagram of 7 cells types in BC and normal 
samples. (B) The bubble diagram of marker genes' expression among different cell clusters (bubbles from small to large represent the proportion of gene 
expression in cell clusters from small to large, and the color from dark to light represents gene expression from strong to weak). (C‑K) Violin plot of marker 
genes' expression among different cell clusters. (L) Heat map of differential genes (top10) among cell types (color from dark to light represents gene expression 
from strong to weak). (M) Proportion of each cell type in BC samples. BC, breast cancer.
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analyzed by Wilcoxon rank sum test. For the comparison of 
several groups of continuous variables, ANOVA (one‑way, 
parametric) was used when the variance was uniform, and 
Kruskal‑Wallis test (non‑parametric) was used when the 
variance was uneven, and then Dunnett's was used for the 
appropriate multiple comparison test after the occurrence of 
significant results. The survival package of R was used for 
survival analysis, the Kaplan‑Meier survival curve was used to 
show the difference in survival, and the log‑rank test was used 
to evaluate the significant difference in survival time between 
the two groups. Univariate and multivariate Cox regression 

analysis was based on survival package, and LASSO model 
was based on ‘glmnetR’ package. All the statistical P‑values 
were bilateral, and P<0.05 was considered to indicate a statisti‑
cally significant difference.

Results

Cellular heterogeneity. The flow chart of the overall analysis 
of the present study is demonstrated in Fig. 1. The BC samples 
of single‑cell data were integrated and CCA method was used 
to remove the batch effect, and then ‘Seurat’ package was used 

Figure 3. Correlation and differential analysis of key genes based on single‑cell datasets. (A) A total of 15 key genes were obtained after the intersection of 
1,832 single‑cell differentially expressed genes and 101 necroptosis‑related genes. (B) Heat map of correlation between key genes (red represents positive 
correlation, while blue represents negative correlation). (C) Heat map of expression of key genes in different cell types.
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to analyze the cellular heterogeneity of single‑cell data. After 
removing the cells with mitochondrial gene content >5%, 

feature number <500 and UMI >20,000, the cluster diagrams 
of 7  cell types in BC samples were obtained by UMAP 

Figure 4. Activity AUCell score of key genes. (A) AUCell score Uniform Manifold Approximation and Projection map based on key genes in breast cancer 
single‑cell data sets (color from black to red indicates score from low to high). (B) Enrichment of DEGs in biological process, cellular component and 
molecular function in Gene Ontology enrichment analysis. (C) Pathways enriched by DEGs in Kyoto Encyclopedia of Genes and Genomes pathway enrichment 
analysis. DEGs, differentially expressed genes.
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clustering (Fig. 2A). Then the expression of marker genes 
in different cell clusters of 7 single‑cell types was analyzed 

and shown by a bubble diagram (Fig. 2B). It was found that 
there were significant differences in marker genes' expression 

Figure 5. Analysis of new subtypes of CD4+ T cell clusters. (A) In total, 4 subtypes of CD4+ T cells were found by Uniform Manifold Approximation and 
Projection. (B) A total of 4 marker genes were highly expressed in their corresponding CD4+ T cell subtypes. (C) Heat map of the expression of key genes in 
the 4 CD4+ T cell subtypes (red indicates upregulated expression, while blue indicates downregulated expression). (D) CD4+ T cell subtype differentiation and 
development trajectory map (different colors represent different cell subtypes). (E) The sequence of differentiation and development of CD4+ T cell subtypes 
are CCL4 CD4+ T, ANXA1 CD4+ T, TCF7 CD4+ T and FASBP5 CD4+ T cells. (color from dark to light represents chronological order). (F) Pseudo‑sequential 
dynamic heat map of key genes expressed in CD4+ T cell subtypes (red indicates upregulated expression, while blue indicates downregulated of expression).
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Figure 6. Identification of breast cancer molecular subtypes based on key genes. (A) CDF function graph during the clustering process. (B) CDF change dia‑
gram during the clustering process. (C) The result of clustering was selected as k=3, which is represented by the clustering heat map. (D) Principal component 
analysis showed that the 3 molecular subtypes of breast cancer could be well distinguished. *P<0.05, **P<0.01 and ***P<0.001. (E) Immune infiltration of dif‑
ferent immune cells among 3 molecular subtypes of breast cancer. (F) Kaplan‑Meier survival curve of 3 breast cancer subtypes. CDF, Cumulative distribution 
function
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among different cell clusters (Fig. 2C‑K). At the same time, 
the expression differences among different cell populations 
were analyzed and the expression heat map of top 10 differ‑
ential genes was constructed (Fig. 2L). Next, the differences 
in the proportion of different cell groups in patients with BC 
were also analyzed. It was found that CD8+ T cells accounted 
for the highest proportion in BC samples, followed by B cells 
and regulatory T cells, while progenitor cells accounted for the 
lowest, and other cell types had a similar proportion (Fig. 2M).

