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Abstract
The success of chimeric antigen receptor (CAR) T-cell therapy in treating hematologic
malignancies has generated widespread interest in translating this technology to solid
cancers. However, issues like tumor infiltration, the immunosuppressive tumor microen-
vironment, and tumor heterogeneity limit its efficacy in the solid tumor setting. Recent
experimental and clinical studies propose local administration directly into the tumor or at
the tumor site to increase CAR T-cell infiltration and improve treatment outcomes. Char-
acteristics of the types of solid tumors that may be the most receptive to this treatment
approach remain unclear. In this work, we develop a simplified spatiotemporal model
for CAR T-cell treatment of solid tumors, and use numerical simulations to compare the
effect of introducing CAR T cells via intratumoral injection versus intracavitary admin-
istration in diverse cancer types. We demonstrate that the model can reproduce tumor
and CAR T-cell data from small imaging studies of local administration of CAR T cells in
mouse models. Our results suggest that locally administered CAR T cells will be most
successful against slowly proliferating, highly diffusive tumors. In our simulations, assum-
ing equal detectable tumor diameters at the time of treatment, low average tumor cell
density is a better predictor of treatment success than total tumor burden or volume dou-
bling time. These findings affirm the clinical observation that CAR T cells will not perform
equally across different types of solid tumors, and suggest that measuring tumor den-
sity may be helpful when considering the feasibility of CAR T-cell therapy and planning
dosages for a particular patient. We additionally find that local delivery of CAR T cells can
result in deep tumor responses, provided that the initial CAR T-cell dose does not contain
a significant fraction of exhausted cells.
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Author summary
Injecting chimeric antigen receptor (CAR) T cells directly into solid tumors or their
surrounding area may improve efficacy over systemic infusion. We develop a spatiotem-
poral mathematical model to simulate local CAR T-cell administration for treating a
range of solid tumors. Our model reproduces kinetic tumor and CAR T-cell data from
preclinical studies. Model analysis suggests it may be particularly promising to pursue
CAR T-cell therapy for diffusive tumors, and it could be useful to measure tumor density
when considering feasibility or planning dosages of CAR T-cell therapy for a particular
patient. Simulations also suggest that using evaluation criteria that considers reduction
in tumor density instead of diameter alone impacts the classification of patient response
to intratumoral CAR T-cell injection.

Introduction
CAR T-cell therapy involves genetically modifying a patient’s T cells to better detect and
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mount an attack against cancer cells. This technology has demonstrated unprecedented suc-
cess in combating previously untreatable hematologic malignancies, with response rates of
40-98%, and six drugs have been approved by the Federal Drug Administration since 2017
[1]. The success of CAR T-cell therapies against blood cancers has generated significant inter-
est in adapting CAR T-cell technology to treat solid tumors [2,3]. In order to overcome the
challenges presented by the complex biology of solid tumors, advances on three key fronts
are being investigated: the specificity of CAR T cells [4], meaning their ability to recognize
all tumor cells without targeting healthy cells, the long-term persistence of CAR T cells in the
body [5,6], and the ability of CAR T cells to reach the tumor site and infiltrate the tumor [7,8].
A growing body of work has also focused on local delivery of CAR T cells, which can allow
treatment to bypass physical barriers, shorten the distance traveled by T cells, and reduce on-
target/off-tumor effects [9–12]. This could simultaneously increase the number of CAR T cells
within the tumor and decrease the risk of immune-related toxicity. Expanding evidence from
pre-clinical and phase I clinical trials also suggests that local delivery of CAR T cells is safe
and feasible [13–20].

The efficacy of intracranial or intratumoral delivery of CAR T cells has been demon-
strated in several mouse models of brain tumors [9–11,13], and in case studies in human
patients [21–23]. Further studies in mice have tested regionally delivered CAR T cells against
breast cancer and liver cancer [12,24], and in some cases demonstrated that regional deliv-
ery reduces the dose required for effective therapy compared with systemic administration
[25,26]. A number of ongoing clinical trials utilize regional delivery of CAR T cells, with the
majority targeting tumors of the central nervous system or liver [16–18,20,27]. Additional
locoregional delivery trials target malignant pleural mesothelioma [15,28,29], head and neck
cancers [30], and breast cancer [31].

Mathematical models of CAR T-cell treatment have enabled characterization of CAR T-
cell population dynamics [32,33] and CAR T-cell proliferation and/or killing mechanisms
[34–39], and have been used to predict patient outcomes [40–43] and suggest optimal treat-
ment plans [42,44–49]. Tserunyan et al. and Nukula et al. provided comprehensive reviews on
the subject [50,51]. Most existing models yield helpful insight under the assumption that cell
populations are well-mixed throughout the course of treatment. However, this assumption is
unlikely to hold during CAR T-cell treatment of solid tumors, where failure of CAR T cells to
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infiltrate the tumor can be a mode of tumor escape [7]. Spatial variability is particularly rele-
vant in the case of regional delivery of CAR T cells, where they may be injected directly into
the center of the tumor or into a cavity containing the tumor. To account for spatial variation
in cell concentration and provide insight into how the geometry of the delivery of CAR T cells
impacts treatment efficacy, we employ a 3-D reaction-diffusion modeling framework for local
administration of CAR T cells to treat solid tumors.

Reaction-diffusion equations have been used to model tumor growth for nearly three
decades. Murray et al. pioneered this approach [52], writing out in words that

rate of change diffusion of cells (motility)
of tumor cell population = +

net cell proliferation

This formulation has inspired a rich body of work, particularly successful in modeling
highly diffusive cancers like glioma, and their treatments including resection and chemother-
apy [53–56]. Later models incorporating additional biological details like nutrient limitation
[57–60] and non-uniform growth and migration caused by intrinsic and extrinsic factors [61–
65], have built on this foundation to generate more realistic tumor growth patterns. A similar
modeling paradigm was proposed by Matzavinos et al. [66] to study the immune response to
a dormant tumor and Li et al. [67] to study the infiltration of T cells into breast cancer tumor
cell clusters. Reaction-diffusion equations have further been used to model nanoparticle drug
delivery and response [68–70], and to model intratumoral injection of ethanol [71,72]. How-
ever, the post-injection kinetics of adoptive cellular therapies like CAR T cells are funda-
mentally different than those of purely diffusive, small-molecule based drugs. As a “living
drug,” infused cells will ideally proliferate and persist in the body in a way that traditional
pharmacokinetic modeling frameworks do not capture.

