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Sirtuin 5 (SIRT5) is a member of the family of NAD+-dependent lysine/histone

deacetylases. SIRT5 resides mainly in the mitochondria where it catalyzes deacetylation,

demalonylation, desuccinylation, and deglutarylation of lysine to regulate metabolic

and oxidative stress response pathways. Pharmacologic inhibitors of SIRT5 are under

development for oncologic conditions, but nothing is known about the impact of SIRT5

on antimicrobial innate immune defenses. Using SIRT5 knockout mice, we show that

SIRT5 deficiency does not affect immune cell development, cytokine production and

proliferation by macrophages and splenocytes exposed to microbial and immunological

stimuli. Moreover, preclinical models suggest that SIRT5 deficiency does not worsen

endotoxemia, Klebsiella pneumoniae and Streptococcus pneumoniae pneumonia,

Escherichia coli peritonitis, listeriosis, and staphylococcal infection. Altogether, these data

support the safety profile in terms of susceptibility to infections of SIRT5 inhibitors under

development.
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INTRODUCTION

Innate immune cells such as monocytes/macrophages, neutrophils and dendritic cells (DCs)
express pattern recognition receptors (PRRs) that mediate the sensing of microbial associated
molecular patterns (such as endotoxin, lipoproteins, peptidoglycans, glucans, mannans, and nucleic
acids) and danger-associated molecular patterns released by injured or infected cells. PRRs
encompass Toll-like receptors (TLRs), C-type lectin receptors, NOD-like receptors, RIG-I-like
receptors, and cytosolic DNA sensors (1, 2). Upon ligand sensing, PRRs initiate intracellular
signaling cascades remodeling host transcriptome to promote cytokine/chemokine production and
the development of antimicrobial effector mechanisms. Innate immune responses have to be tightly
regulated to avoid imbalanced life-threatening immune responses.

Sirtuins belong to the highly conserved family of NAD+-dependent lysine/histone deacetylases
(HDACs). The seven mammalian sirtuins (SIRT1-7) are characterized by their domain
organization, enzymatic activity and subcellular nuclear, nucleolar, cytoplasmic or mitochondrial
localization. Sirtuins catalyze enzymatic reactions beyond deacetylation, and can function as
ADP-ribosyltranferase, demyristolase, decrotonylase, desuccinylase, deglutarylase, demalonylase,
deformylase, and demyristolase (3–7). Proteome analyses identified thousands of targets of
sirtuins, and sirtuins have been involved in the regulation of many biological functions and
pathological processes. Sirtuins are promising therapeutic targets for metabolic, cardiovascular,
neurodegenerative, and oncologic diseases (3–7).
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SIRT5 is one of the least characterized sirtuins. SIRT5 belongs,
together with SIRT3 and SIRT4, to the so-called mitochondrial
sirtuins. SIRT5 also localizes into the cytoplasm (8). SIRT5 was
initially shown to deacetylate carbamoyl phosphate synthase
(CPS1) to promote urea cycle (9). SIRT5 is a weak deacetylase
and recent data suggest that SIRT5 primarily performs lysine
demalonylation, desuccinylation, and deglutarylation (10, 11).
SIRT5 desuccinylates and deglutarylates CSP1 to increase
ammonia detoxification and desuccinylates 3-hydroxy-3-
methylglutaryl-CoA synthase 2 to increase ketogenesis (10–12).
SIRT5 desuccinylates succinate dehydrogenase and pyruvate
dehydrogenase to repress cellular respiration and activates
superoxide dismutase 1 and isocitrate dehydrogenase 2 through
desuccinylation and glucose-6-phosphate dehydrogenase
through deglutarylation. In this way, SIRT5 regulates NADPH
homeostasis, scavenges reactive oxygen species (ROS), and
increases resistance to oxidative stress (8, 13, 14). A malonylome
analysis in liver identified gluconeogenesis and glycolysis as
the most enriched pathways regulated by SIRT5 (15), while
succinylome analyses of heart and liver identified fatty acid
oxidation (FAO), amino acid metabolism and TCA cycle
(8, 12, 16). Overall, SIRT5 is emerging as a key regulator of
metabolism. SIRT5 protects from cardiac dysfunctions and
dextran sulfate sodium-induced colitis and promotes or restricts
cancer growth depending of the context (16–18). Thus, SIRT5 is
a potential therapeutic target for several pathological conditions.
Efforts are currently devoted to the generation of SIRT5
inhibitors such as thiosuccinyl peptides, cyclic pentapeptide
harboring a central N(ε)-carboxyethyl-thiocarbamoyl-lysine
residue and 3-arylthiosuccinylated and 3-benzylthiosuccinylated
peptide derivatives (19–21) for specific cancer types (18, 22).