Analysis of correlation and difference of NRGs. For the 
seven cell types that had been annotated, the function 
‘FindAllMarkers’ was used to calculate the differential genes 
among cell types, and a total of 1,832 scDEGs were selected 

based on |log2FoldChange|>0.25 and P<0.05. A total of 101 
NRGs were obtained in the literature (18). Then, the inter‑
section of NRGs and scDEGs was received (Fig. 3A) and 
15 key genes resulted for follow‑up research (BAX, BCL2, 
PPIA, IFNG, AIFM1, IFNAR2, VDAC1, HMGB1, CHMP5, 
PYCARD, VDAC3, CHMP7, BIRC3, EIF2AK2 and PARP1).

Through Pearson correlation analysis, it was found that 
there was a positive correlation in expression of most key 
genes, which indicated that there might be similar expression 
patterns of key genes in patients with BC (Fig. 3B). Among 
them, the correlation between CHMP7 and BIRC3 was the 
highest, while BIRC3 and PYCARD had the largest negative 
correlation. Finally, a heat map was used to demonstrate the 
expression of key genes in the cell populations (Fig. 3C).

Figure 7. Differences in expression of key genes in breast cancer subtypes. (A) Compared with subtypes 1 and 2, the expression of BAX was lower in subtype 3. 
(B) The expression of BCL2 was different among the 3 subtypes, and its expression in subtype 3 was the highest. (C) The expression of PPIA was different 
among the 3 subtypes, and its expression in subtype 2 was the highest. (D) The expression level of IFNG in subtype 1 was significantly higher than that in 
subtypes 2 and 3. (E) Compared with subtypes 1 and 3, the expression of AIFM1 in subtype 2 was higher. (F) The expression of IFNAR2 in the 3 subtypes 
decreased in turn, and the difference was statistically significant. (G) VDAC1 was highly expressed in subtype 2. (H) The expression level of HMGB1 in 
subtype 3 was lower than that in subtypes 1 and 2. (I) CHMP5 was differentially expressed among the 3 subtypes, and its expression was the highest in 
subtype 3. (J) The expression of PYCARD in subtype 2 was reduced in a statistically significant manner. (K) The expression of VDAC3 in subtype 2 was 
significantly higher than that in subtypes 1 and 3. (L) The expression of CHMP7 in subtype 2 was significantly lower than that in subtypes 1 and 3. (M) BIRC3 
was differentially expressed among the 3 subtypes, and the highest expression was found in subtype 1. (N) The expression level of EIF2AK2 in the 3 subtypes 
decreased in turn, which was statistically significant. (O) The expression level of PAR1 in subtype 3 was lower than that in subtypes 1 and 2.
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Key genes AUCell score. In order to verify the activity of key 
genes in different cell types, AUCell packages were used to 
demonstrate the activity of key genes in BC samples of single‑cell 
data sets with UMAP maps (Fig. 4A). Through the UMAP map, 
it was found that CD4+ T cells had higher AUCell scores, there‑
fore CD4+ T cells were defined as high‑scoring cells with NRGs.