In this article, we develop a 3-dimensional spatio-temporal model for CAR T-cell thera-
pies applied to dynamic solid tumors. We compare model simulations with experimental data
from CAR T-cell imaging studies in mice to verify that model behavior is reasonable. We use
this framework to compare two modes of locoregional delivery, intracavitary injection versus
intratumoral injection. In particular, we discuss how tumor characteristics like growth rate
and invasiveness impact the effectiveness of CAR T-cell treatment.

Mathematical model
We developed a partial differential equations (PDE) model with thresholded diffusion, non-
linear growth, and non-linear coupling to describe the spatial coevolution of tumor and CAR
T cells in time. We use a density-dependent threshold for diffusion to reflect two modes of
tumor growth in a unified model: a stationary phase, in which the tumor grows more dense
but does not expand, and a diffusive phase, in which tumor cells both proliferate and spread.
These two phases are rooted in observed phenotypic differences in the motility and prolifera-
tive capacity of cancer cells [73]. The “go-or-grow” hypothesis postulates that external factors
such as low oxygen levels, chemoattractants and the rigidity of the extracellular matrix may
cause cancer cells to switch between a less motile, highly proliferative state and a more inva-
sive state [74]. In this simple initial model, we do not explicitly model these external factors,
but assume that the transition to a more invasive state occurs when the tumor density at each
spatial location surpasses a critical value. Additionally, we assume that CAR T cells can kill
tumor cells upon interaction, proliferate when tumor cell lysis is occurring, become exhausted
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through interaction with tumor cells, and senesce over time. Their movement is described by
simple diffusion [75].

Model equations
The density of tumor cells and CAR T cells at location x and time t are denoted by u(x,t)
and v(x,t) respectively. The rate of change in the density of the tumor is the sum of density-
dependent diffusion, and a forcing term F1 that accounts for tumor growth in the absence of
treatment and for the effect of CAR T cells on the tumor. We write the tumor concentration as

𝜕u
𝜕t =∇ ⋅ (DT(u)∇u) + F1(u, v); DT =

⎧⎪⎪⎨⎪⎪⎩

0 u(x, t)≤ u∗,
D∗

T u(x, t) > u∗.
(1)

When the tumor density is below the tumor diffusion threshold, u∗, tumor cells do not dif-
fuse. Once the tumor density at a spatial location exceeds the critical density, u∗, tumor cell
density diffuses at a constant rate, D∗

T. A Dirichlet boundary condition of u = 0 at infinity is
enforced, allowing unrestricted tumor expansion. Further details on boundary conditions of
the PDE are included in the supplementary material, S1 Text page 3.

We constructed the forcing function, F1, by adapting the ODE model studied by Owens
and Bozic [45]. Let

F1(u, v) = au(x, t)(1 – bu(x, t)) –D(x, t) (2)

where

D(x, t) = d (v(x, t)/u(x, t))
l

s + (v(x, t)/u(x, t))l
u(x, t).

Thus, in our model tumor growth is logistic, with proliferation rate a and a local carrying
capacity of 1/b for the density at each spatial point in the domain. Previous reaction-diffusion
models of tumor growth have considered logistic growth, as well as exponential and gom-
pertzian growth [53]. Tumor cells are killed by CAR T cells at a rate determined by the ratio of
CAR T-cell to tumor density in a given location. Tumor cells can be killed at a maximum rate
of d, with the half-maximal killing rate attained at the CAR T-cell to tumor ratio, s. The expo-
nent, l, dictates the slope of the saturation curve, with larger values leading to increasingly
“switch-like” behavior. This phenomenological functional form was proposed by de Pillis et al.
in a model of adoptive cellular therapy, and found to best fit cytotoxicity assay data compared
with mass action or traditional Michaelis-Menten kinetics [76].

The evolution of the CAR T cells is a diffusive process with the addition of a forcing func-
tion, F2, that describes the interactions between tumor cells and CAR T cells [45]:

𝜕v
𝜕t =∇ ⋅ (DC∇u) + F2(u, v). (3)

CAR T cells diffuse at a constant rate DC. A Neumann boundary condition is used to allow
for proliferation at the edge of the domain without precipitous leakage, the details of which
are reported in the supplementary material, S1 Text page 3.

The forcing function, F2, was adapted from the ODE model studied by Owens and Bozic
[45]. Let

F2(u, v) = j
D2(x, t)

k +D2(x, t)
v(x, t) –mv(x, t) – qu(x, t)v(x, t), (4)
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where, again,

D(x, t) = d (v(x, t)/u(x, t))
l

s + (v(x, t)/u(x, t))l
u(x, t). (5)

The CAR T-cell proliferation term was also inspired by the model of tumor-immune inter-
actions studied by de Pillis et al. [76]. With this functional form, CAR T-cell proliferation
depends on cell lysis, D(x,t). The maximum rate of cell proliferation is j, with half-maximal
proliferation occurring when D2 = k. Using a saturating term for the CAR T-cell proliferation
rate imposes an upper limit, which is reasonable due to the biological constraints on cell divi-
sion. This term differs from the recruitment term used by Owens and Bozic [45] because we
do not include endogenous effector cells in this model. CAR T-cell density also decreases at
ratem due to cell death and at rate q due to exhaustion upon repeated interaction with tumor
cells.

In this work, we consider the evolution of a radially symmetric, spherical tumor grow-
ing on an infinite domain. This approach was also taken by Burgess et al. [54] in their three-
dimensional extension of the work of Murray et al. modelling glioma [52]. Assuming spher-
ical symmetry greatly reduces the complexity of the model, while still allowing us to test two
medically relevant methods of local CAR T-cell administration: intracavitary injection (uni-
form concentration along the boundary of the tumor) and intratumoral injection (high con-
centration in the center of the tumor). This geometry could also be used to consider treatment
plans involving multiple doses, combinations of intratumoral and intracavitary administra-
tion, and CAR T-cell injection following tumor resection. Illustrations of the initial CAR T-
cell profile for the two administration methods that we will compare are given in Fig 1A and
1B. Applying this geometric consideration to equations (1) and (3) and keeping the boundary
conditions as is, yields

𝜕u
𝜕t =

1
r2
𝜕
𝜕r (DT(u)r2

𝜕u
𝜕r ) + F1(u, v); DT =

⎧⎪⎪⎨⎪⎪⎩

0 u(r, t)≤ u∗,
D∗

T u(r, t) > u∗;
(6a)

and
𝜕v
𝜕t =

1
r2
𝜕
𝜕r (DCr2

𝜕v
𝜕r ) + F2(u, v). (6b)

Fig 1. Modes of local administration.Wemodel two possible methods of local administration: (A) intratumoral
injection, initiated with a high concentration of CAR T cells at the center of the tumor mass and (B) intracavitary
injection, initiated with a layer of CAR T cells on the surface of the tumor mass.