The impact of SIRT5 on antimicrobial host defenses is
unknown; which is an important missing piece considering
the clinical development of SIRT5 inhibitors. Using SIRT5
knockout mice, we show that SIRT5 deficiency has no major
impact on immune cell development and on the response
of macrophages and splenocytes to microbial stimulation.
Going well along with these observations, preclinical models
revealed that SIRT5 knockout mice are not particularly sensitive
to endotoxemia, Klebsiella pneumoniae and Streptococcus
pneumoniae pneumonia, Escherichia coli peritonitis, listeriosis
and staphylococcal infection. Up to now, these data support the
assumption that SIRT5 inhibitors should not increase patients’
susceptibility to infections.

MATERIALS AND METHODS

Ethics Statement
Animal experimentation was approved by the Service de la
Consommation et des Affaires Vétérinaires of Canton de Vaud
(Epalinges, Switzerland) under authorizations n◦VD 3287, 876.8,
876.9, 877.8, and 877.9 and performed according to Swiss and
ARRIVE guidelines.

Mice, Cells and Reagents
Experiments were performed using 8 to 12-week-old C57BL/6J
mice (Charles River Laboratories, Saint-Germain-sur-l’Arbresle,

France) and SIRT5 knockout mice (kindly provided by Prof
Johan Auwerx, Ecole Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland) backcrossed 7 times on a C57BL/6J
background (23). Mice were housed (12 h light/dark cycle, 22◦C,
70% humidity) under specific pathogen-free conditions in the
animal facility of the Centre des Laboratoires d’Epalinges (CLE,
Epalinges, Switzerland, license number VD-H04). Colonies were
free of mouse norovirus and mouse hepatitis virus infections.
Mice were fed with γ-irradiated food (Global Rodent XP
18, Provimi Kliba AG, Kaiseraugst, Switzerland) and water
ad libitum. Mice were transferred in a BSL2 unit to perform in
vivomodels of infection.

Bone marrow-derived macrophages (BMDMs) and
splenocytes were obtained and cultured as described (24, 25).
For experiments, cells were seeded in complete medium without
growth factors and antibiotics (1 or 20 × 105 cells in 96 or
6-well plates). Stimuli were Salmonella minnesota ultra pure LPS
(InvivoGen, San Diego, CA), Pam3CSK4 (EMCmicrocollections,
Tübingen, Germany), CpG ODN 1826 (CpG, InvivoGen),
toxic shock syndrome toxin-1 (TSST-1, Toxin Technology,
Sarasota, FL), concanavalin A (Sigma-Aldrich, St. Louis, MI),
anti-CD3ε, and anti-CD28 antibodies (clones 145-2C11 and
37.51, eBioscience, San Diego, CA) and phorbol-12-myristate-
13-acetate (PMA) plus ionomycin (Sigma-Aldrich) or bacteria.
Clinical strains of E. coli O18, S. aureus AW7, K. pneumoniae, S.
pneumoniae, and L. monocytogenes 10403s were grown in brain
heart infusion broth (BD Biosciences, Erembodegem, Belgium),
washed in 0.9% NaCl and adjusted at 109-1010 CFU/ml (26–29).
Bacteria were heat-inactivated for 2 h at 56◦C for in vitro use.

Flow Cytometry Analyses
Single cell suspensions from thymus and spleen were enumerated
and incubated with 2.4G2 monoclonal antibody (mAb) (30).
Cells were stained using mAbs listed in Table S1. Data were
acquired using a LSR II flow cytometer (BD Biosciences) and
analyzed using FlowJo Version 10.2 software (FlowJo LLC,
Ashland OR) (31).