In order to explore whether there were significant differ‑
ences in genes between high‑scoring cell population and 
other cell populations, CD4+ T cells were selected as a refer‑
ence, using the function ‘FindAllMarkers’, and 499 DEGs 
were screened for GO and KEGG enrichment according 
to the standard of |log2FC|>0.5 and P<0.01. GO analysis 
revealed that DEGs were mainly related to T cell activa‑
tion and regulation of T cell activation (Fig. 4B). KEGG 
analysis demonstrated that DEGs were related to T  cell 
receptor signaling pathway, Th17 cell differentiation and 
PD‑L1 expression and PD‑1 checkpoint pathways in cancer 
(Fig. 4C). These results suggested that NRGs were highly 

active in CD4+ T cells and might be involved in the activation 
of CD4+ T cells.

Analysis of new subtypes of CD4+ T cell cluster. In order to 
explore new subtypes of CD4+ T cells, CD4+ T cell clusters 
were clustered and four CD4+ T cell subtypes were obtained, 
which were then annotated with significantly upregulated 
DEGs, resulting in ANXA1 CD4+ T, CCL4 CD4+ T, FASBP5 
CD4+ T and TCF7 CD4+ T cells (Fig. 5A). For these four CD4+ 
T cell subtypes, the function ‘FindAllMarkers’ was used to 
calculate the marker genes between them, and a violin map 
was employed to show the expression of marker genes in each 
subtype (Fig. 5B). To verify whether there was a difference in 
the expression of key genes among subsets of CD4+ T cells, 
a heat was used map to demonstrate the results. It was found 
that there was no difference in the expression of the majority 
of key genes' subsets; only the expression of BAX2 was lower 
in CCL4 CD4+ T cells (Fig. 5C). Subsequently, pseudotime 

Figure 8. Construction of a prognostic risk model. (A) Univariate Cox regression analysis demonstrated that 5 genes, including BCL2, BIRC3, AIFM1, IFNG 
and VDAC1 were associated with the prognosis of patients with breast cancer. (B) Association between the selected features and the absolute value of the 
coefficient value. (C) In The Cancer Genome Atlas dataset, the survival rate of patients in the high‑risk group was lower than that in the low‑risk group. 
(D) Kaplan‑Meier survival curve of the Least Absolute Shrinkage and Selection Operator Prognostic Model in the Gene Expression Omnibus dataset.
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analysis was used to show the developmental trajectory of 
CD4+ T cells, and the results revealed that the developmental 
trajectories among the subtypes were CCL4 CD4+ T, ANXA1 
CD4+ T, TCF7 CD4+ T and FASBP5 CD4+ T cells (Fig. 5D 

and E). To analyze the changes in the expression of NRGs in 
the developmental trajectory, the expression of key genes was 
illustrated by heat maps (Fig. 5F). The expression of PYCARD, 
IFNG, CHMP5, BAX, HMGB1, VDAC3, EIF2AK2 and other 

Figure 9. Constructing a nomogram and calibration curve for prognostic analysis of patients with BC based on the TCGA dataset. (A) Univariate Cox analysis 
showed that T‑, N‑ and M‑stage, and riskScore were risk factors for prognosis. (B) Multivariate Cox analysis showed that N‑ and M‑stage, and riskScore were 
independent risk factors for prognosis. (C) Nomogram of clinical features. (D‑F) Calibration curve at (D) 1, (E) 3 and (F) 5 years of the Cox regression model 
in TCGA‑BC dataset. BC, breast cancer; TCGA, The Cancer Genome Atlas; OS, overall survival.
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Figure 10. TCGA dataset Immune Infiltration Analysis of The Cancer Genome Atlas dataset. (A) Correlation analysis between prognosis genes (n=5) and 
immune cells (blue represents negative correlation, while red represents positive correlation, and the color from light to dark represents the correlation from 
weak to strong). (B) Panorama of infiltration of 22 immune cells types between BC high‑ and low‑riskScore groups. (C) Correlation analysis between immune 
score and immune cells (blue represents negative correlation, while red represents positive correlation, and the color from light to dark represents the correla‑
tion from weak to strong). (D) Infiltration boxplot of 22 immune cells types between BC high‑ and low‑riskScore groups. **P<0.01 and ***P<0.001. BC, breast 
cancer.
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genes was found to be downregulated during the develop‑
ment of CD4+ T cell subtypes, while the expression of BCL2, 
PPIA, PARP1, VDAC1, AIFM1, BIR3 and other genes was 
upregulated. This suggested that NRGs could regulate the 
development of CD4+ T cell subtypes.