https://doi.org/10.1371/journal.pcbi.1013117.g001
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Our model incorporates the conversion of effector CAR T cells to an exhausted state
through a mass-action exhaustion term in the CAR T-cell forcing function, –quv. In our
reaction-diffusion model, CAR T cells are assumed to have an effector phenotype, hence all
CAR T cells contribute to antitumor activity. However, experimental measurements of CAR
T-cell kinetics over time do not discriminate between phenotypes. In order to compare sim-
ulation results with data, we add an ODE to the model to track the exhausted CAR T cells as
well. Assuming that the exhausted CAR T cells have the same death rate as the effector CAR T
cells,m, and an initial number of cells vE(0), the number of exhausted CAR T cells at time t is
given by

VE(t) =VE(0) exp(–mt) +∫
t

0
exp(–m𝜏)∫

rmax

0
4𝜋qv(r, 𝜏)u(r, 𝜏)rdrd𝜏. (7)

The total number of CAR T cells at time t can then be calculated by summing the
exhausted and the effector cells.

Parameter estimation
In order to carry out informative numerical analysis and simulations of the model, we esti-
mated several parameter values from experimental data and identified others from previous
modeling work. We consider diffusion constants for tumor density in a range of 10–5–10–4

cm2/day. The upper end of this range is used to model diffusive tumors, and is calculated from
measurements of the velocity of individual glioma cells ex vivo [77]. The diffusion constants
for more compact tumors are an order of magnitude smaller, aligning with the range reported
by Weis et al., who calibrated their reaction diffusion equation to breast cancer imaging data
[78]. As the local carrying capacity for tumor cells, we use 2.39× 108 cells/cm3, based on
assuming an average cell radius of 10 𝜇m, as in previous reaction diffusion models of tumor
growth [79,80]. The density above which diffusion of tumor cells occurs ranges from 1–50%
of the local carrying capacity, allowing for a wide range of tumor density profiles. We use 108

cells/cm3 as the lower limit of detection when determining tumor radius for generating initial
tumor conditions and evaluating the efficacy of treatment. This detection threshold is around
40% of the carrying capacity, which falls between the values used by Swanson et al. to model
a highly sensitive imaging modality (16% of carrying capacity) and a less sensitive modal-
ity (80% of carrying capacity) [56]. The tumor proliferation rates studied here range from
0.025–0.25 day–1, on the same order as previous models of tumor growth [45,54,55,78]. Par-
ticular values were selected to achieve tumor volume doubling times relevant to malignant
gliomas (15–21 days) [81], breast cancer (46–825 days) [82], and liver cancer (85–150 days)
[83] with a focus on the more aggressive end of each range because slow growing tumors are
unlikely candidates for CAR T-cell therapy. We computed the diffusion constant for CAR T
cells, DC = 1.38 cm2/day based on intratumoral CAR T-cell velocities reported from murine
imaging studies by Mullazzani et al. [75]. The parameters dictating CAR T-cell prolifera-
tion, exhaustion, clearance, and killing of tumor cells came from the Patient 4 parameter
set reported in Owens and Bozic [45]. To reflect the reduced efficacy of CAR T cells against
solid tumors compared with blood cancers, we scaled these parameters, by 20%. The same
approach was taken by Kara et al. [39] when adapting CAR T-cell models for blood cancers
to solid tumors. We performed a local sensitivity analysis to study the effect of varying the
CAR T-cell parameter values, which is discussed in the Results section. See Tables A and B in
S1 Text for a complete list of parameter sets used in model simulations. The nondimensional
version of the model is derived in the supplementary material, S1 Text page 2.
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Results
Tumor growth in the absence of treatment
Our model provides a flexible framework to simulate a range of solid tumor behaviors. Here
we consider four tumor types defined by a unique combination of a proliferation rate, a, dif-
fusion coefficient, D∗

T, and diffusion threshold, u∗ (Table 1). For each tumor type, we gener-
ated a tumor density profile to represent the tumor burden at the time of CAR T-cell treat-
ment. We initiated the simulation with a spherical tumor of radius 1 mm and uniform den-
sity at the carrying capacity, 1/b, and then ran it forward in time until the detectable tumor
radius reached 1 cm (Fig 2A). From these initial conditions, we simulated the progression of
the tumor over the course of 200 days in the absence of treatment (Fig 2B). Tumor type I has a
high proliferation rate and lower diffusivity resulting in a tumor with a volume doubling time
(VDT) of 104 days and an almost uniform, highly dense profile. This type of growth pattern
represents compact solid tumors, which could describe some liver or breast cancers [82,83].
Tumor type II has a moderate proliferation rate and moderate diffusivity, which results in a
shorter VDT of 63 days and a slightly less compact cell density profile. This class could repre-
sent more aggressive forms of breast cancer [82]. Tumor type III has a low proliferation rate
but high diffusivity, resulting in a VDT of 33 days. This balance of proliferation and diffusion
generates an invasive but low density growth front that is able to advance undetected, behav-
ior characteristic of a subset of gliomas [81]. Finally, tumor type IV is the most aggressive
with both high proliferation and a high diffusivity. More advanced, aggressive gliomas may
follow this growth pattern, which has a VDT of only 17 days [81].

We evaluated the impact of varying the tumor proliferation rate, tumor diffusion constant,
and tumor diffusion threshold on VDT and the tumor burden at detection. VDT is more sen-
sitive to the tumor diffusion constant than to the tumor proliferation rate (top row, Fig A in
S1 Text). For tumors with a low proliferation rate and moderate to high diffusivity the tumor
diffusion threshold modulates the extent of the tumor that is undetectable (bottom row, Fig
A Panel A in S1 Text), whereas for tumors with higher proliferation rates the tumor burden at
detection remains relatively constant despite changing the diffusion threshold (bottom row,
Fig A Panel B-C in S1 Text).