Western Blot Analyses
Protein extracts were submitted to PAGE and transferred onto
nitrocellulose membranes (32–34). Membranes were incubated
with antibodies directed against SIRT5 (8782, 1:1,000, Cell
Signaling Technology, Danvers, MA) or β-actin (4967S, 1:1,000,
Cell Signaling Technology) and then with a secondary HRP-
conjugated antibody (31460, 1:10,000, Thermo Fisher, Waltham,
MA) (35). Blots were imaged with the ECL Western blotting
system (GE Healthcare, Little Chalfont, UK). Images were
recorded using a Fusion Fx system (Viber Lourmat, Collégien,
France) (36).

Metabolic Activity Measurements
The oxygen consumption rate (OCR, in pmole O2/minute)
and the extracellular acidification rate (ECAR, in mpH/minute)

were analyzed using a 96-well format Seahorse XFe
R©

system,
the Seahorse XF Cell Mito Stress Test Kit and the Seahorse
XF Glycolysis Stress Test Kit (Agilent Technologies, Santa
Clara, CA). Four × 104 BMDMs were plated in 96-well
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plates in complete IMDM medium. The next day, cells were
rested one hour in Seahorse medium with or without glucose.
Mitochondrial respiration was assessed by measuring OCR
following the addition of 1µM oligomycin (OM), 1µM FCCP
and 2µM antimycinA/1µM rotenone (AA/Rot). Glycolytic
function was assessed bymeasuring ECAR following the addition
of 10mM glucose, 1µMoligomycin and 50mM 2-deoxy-glucose
(2-DG).

RNA Analyses
Total RNA was isolated, reverse transcribed (RNeasy and
QuantiTect reverse transcription kits, Qiagen, Hilden, Germany)
and used in real-time PCR using Fast SYBR R© Green Master

Mix and a QuantStudio
TM

12K Flex system (Life Technologies,
Carlsbad, CA) as reported (24, 37). Samples were tested
in triplicate. Gene specific expression was normalized to
actin expression. Primers are listed in Table S2. Sirt5 mRNA
expression levels in organs were extracted from the BioGPS
resource (http://biogps.org).

Proliferation and Cytokine Measurements
The proliferation of splenocytes cultured for 48 h in 96-well plates
was quantified by measuring 3H-thymidine incorporation over
18 h (38). Cytokine concentrations were quantified using DuoSet
ELISA kits (R&D Systems, Abingdon, UK) (39). The viability,
assessed using the MTT assay (40), of resting and stimulated
SIRT5+/+ and SIRT5−/− BMDMs was not different.

In vivo Models
Mice were challenged intraperitoneally (i.p.) with 20 mg/kg LPS
or 4 × 102 or 3 × 104 CFU E. coli O18, intranasally (i.n.)
with 30 CFU K. pneumoniae or 1 × 106 CFU S. pneumoniae
and intravenously (i.v.) with 1.2 × 103 or 9 × 104 CFU L.
monocytogenes or 3 × 104 or 2 × 107 CFU S. aureus. Blood
was collected to quantify cytokines and bacteria (24). At least
once daily, body weight, severity score (graded from one to
five) and survival were registered (41). Animals were euthanized
when they met a severity score of four. Two operators performed
animal follow-up.

Statistical Analyses
Comparisons between different groups were performed by
analysis of variance followed by two-tailed unpaired Student’s
t-test. In vivo bacteria and cytokine data were analyzed using the
Mann-Whitney test. Survival curves were built using the Kaplan-
Meier method and differences were analyzed by the log-rank
sum test. All analyses were performed using PRISM (GraphPad
Software). P values were two-sided, and P < 0.05 was considered
to indicate statistical significance.