Identification of BC molecular subtypes based on key genes. 
The aforementioned 15 key genes were employed as feature 
genes to carry out consistent clustering analysis of the samples 
in the TCGA‑BC dataset. The process of selecting the k‑value of 
the cluster is shown in Fig. 6A, and k=3 was selected as the result 
of clustering (Fig. 6B). The BC samples were divided into three 
disease subtypes: Subtype 1, 2 and 3. The clustering results were 
demonstrated by heat maps (Fig. 6C). PCA could distinguish 
different subtypes to a certain extent, indicating that there was a 
certain heterogeneity between different subtypes (Fig. 6D).

Single‑sample Gene Set Enrichment Analysis was used 
to evaluate the differences in immune cells between BC 
molecular subtypes (Fig. 6E). The results revealed that the 
degree of immune cell infiltration in BC subtypes from high 
to low was subtypes 3, 1 and 2. Survival differences were 

then compared among the three molecular subtypes and 
illustrated with a KM survival curve (Fig. 6F). It was found 
that the survival rate of subtypes 1 and 3 was higher than that 
of subtype 2 (P<0.0001), which was consistent with a higher 
degree of immune cell infiltration and improved prognosis in 
these subtypes.

Differential expression of key genes in BC subtypes. The 
expression of key genes among different subtypes is shown with 
a box chart. The results identified that BAX, IFNG, IFNAR2, 
HMGB1, CHMP7, BIRC3, EIF2AK2 and PARP1 were most 
highly expressed in subtype 1 (Fig. 7A, D, F, H, L, M, N and 
O, respectively). The expression of PPIA, AIFM1, VDAC1 and 
VDAC3 was the highest in subtype 2 (Fig. 7C, E, G and K). 
BCL2, CHMP5 and PYCARD were most highly expressed 
in subtype 3 (Fig. 7B, I and J). This suggested that different 
subtypes could be distinguished by the expression level of key 
genes, and the prognosis of patients could be predicted.

Construction of a prognostic risk model based on key genes. To 
determine the prognostic genes of BC and analyze their diag‑

Figure 11. Mutation Analysis Based on somatic mutation dataset and The Cancer Genome Atlas datasets. (A) Top20 mutated genes in the high‑risk 
group. (B) Top20 mutated genes in the low‑risk group. (C) Boxplot of expression differences of human leukocyte antigen family genes between high‑ and 
low‑riskScore groups. ***P<0.001.
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nostic ability for diseases, based on 15 key genes (BAX, BCL2, 
PPIA, IFNG, AIFM1, IFNAR2, VDAC1, HMGB1, CHMP5, 
PYCARD, VDAC3, CHMP7, BIRC3, EIF2AK2 and PARP1), in 
the TCGA‑BC datasets, univariate Cox regression analysis was 
first used to screen prognostic genes, and 5 genes were screened 
according to the criterion of P<0.05 (Fig. 8A). These 5 genes 
(BCL2, BIRC3, AIFM1, IFNG and VDAC1) in the model were 
identified as potential prognostic genes of BC by LASSO regres‑
sion (Fig. 8B). According to the Cox risk regression coefficient of 
the 5 genes, the riskScores of each sample were calculated. The 
samples were divided into two groups by the cut‑off provided by 
the R package ‘maxstat’, including 440 samples in the high‑risk 
group and 599 samples in the low‑risk group. According to the 
aforementioned grouping, survival analysis was conducted and 
a survival curve was drawn. In the LASSO prognostic model, 
the survival rate of the high‑risk group was lower than that of 
the low‑risk group (P<0.0001) (Fig. 8C).