Intratumoral injection can lead to tumor eradication
We simulated intratumoral CAR T-cell injection by starting with a tumor of diameter 2 cm,
constructed using growth parameters from one of the four tumor types defined in the pre-
vious section, and a high concentration of CAR T cells in the center of the tumor (see Mate-
rials and methods for details). We observe that CAR T cells injected intratumorally rapidly

Table 1. Parameter values used in numerical simulations of the 4 tumor types. The source used to determine
a reasonable value for each parameter is indicated in brackets next to each value. A fraction of the tumor car-
rying capacity (50%, 10%, or 1%) was chosen as the tumor diffusion threshold for each tumor type to obtain
characteristic, qualitative behavior.
symbol description unit Type I Type II Type III Type IV
a tumor proliferation

rate
day–1 0.25 [82,83] 0.125 [82] 0.025 [81] 0.25 [81]

D∗
T tumor diffusion

constant
cm2/day 1e-5 [78] 2e-5 [78] 1e-4 [55] 1e-4 [55]

u∗ tumor diffusion
threshold

cells/cm3 1.2e8 2.39e7 2.39e6 2.39e6

https://doi.org/10.1371/journal.pcbi.1013117.t001
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Fig 2. Tumor growth in the absence of treatment for 4 tumor types. (A) Density profile for each of these tumors
when initiated from a 1 mmmass (gray line) and allowed to grow until the detectable diameter reaches 2 cm (black
line) when using a detection threshold around 108 cells/cm3. If these four tumors remain untreated, their expansion
would continue. (B) We illustrate the growth of the untreated tumors over 200 days. The volume doubling time
(VDT) and time to progression (TTP) were calculated from the tumor with detectable diameter of 2 cm as a baseline.
As diagrammed in the inset, Type I proliferates rapidly and diffuses slowly, Type II both proliferates and diffuses at a
moderate rate, Type III proliferates slowly but diffuses rapidly, and Type IV both proliferates and diffuses rapidly.

https://doi.org/10.1371/journal.pcbi.1013117.g002

kill cells at the center of the tumor and start to diffuse out towards the surface, both prolif-
erating and killing tumor cells as they travel (Fig 3A). The outcome of treatment strongly
depends on whether CAR T cells can proliferate and diffuse sufficiently to reach the surface
of the tumor before becoming exhausted. In numerical simulations, we observe four poten-
tial treatment outcomes, defined by clinical criteria of response in solid tumors [84]. At suffi-
ciently large doses of effector CAR T cells, intratumoral injection eliminates the tumor, lead-
ing to complete response (Fig 3A and 3B). For tumor types I-III a partial response is possible
in which the CAR T cells reduce the detectable tumor radius significantly, but relapse occurs
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Fig 3. Intratumoral treatment outcomes.The first column shows snapshots of the cell density profiles following CAR T-cell injection. For each of these exam-
ples we assumed that 100% of the injected CAR T cells are effectors, and only the density of effector CAR T cells is depicted. The tumor detection threshold is
indicated with a dotted line and the portion of the tumor that is detectable is shaded in gray. The second column shows the tumor and total CAR T-cell popula-
tion (effector + exhausted) over time with the corresponding detectable tumor radius inset. (A–B) Intratumoral injection of 1× 109 CAR T cells to treat tumor
type III eradicates the tumor around day 30 post-injection.(C–D) Treating tumor type I with an intratumoral dose of 1× 109 CAR T cells reduces the detectable
tumor burden and total tumor cell count; however, the tumor resumes growing once CAR T cells dissipate. (E–F) Intratumoral injection of 2× 108 CAR T cells
to treat tumor type II initially reduces the tumor cell count, causing the detectable diameter to stay within the size classified as stable over 8 weeks following treat-
ment. However, ultimately this tumor escapes. (G–H) Treating tumor type IV with 2× 108 cells, kills tumor cells at the center of the initial mass, but the tumor
continues to grow uncontrolled.

https://doi.org/10.1371/journal.pcbi.1013117.g003
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rapidly after effector CAR T cells dissipate allowing tumor cells at the edge of the initial tumor
to proliferate (Fig 3C and 3D). Such rapid relapse following CAR T-cell treatment has been
observed in the clinic for hematological malignancies. For example, 49% percent of relapses
after CAR T-cell treatment in relapsed/refractory DLBCL occur within the first month [85].
With lower doses, CAR T cells may proliferate transiently but allow tumor escape. In these
cases, CAR T cells reduce tumor density at the core, but the detectable tumor radius remains
unaffected because the T cells do not reach the surface of the tumor in sufficient numbers
to contain tumor growth. If the tumor is slow-growing, tumor progression may appear to
be stable at an 8 week follow-up despite eventual escape (Fig 3E and 3F). With more aggres-
sive tumors, disease progression following failed treatment occurs even faster (Fig 3G and
3H). For even lower doses of CAR T cells, the injected CAR T cells barely proliferate, instead
dying off with little to no noticeable impact on the tumor. Failure of CAR T cells to success-
fully engraft and proliferate is also a documented failure mode, particularly in the hostile solid
tumor micro-environment [86].

Intracavitary delivery can delay tumor progression
Intracavitary administration of CAR T cells involves delivering CAR T cells into the region
surrounding a tumor, but not directly into the tumor itself. For example, in one patient with
recurrent glioblastoma, CAR T cells were infused intracranially directly through a catheter
device [21]. Another example is delivering CAR T cells via hepatic artery infusion to treat
tumors in the liver [27]. In contrast with intratumoral injection, in our model simulations
CAR T cells delivered intracavitarily contain the tumor at the growth front as they migrate
inwards across the tumor from the outer edge towards the center. To simulate intracavi-
tary delivery of CAR T cells, we initiate the system with one of the four final tumor profiles
from Fig 2A, and a thin layer of CAR T cells uniformly concentrated on the surface of the
tumor. Using a uniform, symmetrical initial distribution of CAR T cells is a heavily simplified,
numerically expedient way to reflect the evidence from imaging studies showing that CAR T
cells rapidly disperse across solid tumors [75].

In our simulations using realistic clinical doses, CAR T cells delivered intracavitarily never
eradicate tumors with an initial diameter of 2 cm or more. However, sufficiently large doses
can reduce the detectable tumor radius of tumor types I and II, and consequently delay the
time to tumor progression. An example of one such scenario is depicted in Fig 4A and 4B.
Against tumor types II and III, moderate to large doses of CAR T cells delivered intracav-
itarily can hold the tumor to a steady size for an extended period of time. For tumor type
III, large doses markedly change the density profile of the tumor, making it more compact
(Fig 4C and 4D). At low doses against all tumors, or even moderate doses against the most
aggressive tumors, e.g., type IV, intracavitary delivery of CAR T cells has a minimal impact on
tumor progression (Fig 4E and 4F).

Model can reproduce data from experiments in mice
After establishing the general behavior of our model, we verified that the model could be fit
to data from early imaging studies in mice. We digitized data from two studies: one testing
the efficacy of CAR T cells injected directly into solid tumors [87] and another comparing the
efficacy of regional vs. systemic delivery of CAR T cells in treating solid tumors [88].