RESULTS

SIRT5 Deficiency Has No Major Impact on
the Development of Immune Cells
SIRT5 mRNA was ubiquitously expressed in organs, including
immune organs (bone marrow, lymph nodes, spleen, and
thymus). Highest levels were observed in brown adipose tissue,

heart and liver (Figure 1A). Germline Sirt5 knockout mice
[described in (23)] were used to address whether SIRT5-
deficiency affected immune cell development by analyzing
thymus and spleen cell contents. The absolute numbers of cells
in the thymus and the spleen of SIRT5+/+ and SIRT5−/−

mice were similar (Figure 1B). When compared to SIRT5+/+

mice, SIRT5−/− mice expressed normal proportions and absolute
numbers of CD4/CD8 double negative (DN), double positive
(DP), and single positive (SP) thymocytes (Figure 1C), such as
of DN1-DN4 subpopulations (CD25+CD44+, CD25−CD44+,
CD25+CD44−, and CD25−CD44−). SIRT5−/− mice expressed
normal proportions and absolute numbers of splenic CD3+ T
cells (SP, DN as well as CD4+ and CD8+ CD44lowCD62Lhigh

naïve and CD44highCD62Llow memory T cells), B cells (non-
IgD+/CD23+ immature B cells and IgD+CD23+ mature B cells)
and DCs (B220−CD11c+ conventional DCs and B220+CD11c+

plasmacytoid DCs) (Figure 1D). Overall, SIRT5 deficiency had
no impact on the development of the main T-cell, B-cell and DC
populations.

SIRT5 Deficiency Does Not Affect the
Response of Macrophages and
Splenocytes to Immune Stimulation
Macrophages are highly proficient at sensing microbial products
through TLRs and play a central role in anti-microbial host
defenses by orchestrating innate and adaptive immune responses
through the production of cytokines. Bone marrow derived
macrophages (BMDMs) expressed SIRT5 protein, albeit less
than liver. SIRT5 was undetectable in SIRT5−/− BMDMs
(Figure 2A). SIRT5−/− BMDMs showed a slight increased
oxygen consumption rate (OCR, readout of mitochondrial
activity, Figure 2B) and decreased acidification rate (ECAR,
readout of glycolytic activity, Figure 2C).

BMDMs were exposed to LPS, Pam3CSK4, CpG [i.e.,
TLR4, TLR1/TLR2, and TLR9 agonists (1, 2)] and heat killed
bacteria before measuring cytokine response. SIRT5+/+ and
SIRT5−/− BMDMs up-regulated likewise Tnf and Il6 mRNAs
(Figures 2D,E). Moreover, SIRT5+/+ and SIRT5−/− BMDMs
secreted similar levels of TNF and IL-6 in response to
LPS, Pam3CSK4, CpG, E. coli and S. aureus (Figures 2F,G).
In accordance with these results, SIRT5+/+ and SIRT5−/−

BMDMs expressed similar levels of Tlr1, Tlr2, Tlr4, and Tlr9
mRNA at baseline and upon exposure to LPS, Pam3CSK4,
and CpG (Figure 3, upper panels). Finally, SIRT5+/+ and
SIRT5−/− BMDMs cultured with medium, LPS, Pam3CSK4, and
CpG expressed comparable gene expression levels of CXCL1
(KC/GROα) and CXCL10 (IP10) chemokines, CD36 scavenger
receptor and CD40 costimulatory molecule (Figure 3, lower
panels).

To address further whether SIRT5 deficiency affected the
response of immune cells, the proliferation of SIRT5+/+

and SIRT5−/− splenocytes exposed to LPS, CpG, Pam3CSK4,
TSST-1, and anti-CD3/CD28 was assessed by 3H-thymidine
incorporation, (Figure 4A), while the production of IL-2 by
SIRT5+/+ and SIRT5−/− splenocytes exposed to TSST-1, anti-
CD3/CD28 and PMA plus ionomycin was measured by ELISA
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FIGURE 1 | SIRT5 deficiency does not affect immune cell development in thymus and spleen. (A) Sirt5 mRNA expression levels in a panel of mouse organs (extracted

from the BioGPS resource). (B) Total cell numbers per thymus and spleen of SIRT5+/+ and SIRT5−/− mice. (C,D) Percentages of T cell subpopulations in the

thymus (C) and of T cells, B cells and DCs subpopulations in the spleen (D) of SIRT5+/+ and SIRT5−/− mice. Data are means ± SD from one experiment performed

with three mice and are representative of two experiments. P > 0.5 for all conditions (B–D).

