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Abstract

The Continuous Automated Model EvaluatiOn (CAMEO) platform complements the

biennial CASP experiment by conducting fully automated blind evaluations of three-

dimensional protein prediction servers based on the weekly prerelease of sequences

of those structures, which are going to be published in the upcoming release of the

Protein Data Bank. While in CASP14, significant success was observed in predicting

the structures of individual protein chains with high accuracy, significant challenges

remain in correctly predicting the structures of complexes. By implementing fully

automated evaluation of predictions for protein–protein complexes, as well as for

proteins in complex with ligands, peptides, nucleic acids, or proteins containing non-

canonical amino acid residues, CAMEO will assist new developments in those chal-

lenging areas of active research.
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1 | INTRODUCTION

The 2020 CASP14 experiment saw an unprecedented improvement

in the performance of three-dimensional (3D) protein structure pre-

diction. One method (AlphaFold2) was able to generate highly accu-

rate predictions even for the most challenging de novo targets.

Beyond the CASP community, this breakthrough has implications for

the entire field of structural biology: accurately predicting the struc-

ture of a single protein chain has never been closer to being consid-

ered a solved problem. But far from being the end of structure

prediction, this might instead be the beginning of a new era in the 3D

modeling of biomolecular structures. Areas that have been limited so

far due to the inability to produce sufficiently accurate de novo pro-

tein models in the first place, such as the prediction of protein–ligand

interactions, large macromolecular complexes and assemblies, or vari-

ant effects, might now be within reach of the next generation of

structural prediction methods. Independent blind assessment of these

techniques will be more than ever required in order to support the

development of reliable and reproducible methods. In order to assist

the community to tackle those challenges, we are introducing an

extension of Continuous Automated Model EvaluatiOn (CAMEO;

available at https://beta.cameo3d.org) with the aim to shift the focus

from the prediction of individual protein chains to the prediction of

macromolecular complexes as determined experimentally by X-ray

crystallography or increasingly cryo-EM techniques and deposited to

the Protein Data Bank (PDB).1

In this new CAMEO category, participating methods receive the

sequences of all unique polymer chains, as well as the InChI codes of
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nonpolymer entities composing the complex as prediction targets.

The challenges of the modeling task are to: (1) predict the stoichiome-

try of the complex; (2) predict the 3D structure of all the components:

proteins, peptides, DNA, RNA and ligands, including their orientation

and interfaces; and (3) provide per-residue confidence estimates of

the model. This CAMEO category is based on an opt-in model: partici-

pants only receive the target type(s) their method is able to model.

This means that a method that only predicts single protein chains can

still participate and will receive the targets composed of only one pro-

tein sequence, which can be either monomers or homo-oligomers,

while another method by the same group might be designed to pre-

dict, for example, complexes of proteins with drug-like small

molecules.

In this article, we describe the different types of prediction tar-

gets that CAMEO enables in the new category, and estimate the num-

ber of expected validation targets for each category based on PDB

statistics observed in 2020. One major challenge will be the scoring of

the new type of predictions with regard to the actual experimental

structures. Wherever appropriate, we comment on scores that are

foreseen to be applied to the various prediction types. We are wel-

coming feedback from the community regarding complementary scor-

ing approaches.

2 | MATERIAL AND METHODS

2.1 | Sequence filtering and clustering

The prerelease sequences of polymer entities as well as InChI code of

nonpolymer ligands were downloaded every Saturday from the PDB1

(http://www.wwpdb.org/files/). Structures containing sequences with

unknown residues, starting with caps, or whose type (protein, DNA, or

RNA) could not be assigned unambiguously were discarded. Within a

prerelease week, amino acid sequences of 30 amino acid residues or lon-

ger (“protein”) were clustered with CD-HIT2 applying a 99% sequence

identity threshold. Amino acid sequences of less than 30 amino acid resi-

dues (“peptides”), as well as DNA and RNA sequences were clustered

based on exact identity (100%). One representative sequence per cluster

was selected as target for structure prediction.

2.2 | Template searches

Target protein sequences were submitted to two template searches.