Next, the prognosis model was validated with GEO 
datasets and a survival curve was generated through survival 
analysis. In contrast to the aforementioned results, the 
survival rate in the high‑risk group was higher than that in 
the low‑risk group (P<0.042) (Fig. 8D). This contradictory 
result may be caused by the heterogeneity between datasets 
and the differences in sample characteristics. Finally, the 
Receiver Operating Characteristic (ROC) curve was drawn 
and the AUC was calculated to verify the model. The results 
revealed that the AUC of TCGA‑BC dataset was 0.595 
(Fig. S1A), which had a certain prediction effect, while the 
AUC of GEO datasets was 0.457 (Fig. S1B), indicating that 
its prediction effect was poor.

Construction of a nomogram for patients with BC based on 
riskScores. Univariate and multivariate Cox regression analysis 
was performed based on the TCGA‑BC dataset according to the 
patients' TNM stage, sex, age and riskScore. In univariate Cox 
regression, age, T‑stage, N‑stage, M‑stage and riskScore had a 
significant influence on OS (P<0.001) (Fig. 9A), while only age, 
N‑stage and riskScore had a significant effect in multivariate 
Cox regression (P<0.001) (Fig. 9B). A nomogram was also 
drawn using the ‘rms’ package (Fig. 9C). The 1‑, 3‑ and 5‑year 
survival probabilities of patients with BC were predicted by 
drawing 1‑ (Fig. 9D), 3‑ (Fig. 9E) and 5‑year calibration curves 
(Fig. 9F). The results demonstrated that the 5‑year nomogram 
model was the most consistent with the ideal model, and other 
nomogram models were essentially equal to the ideal model, 
indicating that the present model was relatively accurate.

Immune infiltration analysis. First, the correlation between 5 
prognostic genes (BCL2, BIRC3, AIFM1, IFNG and VDAC1) 
and 22 types of immune cells was analyzed and visualized 
using CIBERSORT in the BC dataset (Fig. 10A). The posi‑
tive correlation between IFNG and M1 macrophages was the 
highest (r=0.65, P=1.6x10‑125), while the negative correlation 
between IFNG and M2 macrophages was the highest (r=‑0.29, 
P=5.1x10‑22). The infiltration panorama of 22 types of immune 
cells in each sample was next mapped (Fig. 10B). Finally, 
the ImmuneScore, StromalScore and EstimateScore in each 
sample were calculated by the ESTIMATE algorithm, and the 
correlation between each score and 22 types of immune cells 
was analyzed and visualized (Fig. 10C). The highest positive 
correlation was between ImmuneScore and M1 macrophages 

Figure 12. Correlation analysis of prognostic genes and immune checkpoints. Pearson correlation coefficient between prognostic genes and immune check‑
point genes.
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(r=0.5, P=7.7x10‑66). Finally, the differences in immune infil‑
tration between high‑ and low‑risk groups were shown as box 
plots (Fig. 10D). The results revealed that the infiltration of 
plasma cells, activated NK cells, M0 and M2 macrophages 
and eosinophils in the high‑risk group was significantly higher 
than that in the low‑risk group. However, compared with the 
high‑risk group, the low‑risk group had a higher degree of 
infiltration of naive B, CD8+ T cells, memory resting CD4+ 
T cells, memory activated CD4+ T cells and follicular helper 
T cells, as well as M1 macrophages and other immune cells.

Somatic mutation analysis and differential expression 
analysis of HLA family genes. According to the risk score of 
the aforementioned model, the total BC samples in the somatic 
mutation dataset were divided into high‑ and low‑risk group, 
and the characteristics of various mutations in different groups 
were analyzed. The top 20 mutated genes in the high‑ and 
low‑risk groups were analyzed (Fig. 11A and B), and it was 
found that there were differences in gene mutations in the two 
groups. The gene with the highest mutation frequency in the 
high‑risk group was TP53, while in the low‑risk group it was 
PIK3CA. The differential expression of HLA family genes in 
the high‑ and low‑risk groups of TCGA‑BC dataset was also 
analyzed. As revealed in Fig. 11C, various HLA molecules 
were upregulated in the low‑risk group.