(Figure 4B). Neither proliferation nor IL-2 production was
modified by SIRT5 deficiency. Altogether, the results argued
against an important role of SIRT5 in controlling cytokine
production by macrophages exposed to TLR ligands and the
response of splenocytes to microbial and immune stimuli.

SIRT5 Deficiency Does not Affect
Endotoxemia and Does Not Worsen
Bacterial Infections
SIRT5+/+ and SIRT5−/− mice were subjected to endotoxemia
induced by an i.p. challenge with 20 mg/kg LPS. Consistent with
the results observed in vitro, TNF, and IL-6 concentrations in
blood collected 1 h (TNF) and 6 h (IL-6) after LPS challenge
were similar in SIRT5+/+ and SIRT5−/− mice (P = 0.2 and
0.4; Figure 5A). Accordingly, the mortality rates of SIRT5+/+

and SIRT5−/− mice were not significantly different (75% vs.
90%; P = 0.4; Figure 5B). To mimic clinical situations, we
then explored the impact of SIRT5-deficiency on host defenses
in models of infections induced by challenging mice with
K. pneumoniae and S. pneumoniae i.n., E. coli i.p. and L.
monocytogenes and S. aureus i.v.

In a non-severe model ofK. pneumoniae-induced pneumonia,
body weight loss was similar in the SIRT5+/+ and SIRT5−/−

groups (Figure 6A, left panel). Moreover, mouse survival was not
impaired by SIRT5 deficiency (SIRT5+/+ vs. SIRT5−/−: 77% vs.
100% survival; P= 0.1, Figure 6A, right panel). SIRT5 deficiency
did not worsen the outcome of mice in a quickly lethal model of
S. pneumoniae-induced pneumonia (Figure 6B). Two days post-
infection, the proportions of bacteremic mice (6/10 vs. 5/10) and
blood S. pneumoniae loads (SIRT5+/+ vs. SIRT5−/−: 4.1± 2.2×
103 CFU/ml vs. 4.8± 3.6× 103 CFU/ml; mean± SEM; P= 0.9)
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FIGURE 2 | SIRT5 deficiency does not affect TNF and IL-6 production by macrophages exposed to microbial stimuli. (A) SIRT5 protein expression in SIRT5+/+ and

SIRT5−/− BMDMs and SIRT5+/+ liver assessed by Western blotting. Full-length blots are presented in Figure S1. (B,C) Oxygen consumption rate (OCR, B) and

extracellular acidification rate (ECAR, C) of SIRT5+/+ and SIRT5−/− BMDMs. Data are means ± SD from one experiment performed with two mice. (D–G) SIRT5+/+

and SIRT5−/− BMDMs were exposed to LPS (10 ng/ml), Pam3CSK4 (10 ng/ml), CpG (2µg/ml), E. coli, and S. aureus (106 CFU/ml). Gene expression levels were

quantified by RT-PCR, normalized to actin levels, and expressed relative to SIRT5+/+ control set at one [(D): 1 h, (E): 4 h]. The concentrations of TNF (4 h) and IL-6

(18 h) in cell culture supernatants were quantified by ELISA (F,G). Data are means ± SD of triplicate samples from one experiment performed with three mice and are

representative of two-three experiments (A, D–G). P > 0.05 for all conditions.

were equivalent in the two groups. Accordingly, mortality rate
was not significantly different (100 vs. 89% mortality; P = 0.08).