Zhao et al. established large flank mesothelioma tumors in mice and then treated them
with intratumoral injections of CAR T cells [87]. In most of their experiments the animals
received multiple CAR T-cell injections; however, the authors included data from one mouse
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Fig 4. Intracavitary treatment outcomes.The first column shows snapshots of the cell density profiles over time. Only the density of effector CAR T cells is
depicted. The detection threshold is indicated with a dotted line and the portion of the tumor that is detectable is shaded in gray. The second column shows the
tumor and total CAR T-cell population (effector + exhausted) over time with the corresponding detectable tumor radius inset. For each of these examples we
assumed that 100% of the injected CAR T cells are effectors. (A–B) Treating tumor type I with an intratumoral dose of 1× 109 CAR T cells reduces the detectable
tumor burden and total tumor cell count; however, the tumor resumes growing once CAR T cells dissipate. (C–D) Intratumoral injection of 1× 109 CAR T cells
to treat tumor type III holds the tumor cell count and detectable diameter steady over 8 weeks following treatment. (E–F) Treating tumor type IV with 2× 108
cells, kills tumor cells at the edge of the initial mass, but the tumor continues to grow uncontrolled.

https://doi.org/10.1371/journal.pcbi.1013117.g004

that cleared its tumor after receiving only one injection (Fig 5A). We fit our model to the cor-
responding longitudinal measurements of tumor size. With appropriate parameter values, our
intratumoral injection model accurately simulates the change in tumor size over time, show-
ing tumor eradication around day 15 (Fig 5B). Without treatment, our model predicts that the
tumor would have tripled in size over baseline by day 18.

Skovgard et al. assessed the effect of antigen expression density on CAR T-cell kinetics and
compared the efficacy of systemic vs. intracavitary delivery of CAR T cells [88]. The authors
established antigen-positive orthotopic mesothelioma tumors in mice, and then transferred
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Fig 5. Model fit to data frommurine studies. (A) Zhao et al. [87] established large flank mesothelioma tumors in mice, measured baseline tumor size using bio-
luminescent imaging (BLI), injected 1× 107 CAR T cells intratumorally 58 days following tumor establishment, and continued to measure the tumor size using
BLI for 55 days. (B) Model simulation of untreated tumor and treated tumor overlaid with treated tumor data from Zhao et al. [87] (C) The corresponding CAR
T-cell count predicted by the model simulation. (D) Skovgard et al. [88] established small antigen-positive orthotopic mesothelioma tumors in mice, measured
baseline tumor size using bioluminescent imaging (BLI), injected 1× 107 CAR T cells intrapleurally 14 days following tumor establishment, and continued to
measure the tumor size and CAR T-cell quantity for 8 days using BLI. (E) Model simulation of untreated tumor and treated tumor overlaid with treated tumor
BLI quantification from Skovgard et al. [88]. (F) The model simulation of CAR T-cell count is shown overlaid with CAR T-cell BLI quantification from Skovgard
et al. [88]. Created in BioRender. Owens, K. (2025) https://BioRender.com/e999s6b

https://doi.org/10.1371/journal.pcbi.1013117.g005

CAR T cells into the mice via direct pleural injection into the thoracic cavity (Fig 5D). They
monitored CAR T-cell quantity in this group of 5 mice via bioluminescent imaging (BLI) for
8 days following injection. A separate group consisting of 7 mice treated in the same man-
ner was used to measure tumor size via BLI over the same period. We fit our model to the
mean value of these groups. Our intracavitary injection model shows tumor eradication by
day 4, accompanied by a 6-fold increase in CAR T cells over their baseline measurement, in
good agreement with the reported tumor and CAR T-cell levels (Fig 5E and 5F). Including the
exhausted CAR T cells in the total projected CAR T-cell numbers achieves reasonable agree-
ment with the data, though the model simulation still falls below the observed data points at 6
and 8 days post CAR T-cell injection (Fig B in S1 Text).

For an explanation of the parameter estimation procedure used to obtain these model fits,
see the Materials and Methods section. These two examples provide proof-of-concept that the
model can be fit to data from imaging studies. As additional data becomes available, a more
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robust parameter estimation procedure could be developed to better quantify tumor-CAR
T-cell dynamics.

Ex vivo CAR T-cell exhaustion can result in treatment failure
We next used our model to evaluate the impact of ex vivo exhaustion on the efficacy of CAR
T-cell therapy given different tumor characteristics and treatment delivery modes. We tested
simulated CAR T cells administered either at the center of the tumor or the surface against
the four tumor types summarized in Table 1 and illustrated in Fig 2 with CAR T-cell doses
from 1× 107 to 1× 109 cells, spanning a range of reasonable dose levels [27]. Within that dose,
we varied the fraction of the CAR T-cell product that is exhausted prior to administration
from 0–100%, based on analysis by Long et al. [89]. We assumed a detectable diameter of 2
cm at the time of treatment, and simulations were run out to 8 weeks post treatment, at which
point the patient response to treatment was classified according to the Response Evaluation
Criteria in Solid Tumours (RECIST) [84]. The RECIST criteria is a standardized set of guide-
lines widely used to assess the efficacy of cancer treatments against solid tumors. Under these
guidelines tumor response is classified as complete response if all measurable lesions disap-
pear, a partial response if measurable lesions decrease in diameter by at least 30%, or progres-
sive disease if measurable lesions increase in diameter by 20% or new lesions form. Otherwise
the response is deemed stable disease.

Against all four tumors tested here, intratumoral injection of CAR T cells can eradicate the
tumor at high enough doses (Fig 6, row 1), whereas the best possible outcome from intracav-
itary delivery is a partial response for tumor types I and II, or stable disease for tumor types
III and IV (Fig 6, row 2). However, otherwise effective doses may fail if the percentage of CAR
T cells that are exhausted ex vivo, prior to injection, is too high. For example, an intratumoral
injection of 3× 108 CAR T cells generates a complete response against tumor type IV if 90%
of the cells are fully functional, but this same dose is predicted to result in progressive disease
if more than 20% of the cells are exhausted (Fig 6, top right).

We also tested the effect of tumor size at the time of CAR T-cell administration on patient
outcome by performing these same tests on tumors with detectable diameters of 1 cm and
3 cm at treatment. Our simulations show smaller tumors can be eradicated faster, and with
lower doses than larger tumors of the same type (Fig C in S1 Text). When treating small
tumors, intracavitary administration can induce a complete response for tumor types I–III
(Fig C in S1 Text). When treating larger tumors, intratumoral injection no longer eradicates
tumor type IV even at the highest doses tested (Fig C in S1 Text). Note that, unsurprisingly,
the timing of evaluation impacts which dose levels are identified as inducing stable disease.
Early evaluation can result in a classification of stable disease at lower doses for some sce-
narios (Fig D in S1 Text) and conversely later evaluation requires a higher dose to stabilize
tumors, if it is even possible (Fig D in S1 Text).