Correlation analysis of prognostic genes and immune 
checkpoints. The constructed LASSO model produced 5 BC 
prognostic genes (BCL2, BIRC3, AIFM1, IFNG and VDAC1), 

and 47 ICGs were obtained by consulting the literature (19). By 
calculating the Pearson correlation coefficient between the two, 
correlations of prognostic genes with immune checkpoints were 
obtained (Fig. 12). Among them, IFNG had the highest posi‑
tive correlation with IDO1 and ICOS (r=0.79 and P=2.4x10‑232; 
r=0.79 and P=4.9x10‑237, respectively), while BCL2 had the 
highest negative correlation with TNFSF9 (r=0.34, P=1.3x10‑30).

Validation of the expression validation of prognostic genes. The 
mRNA expression of 5 prognostic genes (BCL2, BIRC3, AIFM1, 
IFNG and VDAC1) in the human BC cell lines MDA‑MB‑231 
and MCF‑7 and the human breast epithelial cell MCF‑10A 
was detected by RT‑qPCR. The results showed that, compared 
with MCF‑10A, BCL2, BIRC3, AIFM1, IFNG and VDAC1 
were significantly higher in the aforementioned BC cell lines 
(Fig. 13A‑E) (P<0.05). Although the expression of BCL2 and 
BIRC3 in MCF‑7 cells was higher than that in MCF‑10A, there 
was no statistical significance (P>0.05). This suggested that the 
expression of BCL2 and BIRC3 genes may be related to BC types.

Discussion

It is well known that BC is a highly heterogeneous class of cancer, 
and the prognosis and treatment response of patients with different 
molecular characteristics vary greatly (25). Single‑cell RNA‑seq 
is an advanced method for studying the cellular heterogeneity of 
the TME in various cancer types (26). Necroptosis is involved 
in the immune response and TME, and the benefits of activa‑
tion of necroptosis pathways combined with immune checkpoint 

Figure 13. Verification of BCL2, BIRC3, AIFM1, IFNG, VDAC1 expression in MDA‑MB‑231, MCF‑7 and MCF‑10A cells. (A‑E) mRNA expression level of 
(A) BCL2, (B) BIRC3, (C) AIFM1, (D) IFNG and (E) VDAC1 in MDA‑MB‑231, MCF‑7 and MCF‑10A cells. *P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001. 
ns, not significant.
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blockade have been demonstrated in a recent study  (27). At 
present, the risk model of NRGs in BC and the potential ability to 
predict prognosis has not been elucidated at the single‑cell level.

The present study identified a prognostic model 
containing 5 NRGs (BCL2, BIRC3, AIFM1, IFNG and 
VDAC1) at the single‑cell level. Univariate Cox regres‑
sion analysis showed that BCL2, BIRC3 and IFNG were 
protective factors, while AIFM1 and VDAC1 were risk 
factors. Among them, the BCL2 protein family could induce 
apoptosis and necroptosis (28). BCL2 is overexpressed in 
BC, and is an independent and powerful protein marker for 
favorable prognosis of early BC, which is not associated with 
time or adjuvant therapy (29). Therefore, BCL2 is the most 
potential therapeutic target. Currently, the mimic compound 
ABT‑199 for BCL2, in combination with tamoxifen, showed 
a clinical benefit rate of 75% in a phase Ib/II clinical trial in 
ER+ BC (30,31). BC is one of the tumor types where BIRC3 
has not yet been fully characterized. In the majority of cases, 
BIRC3 is regarded as an oncogene with antiapoptotic func‑
tions; however, in BC, BIRC3 does not regulate any pathway 
of apoptosis (32). A recent study by Zhou et al (33) showed 
that BIRC3 was highly expressed in BC, and its high expres‑
sion was associated with favorable prognosis. The dual 
function of BIRC3 may depend on the type of cancer and/or 
the molecular subtype of BC. Thus, this gene needs to be 
further studied to clarify its role in BC. IFNG is the only type 
II IFN cytokine that can induce necroptosis by activating 
RIP1 serine‑threonine kinase to exert antitumor effects (34). 
Previous studies have revealed that high expression of IFNG 
has a survival advantage over low expression in patients with 
BC and cervical cancer (35,36), which shows that IFNG is a 
protective factor, which is consistent with the results of the 
present study. AIFM1 is not only a risk gene for the prog‑
nosis of BC, but also promotes the occurrence of cervical 
cancer (37,38). This suggests that inhibiting the expression 
of AIFM1 is beneficial to the prognosis of patients with BC. 
Fang et al (39) reported that overexpressed VDAC1 in BC 
could be used as a new biomarker for diagnosis. VDAC1 is 
an independent factor for predicting poor prognosis. VDAC1 
may inhibit tumor immunity and may be a new therapeutic 
target for BC. Compared with the prediction ability of a 
single gene, the comprehensive prediction efficiency of 5 
genes for BC is higher. As a result, the combination of these 
genes may have an unexpected effect in optimizing the prog‑
nostic assessment strategy of BC.