In a model of acute peritonitis induced by E. coli, bacterial
dissemination into the blood (SIRT5+/+ vs. SIRT5−/−: 2.3 ±

1.3 × 108 CFU/ml vs. 3.8 ± 2.0 × 103 CFU/ml; mean ±

SEM; P = 0.4) and mortality rate (73 vs. 91%, P = 0.6) were
comparable using SIRT5+/+ and SIRT5−/− mice (Figure 6C,
plain lines). Upon challenge with a low inoculum of E. coli,
all SIRT5+/+ and SIRT5−/− mice survived (Figure 6C, dashed
lines). During acute listeriosis, SIRT5+/+ and SIRT5−/− mice
displayed similar bacteremia (SIRT5+/+ vs. SIRT5−/−: 4.1 ±

2.2 × 103 CFU/ml vs. 4.8 ± 3.6 × 103 CFU/ml; mean ± SEM,
P = 0.8) and survival rate (P = 0.9) (Figure 7A, plain lines). In
a model of sublethal listeriosis, the mortality rate of SIRT5+/+

and SIRT5−/− mice was not statistically different (SIRT5+/+ vs.
SIRT5−/−: 100% vs. 75% survival; P = 0.14, Figure 7A, dashed
lines). In a model of severe, systemic staphylococcal infection
(Figure 7B, plain lines), there was no difference in severity score,
body weight loss and survival (0 vs. 0%; P = 0.7) between

SIRT5+/+ and SIRT5−/− mice. Analogous to what observed
upon challenge with low inocula of K. pneumoniae, E. coli and
L. monocytogenes (Figures 6A,C, 7B), SIRT5+/+ and SIRT5−/−

mice were similarly resistant to sublethal staphylococcal
infection (Figure 7B, dashed lines) suggesting that SIRT5-
deficient mice are not particularly susceptible to bacterial
infections.

DISCUSSION

This is the first report of the impact of SIRT5 on antimicrobial
host defenses. In vitro studies usingmacrophages and splenocytes
and preclinical models of endotoxemia and Gram-positive
and Gram-negative bacteria infections suggest that SIRT5
deficiency has no major impact on antibacterial defenses.
These observations are particularly relevant in light of the
development of pharmacological inhibitors of SIRT5 for clinical
applications (42).
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FIGURE 3 | SIRT5 deficiency does not affect macrophage response to microbial stimulation. SIRT5+/+ and SIRT5−/− BMDMs were exposed for 1 h to LPS

(10 ng/ml), Pam3CSK4 (10 ng/ml) and CpG (2µg/ml). Gene expression levels were quantified by RT-PCR, normalized to actin levels, and expressed relative to

SIRT5+/+ control set at one. Data are means ± SD of triplicate samples from one experiment performed with three mice. P > 0.05 for all conditions.

FIGURE 4 | SIRT5 deficiency does not affect proliferation of and IL-2

production by splenocytes. SIRT5+/+ and SIRT5−/− splenocytes were

incubated for 48 h with LPS (5µg/ml), CpG (2µg/ml), Pam3CSK4 (5µg/ml),

TSST-1 (2µg/ml), anti-CD3/CD28 antibodies (1µg/ml) and PMA + ionomycin

(PMA/iono, 10 ng/ml/100 ng/ml). (A) Proliferation was measured by
3H-thymidine incorporation. (B) IL-2 concentrations in cell culture

supernatants were quantified by ELISA. Data are means ± SD of one

experiment performed with three mice and are representative of two

experiments. P > 0.05 for all conditions.

SIRT5 deficiency neither affects the development of the major
T cells, B cells and DCs subsets in thymus and spleen nor the
proliferation and the production of IL-2 by splenocytes. Similar
observations were obtained using SIRT2−/−and SIRT3−/− mice
(43, 44). In SIRT1-deficientmice, CD4+, CD8+, and CD4+CD8+

thymic subpopulations were normal but highly sensitive to DNA-
damaging ionizing radiation (45). Circulating T cell, B cell
and monocyte counts were normal in 5 months old SIRT7−/−

mice that developed inflammatory cardiomyopathy (46). SIRT6-
deficent mice developed, after 2 weeks of life, a progeroid
syndrome associated with decreased lymphocyte counts in
thymus and spleen. However, lymphocyte flaw was not cell-
intrinsic but linked to systemic defects (47). Overall sirtuins do
not seem to affect the development of adaptive immune cells.
Yet, SIRT1 was reported to influence T-helper (Th) 2, Th9,
Th17 and T-regulatory (Treg) responses and SIRT3 to sustain
the suppressive function of Tregs (48–52). Thus, it would be
interesting to define whether SIRT5 shapes T cell responses.