First, a BLAST+ v. 2.2.313 search against a database of current PDB

entries at the time of prerelease was performed. A threshold of 85%

sequence identity and at least 70% coverage was used to identify tar-

get sequences with very high similarity to a protein with known struc-

ture. Next, sequence profiles were built using 1 iteration of HHblits

v. 3.2.04 against Uniclust30 (2018_08).5 The profiles were used to

search a database of PDB entries available on March 19, 2021, with

an HHblits probability threshold of 70% and a coverage threshold of

70% in order to identify target sequences with more remote similarity

to a protein with a known structure. Since this was done as a retro-

spective analysis, hits that were released after the date of the pre-

release of the target were filtered out. For peptide sequences of less

than 30 amino acid residues and sequences of nucleic acid residues, a

lookup was performed against a database of current PDB entries at

the time of prerelease with a 100% identity threshold.

Templates found by BLAST, HHblits and lookup on single chains

were aggregated into complexes. A structure was considered to be a

template if all the chains of the target structure could be uniquely

mapped to the chains of the template structure, and the template

structure did not contain any extra polymer chain.

2.3 | Scores

Single-chain predictions were evaluated against the reference struc-

ture with the lDDT score6 using OpenStructure v. 2.1.0,7 the global

CAD atom–atom (AA) score v. 1646_63d6b800098c,8 and the

GDT_TS score using LGA v. 05/2009.9 Model confidence assessed

the ability of predictors to estimate the quality of their own models,

as described elsewhere.10 When the target structure contained more

than one copy of the sequence, more than one biological assembly, or

for homo-oligomeric predictions, the scores were calculated between

all possible combinations of target assembly and target and model

chains, and only the most favorable score was kept.

Homo- and hetero-oligomeric predictions were evaluated with

the oligo-lDDT and QS-score11 using OpenStructure v. 2.1.0,7 as well

as the MM-align-based TM-score v. 20 190 426.12 The oligomeric

lDDT score (oligo-lDDT) is an extension of the lDDT score for protein

complexes and has also been used in CASP since CASP13.13,14 It relies

on the QS-score to identify the mapping of chains and residues

between the model and target structure. Once the mapping is identi-

fied, the all-atom lDDT score can be applied on the protein complex

in the same way as it is applied for single chains with the advantage

that it now also considers inter-chain contacts. Extra atoms in the

model for mapped chains have no effect on lDDT scores, while extra

atoms in the target structure reduce the score. For the oligomeric

lDDT score, we penalize extra chains in both reference and model by

including them as nonconserved contacts.

2.4 | Target difficulty

Based on the “model-1” prediction results of all public servers, targets

were classified as “hard” if the average lDDT was smaller than 0.5,

“easy” if the average lDDT was 0.75 or higher, and “medium” other-

wise, as described elsewhere.10

2.5 | Quality estimation

The first models (model-1) from public servers were harvested

approximately 24–30 h after the submission of sequences to 3D
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servers. ROC AUC, partial ROC AUC (0.0–0.2 FPR), PR AUC, and par-

tial PR AUC (0.8–1.0 TPR) were calculated with an lDDT threshold of

0.6, as described elsewhere.10,15

2.6 | Ligand analysis

Functional domain annotation was extracted from CATH16 version

4.3.0. We used the “Structure external” links from DrugBank17 ver-

sion 5.1.8 to identify drug-containing targets. The analysis was per-

formed with Python 3.6.6, OpenStructure v. 2.1.0,7 and pandas

v. 1.1.5.18

2.7 | Structure visualization

Structural figures were generated with the Mol* Viewer.19

3 | RESULTS AND DISCUSSIONS

3.1 | Current CAMEO results

Since 2012, CAMEO has been leveraging the prerelease of structures

to be published in the upcoming release of the PDB to conduct

weekly, blind, fully automated benchmarking experiments. Every

Saturday, we download the prerelease data, which contains the

sequences of polymer entities, as well as InChI codes of nonpolymer

entities contained in the PDB structures to be released on the follow-

ing Wednesday. We select a set of 20 interesting protein-modeling

targets that are submitted to registered participants, who have 4 days

to predict the 3D structure of those targets. We collect those predic-

tions and, upon release of the structures by the PDB on Wednesdays,

compare the predictions with the experimental ground truth.