Necroptosis participates in the immune response in two 
ways: On one hand, tumor cells release damage‑associated 
molecular patterns to dendritic cells after necroptosis to trigger 
antigen presentation and activate CD8+ T cells (27). On the 
other hand, it has been reported that RIPK1 and RIPK3 can 
directly regulate the function of NK cells independently of the 
necroptosis pathway, and play a role in promoting antitumor 
immune responses (40). The present study showed that NRGs 
were highly active in CD4+ T cells and differentially expressed 
in the developmental trajectory of the four subtypes of cells. 
This suggests that NRGs may be involved in the differentiation 
and development of CD4+ T cells, thus affecting the function 
of CD4+ T cells. Kwok et al (41) identified that necroptosis was 
involved in CD4+ T cell‑mediated microvascular endothelial 
cell death and chronic cardiac allograft rejection. In cancer, 

there is a lack of research on necroptosis and CD4+ T cells. 
Furthermore, in addition to M1 macrophages, activated CD4+ 
T cells had the highest immuneScore. This indicated that CD4+ 
T cells have more immune components and can play an impor‑
tant role in immunotherapy. The present results suggested 
that NRGs may become an effective molecule to improve the 
antitumor immune function of CD4+ T cells; however, further 
research is still needed to confirm.

Immune infiltration in the TME has an important influence 
on the clinical features and prognosis of BC (42). The current 
study was divided into high‑ and low‑risk groups according to 
the median risk score, and the results suggested that immune 
cell infiltration in the low‑risk group was higher than that in 
the high‑risk group. Patients in the low‑risk group had a higher 
OS than those in the high‑risk group. In BC, high immune 
infiltration has been associated with improved clinical 
outcome (43), which is consistent with the present findings. 
Groups with high immune infiltration may benefit to a greater 
extent from immunotherapy (44). This suggests that patients 
in the low‑risk group are more sensitive to immunotherapy. 
In addition, 5 prognostic genes were correlated with multiple 
immune checkpoints such as IDO1 which may lead to new 
targets for BC immunotherapy.

The present study has several limitations, including: i) The 
differentiation role of NRGs in CD4+ T cells requires further 
experimental research, which will be the authors' next research 
plan; ii) it lacks mechanism and animal experiments to verify 
the regulatory mechanism of necrotizing apoptosis‑related 
genes in BC, which will be further explored in the future; 
iii)  there is insufficient number of patients in the external 
clinical cohort, and large‑scale clinical trials are therefore 
required to verify the accuracy of the results; and iv) there are 
multiple datasets, which may cause inter‑batch differences that 
cannot be avoided and removed during analysis.

In conclusion, the present study successfully established 
an NRG signature based on BCL2, BIRC3, AIFM1, IFNG and 
VDAC1 at the single‑cell level, and explored the association 
between risk model and immune infiltration. Secondly, the 
current study found that NRGs were involved in the differ‑
entiation and development of CD4+ T cells. These findings 
pointed novel ways of BC prognosis estimation and potential 
immunotherapy strategies.
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