SIRT5 influences diverse metabolic pathways in cardiac and
hepatic cells, including urea cycle, amino acid metabolism,
the TCA cycle, FAO, glycolysis and oxidative stress
response (7–16). SIRT5−/− BMDMs showed a modest
increased mitochondrial activity and decreased glycolytic
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FIGURE 5 | SIRT5 deficiency does not affect endotoxemia. SIRT5+/+ and SIRT5−/− female mice were injected i.p. with 20 mg/kg LPS (n = 8 and 10 mice per

group). (A) TNF and IL-6 concentrations in blood collected 1 h (TNF) and 6 h (IL-6) after LPS challenge. P = 0.2 and 0.4. (B) Survival of mice. P = 0.4.

activity, suggesting that SIRT5 may be less influential in
macrophages than in heart and liver (8, 15). Correlatively,
SIRT5 mRNA and protein were expressed at much lower
levels in immune organs [our data and (9)] and in
primary macrophages than in liver and heart (5 and 10-
fold less SIRT5 mRNA in BMDMs than in liver and heart,
respectively).

SIRT5 deficiency had no major impact on LPS-induced
cytokine production by macrophages and circulating TNF and
IL-6 levels were similar in SIRT5+/+ and SIRT5−/− endotoxemic
mice. SIRT5-deficient mice under high fat diet, a condition
inducing inflammation and oxidative stress, showed normal
metabolic parameters and signs of inflammation attested by
Tnf, Cd68 (a monocyte/macrophage marker) and Cd36 (a
scavenger receptor) gene expression in the liver (23). Two recent
studies analyzed the impact of SIRT5 deficiency on mouse
macrophage response to LPS, leading to opposite conclusions.
SIRT5−/− peritoneal macrophages produced reduced levels of
TNF, IL-6, and MCP-1 (monocyte chemoattractant protein-
1/CCL2). SIRT5 competed with SIRT2 to interact with NF-κB
p65. Since SIRT2 deacetylates p65 to inhibit its transduction
activity, SIRT5 indirectly promoted p65 acetylation and activity
(53). In sharp contrast, LPS-stimulated SIRT5−/− BMDMs
expressed increased levels of Tnf, Il1b, and Il6 mRNA but not
Il10 mRNA. SIRT5 desuccinylated PKM2 (pyruvate kinase M2),
promoting tetramer-to-dimer transition and inhibiting pyruvate
kinase activity of PKM2. In that study, SIRT5 deficiency protected
from DSS-induced colitis. The inconsistency of the impact
of SIRT5 on inflammatory responses echoes those reported
for SIRT1, SIRT2, SIRT3, and SIRT6 in vitro and in vivo
[discussed in (43, 44)]. Differences in experimental conditions
(BMDMs vs. peritoneal macrophages, germline vs. cell-type
specific gene knockout, use of si/shRNA and pharmacological
modulators of sirtuins) and subtle variations in qualitative and
quantitative caloric input and NAD+ availability may explain
these differences. Additionally, the length of stimulation and
the doses of stimulus [10 ng/ml of ultra-pure LPS here vs.
100 ng/ml of crude LPS in (17) and (53)] may have affected

the results. It should also be stressed that SIRT5 deficiency
was obtained by disruption of exon 4 in the case of the mice
used in this study (23), while exons 2–5 were deleted in the
SIRT5 knockout mice available from the Jackson Laboratory used
in other studies (17, 53). Nonetheless, even in these studies,
the background of the animals may have differed substantially
considering that commercial knockout mice are of 85% 129 and
15% C57BL/6 backgrounds and that mice were backcrossed 10
times on a BL/6J background in one study (17) while SIRT5+/+

and SIRT5−/− littermates were derived from the SIRT5+/−

heterozygote mice in the other study (53). Of note, all broad
screening proteomic analyses identified metabolic pathways
as the most targeted pathways by SIRT5, while pathways
commonly associated with immune/inflammatory responses
(such as NF-kB, interferon-response, cytokine, cell migration
and inflammation pathways) were not evidenced (8, 11, 12, 15,
16).