The CAMEO evaluation provides a wide variety of scores measur-

ing different aspects of protein structure prediction accuracy, and

accordingly does not establish a single unique ranking between the

methods. However, some of the scores are featured more promi-

nently on the web site, as we consider them more useful estimations

of the model quality. The focus of CAMEO has always been on all-

atom scores to capture the ability of participants to accurately model

proteins including biologically relevant protein side chain conforma-

tions. In addition, as CAMEO is a fully automated workflow without

human intervention, we have been focusing on superposition-free

scores which alleviate the need to manually split proteins into evalua-

tion units20,21 to account for domain movements. Therefore, CAMEO

has been showcasing scores like lDDT6 and CAD-score,8 both of

which are all atom scores and superposition independent. In addition,

our server summary page features the lDDT-BS score which measures

the accuracy of predictions in the region of ligand binding sites, as

well as a measure for model confidence, which evaluates the ability of

participants to estimate the accuracy of their own predictions. Addi-

tional scores such as GDT,9 RMSD, and TM-score12,22 are displayed

on the target details page and available in the downloads; however,

they are not aggregated as the results are misleading due to the

nature of superposition based scores and their inherent limitation

when applied to multi-domain proteins.

Since 2016, CAMEO10 has been evaluating the ability of model-

ing servers to correctly predict the oligomeric state of a target protein

and model the correct assembly, based solely on the amino acid

sequence. As targets are submitted as a single protein sequence, par-

ticipants need to predict whether the protein is likely to assemble into

a homo-oligomer and, if that is the case, to predict the exact stoichi-

ometry as well as the correct interfaces. The complex models are eval-

uated with the oligo-lDDT score,15 which is a modified version of

lDDT that looks at the whole complex and accounts for missing or

extra chains; the MM-align-based12 TM-score and RMSD, which are

superposition-dependent; and the QS-score,11 which looks specifically

at the conservation of interface residues.

In 2020, we performed 52 prediction rounds and provided targets

to 15 public modeling servers (from nine groups) and 25 development

servers (from a total of 18 groups). After filtering problematic targets

of low or uncertain quality, or targets causing technical issues to scor-

ing tools for formatting reasons, we evaluated and scored 812 targets,

453 of which were oligomeric. Table 1 shows a summary of the target

structures that were released by the PDB, the experimental method,

as well as the clustering and selection status, for all targets as well as

those that were scored as homo-oligomers. Results of the public

servers are shown in Table S1. Compared with 84 3D modeling tar-

gets of CASP14, CAMEO enables participants to assess the accuracy

of their prediction servers on a wide variety of targets in much shorter

time intervals.

3.2 | Quality estimation

Every Sunday, approximately 24–30 h into the evaluation cycle, we

collect models that have been already returned by public 3D partici-

pating servers. We submitted these models as prediction targets for

quality estimation. Throughout 2020, we, hence, collected 8594

models. Results of the evaluation of public servers are shown in

Table S2.

3.3 | Protein complexes

The new version of CAMEO extends the scope of the assessment to

structures and complexes. Instead of considering every protein

sequence separately, a prediction target is now defined as a complete

experimental structure with all the chemical entities it contains. In the

case of monomeric and homo-oligomeric protein entries, this would

be identical to the current CAMEO-3D targets and contain only one

unique protein sequence. However, for hetero-oligomeric targets,

evaluation is only performed in the context of the whole complex, and

no longer as individual isolated protein chains taken out of context.

Methods registered to receive hetero-oligomeric complexes as targets

ROBIN ET AL. 1979



thus receive all sequences of the proteins that form a complex, and

are expected to predict the oligomeric structure of the complex. All

participating methods receive the sequences of monomeric or homo-

oligomeric targets. This allows establishing a common baseline where

all participating servers can be compared with each other on a subset

of common targets.