Assuming a constant detectable tumor radius of 2 cm at the time of treatment, we exam-
ined the relationship between quantitative tumor characteristics and the minimum intratu-
moral CAR T-cell dose necessary for tumor eradication. The density of the detectable tumor
and the ratio of tumor growth rate to tumor diffusion constant were both reasonably good
predictors of the minimum successful CAR T-cell dose, with a coefficient of determination
of R2 = 0.83 and R2 = 0.84 respectively and Akaike Information Criterion differing by 1 (Fig
E Panel A and B in S1 Text). Previous work with a similar model for glioma growth identi-
fied that this parameter ratio dictates tumor density [55]. In contrast, for a fixed detectable
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Fig 6. Simulated treatment outcomes vary across different modes of delivery, tumor types, dose levels, and
proportions of exhausted cells. Each row corresponds to a mode of local delivery and each column corresponds to
a different tumor type as defined in Table 1 and illustrated in Fig 2, with type I having the longest volume doubling
time and type IV having the shortest volume doubling time. Each panel maps a range of CAR T-cell doses and per-
centage of non-exhausted cells within that dose to patient outcome, classified using the RECIST criteria [84] at 8
weeks post-treatment. In each simulation, CAR T-cell treatment occurred when the detectable tumor radius reached
2 cm.

https://doi.org/10.1371/journal.pcbi.1013117.g006

tumor diameter at the time of treatment, the total tumor burden, including undetectable por-
tions of the tumor, and the volume doubling time explain less than 40% of the variance in the
minimum CAR T-cell dose needed for successful treatment (Fig E Panel C–D S1 Text).

Choice of evaluation criteria impacts classification of partial response and
stable disease outcomes
The RECIST criteria for classifying solid tumor response is based solely on the number
of tumor lesions and their detectable diameter. Consequently, a treatment that drastically
reduces density of the tumor interior but does not impact the extent of the tumor may be
falsely classified as completely ineffective (Fig 7A). As an alternative, we evaluated treatment
outcomes for the same scenarios depicted in Fig 6 using the Choi criteria [90], which assigns a
label of partial response if either a density-based or a diameter-based threshold for tumor bur-
den reduction is met (Fig 7B and 7C). The minimum dose level to achieve a partial response
upon intratumoral injection is lower for all four tumor types, especially the less diffusive
tumors, Type I and II (Fig 7D). For intracavitary administration, the alternate evaluation cri-
teria does not make a significant difference because partial tumor burden reduction occurs at
the growth front of the tumor and causes a reduction in detectable tumor diameter.
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Fig 7. Classification of treatment outcome following intratumoral CAR T-cell treatment evaluated using Choi versus RECIST criteria. (A)
Tumor and effector CAR T-cell densities over the first 24 days following intratumoral injection of 3× 108 effector CAR T cells to treat a 2 cm diameter
tumor of type II show wide variation across the spatial domain. (B) The fold-change in average tumor density over time reflects the effect of CAR T
cells killing tumor cells at the tumor core. Because tumor burden drops below the horizontal dotted line at 0.85, the outcome is classified as partial
response to therapy by the Choi criteria. (C) The detectable tumor burden for the same scenario increased monotonically. The size-based criteria for
stable disease according to the Choi criteria requires staying in the region highlighted in dark green, which this scenario does not meet. The bound-
aries for stable disease according to the RECIST criteria are highlighted in light green, which this scenario does meet. (D) Outcome maps if four
tumor types (row 1-4) were treated with intratumoral injection of a range CAR T-cell doses and percentage of non-exhausted cells within that dose,
and evaluated at 8 weeks post-injection via the RECIST criteria (column 1) or the Choi criteria (column 2).

https://doi.org/10.1371/journal.pcbi.1013117.g007

CAR T-cell treatment fails if CAR T cells move too slowly
We performed local sensitivity analysis by varying the value of model parameters one at a
time across at least one order of magnitude and simulating treatment of tumor type II with
intratumoral injection of 5e8 effector CAR T cells (Fig 8). For each parameter, we tested a
range of values that encompassed successful and unsuccessful treatment. For each simula-
tion, we calculated the minimum tumor cell count following treatment (the tumor nadir),
the timing of the tumor nadir, and the maximum number of CAR T cells. We find that in
this model there is a non-monotonic relationship between tumor nadir and the CAR T-cell
diffusion constant, DC (Fig 8A). If CAR T cells diffuse too slowly, CAR T cells kill the core
of the tumor but they cannot reach the growth front in order to contain the tumor, and it
escapes treatment. At moderately high diffusion constants, the CAR T cells are able to rapidly
spread across the whole tumor but maintain sufficiently high intratumoral concentrations
to kill tumor cells and proliferate. However, if the CAR T cells diffuse too rapidly, a sub-
stantial quantity leak out of the tumor without engaging and killing tumor cells, leaving the
tumor intact. This result may not hold in more sophisticated models that explicitly account
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Fig 8. Tumor and CAR T-cell trajectories for varied values of CAR T-cell parameters.We varied each model parameter associated with CAR T-cell behav-
ior one at a time across a range of values and simulated intratumoral injection of 5× 108 CAR T cells to treat tumor type II out to 30 days post-injection. The
resulting trajectories for total tumor cell count and total CAR T-cell count are shown, colored according to the value of the parameter being studied. For each
trajectory, we plot the minimum tumor cell count following injection, called the tumor nadir, and the time of tumor nadir as functions of the peak number of
CAR T cells. We illustrate the impact of (A) the CAR T-cell diffusion constant, DC, (B) the maximum CAR T-cell killing rate, d, (C) the ratio of T cells to tumor
cells for half-maximal killing, s, (D) the cooperativity of CAR T-cell killing, l, (E) the maximum CAR T-cell proliferation/recruitment rate, j, (F) the lysis rate for
half-maximal CAR T-cell expansion, k, (G) the CAR T-cell exhaustion rate, q, and (D) the CAR T-cell death rate,m.

https://doi.org/10.1371/journal.pcbi.1013117.g008

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013117 June 3, 2025 16/ 26

https://doi.org/10.1371/journal.pcbi.1013117.g008
https://doi.org/10.1371/journal.pcbi.1013117


ID: pcbi.1013117 — 2025/6/6 — page 17 — #17

PLOS COMPUTATIONAL BIOLOGY Spatiotemporal dynamics of tumor–CAR T-cell interaction following local administration

for CAR T-cell binding to tumor cells. Tumor nadir is a monotonic function of the other
CAR T parameter values, in agreement with sensitivity analysis of the ODE model studied by
Owens and Bozic [45] (Fig 8B–8F). At low values of the maximal CAR T-cell killing rate, d,
CAR T cells decline without proliferating due to the structure of the model in which prolif-
eration depends on feedback from tumor cell lysis. Initially, as the CAR T-cell killing rate d
increases, the peak CAR T-cell count is higher and occurs earlier. Further increases in CAR
T-cell killing capacity still cause the peak to occur earlier, but actually lower the peak because
the tumor is eliminated before high numbers of CAR T cells are generated (Fig D Panel B in
S1 Text). The CAR T-cell peak was highly sensitive to the maximal CAR T-cell recruitment
rate, j (Fig 8E).