Endotoxemia reflects pathological situations such as
fulminant meningococcemia characterized by high blood
loads of endotoxin, but does not reproduce the complex host-
pathogen interactions generally taking place during bacterial
infections. Therefore, we sought to define the impact of
SIRT5 in preclinical models of infections mimicking common
clinical situations. SIRT5 deficiency did not sensitize mice
to severe S. pneumoniae pneumonia, rapidly lethal E. coli
peritonitis, listeriosis and staphylococcal infection. In the
most stringent models, SIRT5 deficiency did not protect
from lethal infection, as foreseen if SIRT5 would amplify
cytokine response. SIRT5 deficiency also did not render mice
particularly susceptible to bacterial infections as suggested
by the results obtained using models of sub-lethal/mild
infection with K. pneumoniae, E. coli, L. monocytogenes, and
S. aureus. Considering the diversity of the agents (Gram-
positive and Gram-negative and intracellular and extracellular
bacteria) and of the routes of infection tested (i.n., i.p. and
i.v.), these results so far support the assumption that SIRT5
has no dramatic influence on host defenses against bacterial
infections and the clinical development of SIRT5 inhibitors for
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FIGURE 6 | SIRT5 deficiency does not worsen Klebsiella pneumoniae and

Streptococcus pneumoniae pneumonia and E. coli peritonitis. SIRT5+/+ and

SIRT5−/− mice were injected i.n. with 30 CFU K. pneumoniae (A, n = 11

females + 2 males and 7 females + 3 males) or 1.6 × 106 CFU S. pneumoniae

(B, n = 10 males per genotype) and i.p. with 4 × 102 CFU E. coli [(C), n = 7

males per genotype, dashed lines] or 3 × 104 CFU E. coli [C, n = 11 females

per genotype, plain lines]. Body weight is expressed in percentage of initial

weight (A, left panel). Blood was collected 18 h post-infection to quantify

bacteria [(B,C), left panels; (C): following infection with 3 × 104 CFU E. coli.

P = 0.9 and 0.4]. [(A–C), right panels] Survival: P > 0.05 for all models.

oncologic purposes (18, 22). This contrasts with inhibitors of
HDAC1-11 which impaired innate immune defenses against
infections in mouse models and have been associated with
episodes of severe infection when infused into cancer patients
(37, 54–58). Further work will be required to test the efficacy
of potential SIRT5 inhibitors (19–21) in models of cancer
(18, 22) and of infections and sepsis, then to define whether
these inhibitors may predispose to infections in the setting of
comorbidities, e.g., in elderly patients and patients with chronic
inflammatory disorders like for example colitis and diabetes
mellitus.

FIGURE 7 | SIRT5 deficiency does not worsen listeriosis and staphylococcal

infection. SIRT5+/+ and SIRT5−/− mice were injected i.v. with 1.2 × 103

CFU L. monocytogenes [(A), n = 5 females + 3 males per genotype, dashed

lines], 9 × 104 CFU L. monocytogenes [A, n = 15 and 14 females, plain lines],

3 × 104 CFU S. aureus (B, n = 6 females per genotype, dashed lines) or 2 ×

107 CFU S. aureus (B, n = 9 females + 6 males per genotype, plain lines, 2

experiments). Blood was collected 48 h post-infection with 9 × 104 CFU L.

monocytogenes to quantify bacteria (A, left panel, P = 0.8). Body weight

following infection with 2–10 × 107 CFU S. aureus is expressed in percentage

of initial weight (B, left panel). Survival: P = 0.14 when comparing SIRT5+/+

and SIRT5−/− mice challenged with 1.2 × 103 CFU L. monocytogenes and

P > 0.5 for all other models.

Overall, SIRT5 does not worsen host defenses to bacterial
infections under the conditions tested here. Since sirtuins are
linked to metabolism, age-associated dysfunctions and lifespan,
it would be of interest to investigate the role of SIRT5 under
metabolic stress conditions and in older mice. To conclude, our
results support the development of SIRT5 inhibitors for clinical
purposes, as they suggest that these drugs would not increase
patients’ susceptibility to infections.
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