TABLE 1 Number of targets of each experimental type released by the PDB in 2020, remaining after clustering, and selected for submission

Released by the PDB

Clustering SelectionTotal X-ray EM
Solution
NMR Other

Current CAMEO 15 028 12 551 2182 247 48 7466 1038

of which homo-oligomeric 4494 3823 631 20 20 2341 405

Protein complexes all 12 901 10 570 2050 235 46 7511 4141

only proteins 11 566 9705 1604 212 45 6465 3158

of which hetero-oligomers 2304 1361 930 11 2 1496 1130

… homo-oligomers 4032 3383 608 20 21 2284 1011

… monomers 5230 4961 66 181 22 2685 1017

Protein–ligand complexes all 9929 8577 1298 31 23 8889 3567a

only protein-small molecule 9040 8007 979 31 23 8094 3491a

of which hetero-oligomers 1543 939 598 6 0 1235 296a

… homo-oligomers 3218 2873 335 1 9 2904 1291a

… monomers 4278 4195 45 24 14 3954 1904a

Peptide complexes all 749 614 56 68 11 605 536

only peptides 107 40 5 51 11 90 83

of which hetero-oligomers 6 6 0 0 0 6 5

… homo-oligomers 23 16 5 1 1 23 22

… monomers 78 18 0 50 10 61 56

DNA complexes all 513 280 208 25 0 391 390

only DNA 61 33 4 24 0 58 57

of which hetero-oligomers 13 6 4 3 0 12 12

… homo-oligomers 28 24 0 4 0 26 25

… monomers 20 3 0 17 0 20 20

RNA complexes all 422 123 275 21 3 327 323

only RNA 78 48 12 16 2 45 42

of which hetero-oligomers 14 10 0 4 0 6 6

… homo-oligomers 8 8 0 0 0 6 4

… monomers 56 30 12 12 2 33 32

Mixed complexes 1335 865 446 23 1 1046 983

protein-peptide 608 563 28 17 0 483 421

protein-RNA 243 46 191 5 1 200 199

protein-DNA 381 225 155 1 0 279 279

protein-RNA–DNA 69 20 49 0 0 52 52

protein-RNA-peptide 32 9 23 0 0 30 30

protein-RNA-peptide 2 2 0 0 0 2 2

Complexes with noncanonical

residues

1075 940 113 20 2 666 444

proteins 824 717 103 3 1 496 286

peptides 198 180 0 17 1 124 112

RNA 34 22 12 0 0 28 27

DNA 52 52 0 0 0 35 35

aFor protein–ligand complexes, the selection criterion includes both the existence of closely related homolog complexes in the PDB and the presence of

the ligands in DrugBank.
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In order to select interesting targets for this category, we search

for the presence of homologous complexes (Figure 1). Closely related

homologs are first identified with BLAST for every protein sequence

with 30 or more amino acid residues separately. Complexes con-

taining DNA, RNA, or peptide sequences shorter than 30 amino acids

are excluded at this stage, and handled separately (see following sec-

tions). For every target, we consider the complete set of proteins that

compose it, and search for a homologous template that covers all the

protein entities. We ignore templates that only cover some of the tar-

get sequences, or that contain extra polymer entities (proteins, pep-

tides, DNA, or RNA). We consider targets to be interesting if such a

closely related homologous complex cannot be found. This includes

cases of novel complexes (where all the proteins can be modeled sep-

arately easily, but where the complex has never been observed exper-

imentally in its entirety, and therefore the interface(s) is unknown) or

if at least one of the protein sequences in the complex is a nontrivial

modeling target on its own.

Looking at the data we collected in the 52 prerelease weeks of

2020, 3158 interesting protein structures where no closely related

homolog could be found with BLAST were released by the PDB. Among

those, 1017 were monomers, 1011 homo-oligomeric complexes (which

cannot be distinguished from monomers from the sequence-only pre-

release data) and 1130 were hetero-oligomers (Table 1).

In order to retrospectively analyze the complexity of the hetero-

oligomeric target set, we repeated the template search with HHblits to

identify more remotely related homologous complexes. We could iden-

tify a homologous hetero-oligomeric complex with HHblits for 565 of

these 1130 targets, where all entities of the target could be uniquely

mapped to the template, and reciprocally. In 240 hetero-oligomeric

complexes, templates for individual entities could be identified with

HHblits, but not in the same complex (or the template contained extra

entities); and 113 complexes could similarly be identified with BLAST.

These 353 “novel complex” targets are of particular interest, as an

accurate prediction would have to successfully predict the assembly

mode of the complex, and accurately model the (unknown) interfaces,

therefore going beyond the classical reach of homology modeling.

Finally for the remaining 212 complexes, no template could be identi-

fied by HHblits for at least one of the target entities.