Discussion
In this work we developed a basic reaction-diffusion model for CAR T-cell treatment of solid
tumors and characterized the general behavior of the model in a biologically relevant param-
eter regime. The underlying mechanism that we use for tumor growth is flexible enough to
model a wide range of tumor types. This is particularly valuable as there is significant inter-
est in using CAR technology to treat diverse cancers. We further demonstrated that this
model captures behaviors observed in preclinical trial data by comparing model predictions
with data from mouse-imaging studies tracking tumor and CAR T-cell quantities follow-
ing local delivery of CAR T cells. We found that accounting for exhausted CAR T cells in
model simulations improved the fit to CAR T-cell data from a study that tracked CAR T-
cell kinetics. The possibility of exhausted cells in the CAR infusion product also affects the
minimum CAR T-cell dose necessary to achieve a given outcome, bringing our results more
in line with the reality that current CAR T-cell treatment of solid tumors have been largely
unsuccessful [3].

We used our reaction-diffusion framework to compare the response of different tumor
types to localized CAR T-cell treatment. In particular we considered dense solid tumors with
high proliferation but low diffusivity, moderately aggressive solid tumors with both moder-
ate proliferation and moderate diffusivity, highly-diffuse tumors marked by low proliferation
but high diffusivity, and aggressive diffusive tumors with both high proliferation and high
diffusivity. Surprisingly, the lowest minimum dose was necessary for the low-proliferation,
high diffusivity tumors. That is, assuming the detectable tumor diameter is equal, CAR T-cell
therapy was the most effective in treating the tumor with the smallest average density, not the
smallest total tumor burden, or the longest VDT. These findings affirm that CAR T cells will
not perform equally across different types of solid tumors. It may be particularly promising to
pursue CAR T-cell therapy for diffusive tumors. Our analysis suggests that tumor density may
be measured when considering the feasibility of CAR T-cell therapy for a particular patient
and/or when planning dosages.

There is still a paucity of available data documenting CAR T-cell kinetics in human
patients following locoregional delivery to treat solid tumors. However, the dynamics of the
total number of CAR T cells predicted by our model reflect qualitative features of CAR T-
cell kinetics observed in murine studies of local delivery, namely an early expansion phase
followed by contraction [75,88]. In our simulations, almost all successful treatments initi-
ated with a reasonable number of CAR T cells display expansion and contraction phases.
Only large doses consisting of fully functional cells administered against small tumors are
successful without CAR T-cell count expanding. Liu et al. reviewed the CAR T-cell clinical
trial landscape in 2021, which included systemically administered treatments for solid tumors
[32]. When comparing responders vs. non-responders across trials, they noted that successful
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treatments are marked by a higher peak in CAR T cells and a relatively slower contraction rate
compared to unsuccessful treatments [32]. Our model simulations align with this observation
from clinical data. As more data becomes available, parameter values for this model should be
estimated more rigorously and further extensions to the the model can be incorporated and
tested.

We modeled two different modes of local delivery: intratumoral injection vs. intracavi-
tary injection. These options are not always accessible to a patient depending on tumor loca-
tion and patient health [27]. However, in situations where both are possible, our simulations
suggest that intratumoral administration may be successful at lower doses than intracavitary
injection. Our results also suggest that for larger tumors, a single dose of CAR T cells admin-
istered intracavitarily may induce a partial response or stable disease, but repeat doses of CAR
T cells should be explored to move towards tumor eradication. A natural extension of the
model would be to optimize the timing of multi-dose regimens.

Using a spatial model is important when studying treatment of solid tumors because
assumptions of well-mixed cell populations inherent to previous ODE models do not hold.
Furthermore, the movement of CAR T cells within solid tumors has been identified as an
important factor in successful treatment. Indeed, Prybutok et al. simulated CAR T-cell ther-
apy using an agent based model and demonstrated that the spatial distribution of tumor cells
and healthy cells at the onset of treatment impacted the performance of CAR T cells [91]. Our
spatio-temporal model exhibits a failure mode in which there is an initial tumor response to
treatment followed by relapse. This clinically observed mode of CAR T-cell failure was not
captured by the ODE model from Owens and Bozic [45]. Additionally, as discussed in the
above paragraphs, we hypothesize that there may be a potential relationship between tumor
density and minimum successful CAR T-cell dose that cannot be captured by an ODE model
tracking the total cell populations over time.

This preliminary spatial model has several limitations that could be addressed in future
work. The early, Fisher-esque reaction-diffusion models were unable to capture the complex
morphology of gliomas observed in experimental and clinical data, motivating incorporation
of further biological details. In future work, CAR T cells may be integrated into the numerous
more advanced models that exist for gliomas. A natural next step with this model framework
could be to include the necrotic core observed in larger tumors and compare the outcome of
intratumoral injection at different depths. Extensions of this model could also incorporate a
dynamic of the tumor microenvironment, and study the affect of factors like pH, mechani-
cal stress, hypoxia, and IFP on T-cell behavior. We also assume symmetric spherical growth,
but angiogenesis (the development of new blood vessels) is needed to support the growth
of a tumor beyond the size of about a million cells, at which point the tumor will no longer
develop symmetrically. Future work that relaxes the assumption of spherical symmetry and
incorporates blood vessels into the model could compare the efficacy of intravascular deliv-
ery of CAR T cells, which is also being tested in the clinic notably for hepatic cancers. Relax-
ing the symmetry assumption will also allow future work to incorporate tumor heterogeneity
in terms of target antigen expression into the model, another important mode of CAR T-cell
failure. Because of the lack of conclusive data, we assumed CAR T-cell movement is a purely
diffusive process. As more data becomes available tracking the distribution of CAR T cells
around and within tumors, incorporating chemotaxis or haptotaxis will likely improve the
model. This model considers CAR T cells in effector or exhausted states. However, additional
T-cell phenotypes such as regulatory T cells could be explicitly modeled to explore their role
in treatment outcomes. This level of granularity would be particularly valuable once there is
more data tracking T-cell subsets available for model comparison. Partitioning the CAR T
cells into short-lived effector cells and long-lived memory cells may also improve the ability
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to capture long-term persistence. In clinical data, CAR T cells tend to persist at about ∼ 10%
of their peak level [32,92], but in our model they drop to non-detectable levels. However, our
model does reflect the fact that CAR T-cell persistence is important to successful treatment.
Increasing the CAR T-cell death or inactivation rate causes treatment to lose effectiveness,
and conversely lowering these parameters causes treatment to be more effective. Furthermore,
future modeling work should incorporate CAR T cells into models of tumor interaction with
the endogenous immune system. Though this will substantially increase the model complex-
ity, it will improve predictions over longer time windows, when adaptive immunity is thought
to play a key role in the antitumor immune response.