HHblits was able to identify homologs in the vast majority (1734)

of the 2028 monomeric (1017) or homo-oligomeric (1011) interesting

protein structures contained in the CAMEO target set. We note, how-

ever, that 43 of the targets could only be mapped to templates in

complex with a different partner. The interfaces are likely to differ

from the templates, and therefore we consider these targets as inter-

esting modeling targets for CAMEO. Finally, HHblits was unable to

identify a template for 294 of these targets.

In order to evaluate the predictions, we are using the same

scores as for the homo-oligomers: oligo-lDDT, QS-score, and TM-

score. In addition, other single-chain scores can be generalized to

evaluate heteromers in the same fashion as the oligo-lDDT score is

a generalization of the lDDT score to oligomers. Figure 2 shows the

main scores for this category, and highlights the different aspects of

modeling they are assessing. Finally, we are also looking at the

applicability of the scores used by the CAPRI community for auto-

mated evaluation.

It should be noted that the selection of interesting protein target

structures is performed regardless of ligand contents, but nonpolymer

ligands are submitted nonetheless to participating servers that sup-

port it. Seventy-six percent of the structures released by the PDB in

2020, and 65% of the interesting protein structures selected in this

category, contain at least one ligand. In addition, we are considering

specifically selecting interesting ligand modeling targets, which we

describe in the following section.

3.4 | Protein–ligand complexes

Small chemical compounds, which are not part of a polymer chain, are

provided as InChI codes and PDB chemical components in the pre-

release of the PDB. They are included in the target definition together

with the polymer entities for participating servers that support

predicting small chemical compounds in complex with proteins. Con-

sequently, in addition to predicting the correct protein structure, pre-

dictors are challenged to include the ligands in their models at the

correct binding site in an accurate conformation.

However, predicting the exact pose of a ligand within a theoreti-

cal model remains a challenge which is out of reach for most current

protein prediction servers. To specifically facilitate the development

of such methods, these should be evaluated separately to the predic-

tion of protein complexes. Therefore, we are proposing a specialized

CAMEO category, where easy protein modeling targets (as per the

opposite of the definition in the previous section) are selected if they

contain novel ligands that have not been seen in a template.

We analyzed the feasibility of this approach on the current data

in the PDB. In 2020, we observed 4755 protein targets that would be

F IGURE 1 Target 2020-12-19_00000231 (PDB ID 7 K93) is a
hetero-2-2-mer protein complex of a Dengue virus nonstructural
protein (NS1) (green) in complex with a mouse neutralizing single

chain Fab variable region (orange).23 While templates can be easily
identified with HHblits for both entities, there is no overlap between
the template lists, meaning the two proteins have never been
observed in a homologous complex. Specifically, no homologs of this
Dengue virus protein have been observed in complex with an
antibody. Hence, this constitutes an interesting target for modeling
heteromeric protein complexes
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trivial to solve with comparative modeling but included a combination

of nonpolymer ligands never seen before in a template for those

structures. Furthermore, 4398 of them contained only homo-

oligomeric or monomeric targets, which would enable many current

protein structure prediction servers to participate without having to

implement new modeling approaches for protein complexes.

Interestingly, 3491 of these 4755 structures contained a known

drug from DrugBank17 (Table 1). Figure 3 shows a typical example of

such a target, the SARS-CoV-2 main protease in complex with

Boceprevir, an FDA-approved drug for the treatment of the hepatitis C

virus.24 Drug repurposing studies are common in the PDB, and the

CAMEO target set is therefore representative of current areas of active

research and can help developers to assess the performance of their

methods on relevant datasets. For instance, 149 DrugBank drug-

containing ligand-modeling targets were identified by CATH as con-

taining the 3CL-PRO main protease domain 3 (CATH ID 1.10.1840.10),

and an additional 70 targets had ligands not known to DrugBank.

To score these predictions, we will first follow the procedure

developed by other ligand benchmarking efforts such as CELPP25 and

the D3R Grand Challenges,26–29 which evaluate ligand poses with a

symmetry-corrected RMSD. This metric is easy to compute and

understand in the context of a ligand; however, it may overestimate

the dynamics of solvent accessible groups. Other metrics will be

investigated such as the distance RMSD (dRMSD), as well as measures

of native ligand-protein contacts, which are also being considered in

CELPP, and would complement contact-based scores frequently used

for the scoring of protein models.

3.5 | Peptides

Accurately predicting the structures of short proteins or peptides has

always been challenging for comparative modeling. As a consequence,

many protein prediction servers have limits on the minimal length of

protein sequences that they attempt to predict. CAMEO has so far

taken a conservative approach and submitted targets containing at

least 30 amino acids to the participants. In the future, participants will

F IGURE 2 Hypothetical hetero-2-2-mer target (AABB, left) with a ligand, and a hypothetical model of the target (right). (1) The lDDT score
assesses the accuracy of each individual chain and measures local and global differences between model and reference structure. When more
than one chain is predicted for an entity (B1, B2), only the best-scoring one (B2) is kept. (2) The oligo-lDDT score assesses the accuracy of all
chains simultaneously while penalizing for missing (A1) or extra chains. (3) The QS-score assesses the accuracy of the interface(s) between chains.
It identifies correct (green dashed line) and inaccurate (orange dashed line) interfaces, and penalizes missing (red dashed line) interfaces. (4) The
lDDT-BS score assesses the accuracy of the binding site of biologically relevant ligands (gray circle, center). (5) Ligand scores assess the accuracy
of the ligand (yellow) pose

F IGURE 3 Target 2020-05-09_00000305 (PDB ID 7BRP) is a
structure of the SARS-CoV-2 main protease in complex with
Boceprevir.24 At the time of prerelease, the structure of the protease
had already been solved, and was therefore a trivial modeling target
on its own. However, it had not been observed in complex with
Boceprevir, and therefore, this complex represents a challenging
ligand modeling target
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be able opt-in to also receive peptides with less than 30 residues as

targets. These targets are relevant in several areas of research such

as host-pathogen interactions.

In order to identify interesting novel targets, we considered a

conservative cutoff of 100% sequence identity to a template. In 2020,

the PDB released 536 novel structures containing at least one amino

acid sequence of less than 30 residues. In 453 structures, such pep-

tides were in complex with a protein or DNA/RNA, making those

structures suitable for instance for peptide-protein docking methods.

Eighty-three structures contained only peptides, either in monomeric,

homo-oligomeric, or hetero-oligomeric forms, mainly with NMR

(Table 1). Advances in AI and de novo modeling technologies may very

well make it feasible to predict the structure of those peptides.

The interface (QS-score) and complex (oligo-lDDT) scores can be

used to score protein-peptide complexes. However, additional scores

like those used in the CAPRI experiment,30 DockQ31 and other

scores geared toward protein–peptide docking, will also be

considered.

3.6 | DNA and RNA

Although several standalone approaches have been developed,32,33

and fully automated web prediction servers34–37 are available,

predicting the 3D structure of nucleic acids, RNA in particular, remains

a challenge and an area of active development.38,39

Considering a conservative cutoff of 100% sequence identity

with previously known structures to identify interesting novel targets,

323 new structures containing RNA were released by the PDB in

2020, and 390 containing DNA. In most of these structures, nucleic

acids were in complex with proteins. Just 42 contained only RNA, and

57 only DNA (Table 1). This low number of modeling targets might

prove a challenge for blind benchmarking of nucleic acid structure

prediction methods.

Regarding the scoring, many of the scores applicable to protein

models can be readily applied to nucleic acids too, and were reviewed

in,39 in particular, the CAD-score40 which is already used for proteins

in CAMEO. Other all atom, superposition-free scores will be consid-

ered too. In addition, more specialized scores that take the base-

pairing nature of RNA structures into account, such as the interaction

network fidelity (INF) and deformation index (DI), will be

considered.39

3.7 | Mixed complexes

Finally, CAMEO can submit targets containing a combination of all of

the above: complexes with proteins, peptides, nucleic acids and

ligands (Figure 4), thereby assessing the ability to predict any biologi-

cally relevant macromolecular structure, regardless of its composition.

While this prediction task is extremely challenging for most methods

to date, we believe this to be the ultimate goal in 3D structure

prediction.

In 2020, following the criteria outlined in the previous sections,

we observed 983 structures containing more than one type of poly-

mer entities (Table 1). All of them were proteins in complex with pep-

tides (421), DNA (279), RNA (199), DNA and RNA (52), or both

peptides and nucleic acids (32).