CAR T-cell therapy for solid tumors faces numerous challenges, but significant progress is
being made. This work lays out an accessible mathematical modeling framework for studying
one possible advance: locoregional delivery of CAR T-cells. Simulation results suggest several
testable hypothesis and the model is ready for extension and refinement as more data on CAR
T-cell dynamics becomes available.

Materials and methods
Numerical analysis
To integrate the PDE given by Eq. (6) we employ Crank-Nicolson [93] for both the tumor and
CAR T-cell densities. The use of Crank-Nicolson finite difference methods on an equation
with a step-function diffusivity is made possible due to the radial symmetry of the domain.
For more complex geometries it will be necessary to employ finite element methods, which we
leave for a future study. The standard Crank-Nicolson scheme for the homogeneous diffusion
equation,

𝜕u
𝜕t =∇ ⋅ (∇u) (8)

has an order of convergence of o (Δt2,Δr2); i.e., second order in time and space. However,
the PDE in the present study, (6), would not be expected to maintain the same order of accu-
racy due to the sharp boundary between proliferative and diffusive regions. Using the method
of manufactured solutions we observe a local order of accuracy at r = 0.5 of o (Δt1.5,Δr1.1)
and o (Δt1,Δr0.6) for u and v respectively. Towards the boundary of the computational
domain the error increases and we observe a maximum order of accuracy of o (Δt0.9,Δr1)
and o (Δt0.3,Δr0.5) for u and v respectively. Since the algorithm performs much better towards
the center of the computational domain, we choose a domain large enough to keep the extent
of the tumor well within the boundary of the domain. The CAR T cells, unlike tumor cells,
are free to spread out, but in the absence of tumor cells they no longer proliferate. Con-
sequently, the density of CAR T cells far from the tumor is low in model simulations, as
observed in murine experiments. Therefore, although we may detect CAR T cells towards
the boundary of the computational domain, their numbers are several orders of magnitude
less than around the tumor, and even the CAR T cells near the computational boundary
experience an error less than 10% compared to the ground truth according to the manufac-
tured solution. For further details on the numerical analysis, see the supplementary material,
S1 Text, page 3.

Numerical simulations
All results were generated from simulations implemented with MATLAB R2021b. We used
a spatial grid with step size Δr = 0.015 cm and time step Δt =min(aΔr/DC,Δr/5) days. This
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condition for the time step was empirically chosen to balance efficiency and numerical sta-
bility. The extent of the spatial domain was selected based on the initial tumor size and antic-
ipated tumor growth such that the tumor would not reach within 1 cm of the edge of the
domain. This is only possible when using a threshold u∗ > 0 for diffusion. The diffusion
threshold keeps the tumor bounded away from the edge of a sufficiently large computa-
tional domain, avoiding leakage or having to impose a Neuman boundary condition. All
model parameter values used in simulations are included in supplementary Tables A and B in
S1 Text.

Process for fitting model to murine data
We digitized data from two studies on locoregional delivery of CAR T cells using WebPlot-
Digitizer [94]. The first set of data comes from Fig 4C in Zhao et al. [87], which reports
tumor burden prior to and after treatment with a single intratumoral dose of CAR T cells.
We fixed the carrying capacity and diffusion threshold for tumor cells, then estimated the
tumor growth rate and diffusion constant to minimize the least squares error when compar-
ing the total tumor burden predicted by the model to the pre-treatment data points. We fixed
the CAR T-cell diffusion constant at DC = 0.0138 cm2/day as estimated based on Mullazanni
et al. [75]. We fixed all remaining CAR T-cell parameters except the maximal lysis rate, d, at
the values derived from Patient 3 in Owens et al. [45]. We started with an initial guess of d =
2.25, from Patient 3 in Owens et al., and increased the value of d until the tumor burden was
reduced sufficiently quickly to match the data.

The second set of data came from Fig 4F in Skovgard et al., which reports tumor and CAR
T-cell levels measured via BLI following treatment with a single intrapleural dose of CAR
T cells [88]. We specifically extracted the mean values for each cell population. In this case,
because there are no pre-treatment tumor measurements, we fixed the tumor parameters
around those used to define tumor type IV. We fixed the CAR T-cell diffusion constant, the
lysis rate for half maximal CAR T-cell proliferation, the CAR T-cell exhaustion rate, and the
CAR T-cell death rate at the same values used for the simulation of Zhao et al. data [87]. For
the remaining four CAR T-cell parameters, we performed an iterative search to identify a set
of values that fit both the tumor and the CAR T-cell data well. We started with initial parame-
ter ranges reported in Table B in S1 Text, then ran simulations with values randomly selected
from the parameter space using latin hypercube sampling. We re-centered and narrowed the
parameter ranges around the average value from the best 3 runs, and repeated this process
until a satisfactory fit to the data was achieved.

Supporting information
S1 Text. Supporting information. S1 Text contains further details on the mathematical
model and numerical simulations used to generate the results in this manuscript, as well as
the following supporting figures and tables of parameter values.

• Fig A.Model-predicted tumor volume doubling time (VDT) and tumor burden at
detection as a function of tumor growth parameters.

• Fig B. Exhausted cells improve model fit to CAR T-cell data from mouse imaging study.
• Fig C. Outcome maps given varied tumor size at the time of treatment.
• Fig D. Outcome maps given varied time of patient evaluation
• Fig E. Relating quantitative tumor characteristics to minimum CAR T-cell dose for
tumor eradication

• Fig F. Convergence analysis via method of manufactured solutions
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• Table A. Parameter values used in numerical simulations of the 4 tumor types
described in Section 2.2

• Table B. Estimated model parameters to fit model output to murine study data

(PDF)

S1 Data. Dataset 1. Data digitized from pre-clinical mouse studies and used for model fitting.
(.XLSX)
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