With appropriate extensions, we believe that some of the scores

selected for the individual target types such as the oligo-lDDT and

CAD-score will be applicable to evaluate all these targets in a consis-

tent manner.

3.8 | Noncanonical amino acids and bases

Macromolecular structures frequently contain amino (or nucleic) acid

residues which are not part of the 20 (respectively, 8) standard resi-

dues. Traditionally for modeling purposes, the target sequences are

canonicalized, that is modified residues are represented by their “par-
ent” or closest canonical amino acid residue. However, this may result

in suboptimal models which would not accurately represent the region

containing the modification. Posttranslational modifications such as

phosphorylations can result in significant conformational changes of

F IGURE 4 Target 2020-05-30_00000276 (PDB ID 6LQF) is an
ARID-PHD protein cassette in complex with a peptide, DNA, and zinc
ions.41 The protein only has remote similarity (<30% sequence
identity) to known structures, and none of them are in complex with
DNA or the H3K4me3 peptide, making it an extremely challenging
target. We are not aware of any methods that would currently be able
to model this type of complex with acceptable accuracy. It should be
noted that the peptide contains a noncanonical residue
(N-Trimethyllysine, derived from lysine)
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the protein structure, which would be impossible to correctly model

without knowledge of the modification.

As this information is available at the time of prerelease, CAMEO

can provide sequences containing noncanonical residues on an opt-in

basis (Figure 4). In this case, sequences will contain the PDB compo-

nent identifier (typically three letters) enclosed in round brackets, in

place of the parent amino acids. Models correctly representing those

residues are expected to obtain higher scores for the all-atom mea-

sures such as the lDDT or the CAD-score.

In 2020, 444 of the 4323 protein, DNA, RNA, and mixed struc-

tures and complexes that we observed contained noncanonical resi-

dues (Table 1). We observed these noncanonical residues in proteins

(286), peptides (112), DNA (35), and RNA (27). Sixteen of them were

observed in mixed complexes.

3.9 | Current implementation status of CAMEO

At the time of writing, the CAMEO “Structures & Complexes” func-

tionality is available as a beta version at https://beta.cameo3d.org/

and is open for registrations. It has been providing targets containing

proteins, DNA and RNA to registered servers on a weekly basis since

October 2020. Participants can currently choose to receive the

nonpolymer ligands contained in these targets as InChI codes or PDB

component IDs, as well as noncanonicalized sequences including mod-

ified residues. Predictions can be returned in PDB or mmCIF format,

and are assessed with a fully automated pipeline including the oligo-

lDDT and QS-scores. A weekly download of models, reference struc-

tures, and assessment results are made available for offline analysis.

Our next steps will be to refine the target selection process, espe-

cially with respect to selecting relevant ligand targets as described in

the previous sections. We are exploring ways to increase the diversity

of the target selection, while ensuring that as many participants as

possible receive a common subset of targets in order to make compar-

isons between servers possible for some aspects of the evaluation.

We aim to improve the scoring by providing more diverse scores as

described in the previous sections. Most groups developing novel

methods have implemented their own scoring workflows locally. We

therefore consider at this point the raw data downloads of the predic-

tion results as a crucial service to the community developing special-

ized prediction methods as it allows including independent blind

prediction data in publications describing the new method.

4 | CONCLUSION

With the extension of CAMEO to the fully automated assessment of

prediction of complexes (including protein–protein, DNA, RNA, pep-

tides, and small molecules), we aim to encourage and facilitate the

development of automated structure prediction servers going beyond

the modeling of single chains of amino acids. In this article, we identi-

fied several challenging aspects of modeling which we believe will

become more active areas of research in the future, and that are suitable

for benchmarking with CAMEO. By assessing prediction targets with the

same complexity as experimental structures using an “opt in”mechanism

for the diverse modeling tasks, CAMEO will assist the development of

new methods tackling these specific modeling challenges. As demon-

strated by analyzing the PDB releases of the last year, CAMEO will be

able to provide a diverse set of challenging blind prediction targets to

enable the community to tackle next generation modeling challenges.

We welcome feedback from the community on which of these

aspects should be prioritized and how various predictions should be

numerically evaluated in CAMEO. We encourage methods developers to

register to the beta CAMEO server to help testing and evolving these

new features according to the needs of the prediction community.
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