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Autonomic regulation processes in striated muscles are largely mediated by
cAMP/PKA-signaling. In order to achieve specificity of signaling its spatial-temporal
compartmentation plays a critical role. We discuss here how specificity of
cAMP/PKA-signaling can be achieved in skeletal muscle by spatio-temporal
compartmentation. While a microdomain containing PKA type I in the region of
the neuromuscular junction (NMJ) is important for postsynaptic, activity-dependent
stabilization of the nicotinic acetylcholine receptor (AChR), PKA type I and II microdomains
in the sarcomeric part of skeletal muscle are likely to play different roles, including the
regulation of muscle homeostasis. These microdomains are due to specific A-kinase
anchoring proteins, like rapsyn and myospryn. Importantly, recent evidence indicates that
compartmentation of the cAMP/PKA-dependent signaling pathway and pharmacological
activation of cAMP production are aberrant in different skeletal muscles disorders.
Thus, we discuss here their potential as targets for palliative treatment of certain
forms of dystrophy and myasthenia. Under physiological conditions, the neuropeptide,
α-calcitonin-related peptide, as well as catecholamines are the most-mentioned natural
triggers for activating cAMP/PKA signaling in skeletal muscle. While the precise domains
and functions of these first messengers are still under investigation, agonists of β2-
adrenoceptors clearly exhibit anabolic activity under normal conditions and reduce protein
degradation during atrophic periods. Past and recent studies suggest direct sympathetic
innervation of skeletal muscle fibers. In summary, the organization and roles of cAMP-
dependent signaling in skeletal muscle are increasingly understood, revealing crucial
functions in processes like nerve-muscle interaction and muscle trophicity.
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INTRODUCTION
A variety of hormones and other first messengers employ cAMP-
dependent signal transduction to exert their effects (Beavo and
Brunton, 2002). Sympathetic activation of adrenergic receptors
(or adrenoceptors) by catecholamines is the classical paradigm
in this context. In skeletal muscle, catecholamines regulate many
physiological functions, including force production (Oliver and
Schäfer, 1895; Arreola et al., 1987; Cairns and Dulhunty, 1993a,b;
Decostre et al., 2000), blood flow (Marshall, 1982; Saltin et al.,
1998; Joyner and Casey, 2009), and metabolism (Gross et al.,
1976; Navegantes et al., 2000, 2002). These effects might be medi-
ated through endocrine delivery of epinephrine from the adrenal
medulla, but adrenergic nerve terminals make also close contact
with striated muscle fibers (Barker and Saito, 1981; Tadaki et al.,
1995), suggesting direct release of norepinephrine onto muscle
fibers in a neurotransmitter-like or paracrine fashion as it occurs
at the heart (Zaglia et al., 2013). However, these aspects of adren-
ergic signaling on skeletal muscle are far from being established
and are currently under investigation (see also below).

In skeletal muscle, catecholamines stimulate primarily
β2-adrenergic receptors (β2-ARs). These are G protein-coupled
receptors (GPCRs), which mostly couple to Gαs and thus activate
adenylyl cyclase (AC) (Liggett and Raymond, 1993), leading to an
increase in cAMP levels, activation of cAMP-dependent protein
kinase (PKA) and cAMP response element-binding protein
(CREB) (Beavo and Brunton, 2002; Altarejos and Montminy,
2011). In parallel, cAMP signals through the “exchange protein
activated directly by cAMP” (Epac) (Bos, 2003), and it regulates
cyclic-nucleotide gated (CNGs) channels (Beavo and Brunton,
2002). The attenuation of cAMP effects is coordinated by the
activation of cyclic nucleotide phosphodiesterases (PDEs), which
are classified into 11 major families (PDE1-11) (Bloom, 2002;
Omori and Kotera, 2007). In skeletal muscle, PDE4 appears to
contribute to the majority of cAMP hydrolysis, accounting for
more than 80% of the total PDE activity in this tissue (Bloom,
2002). Notably, a couple of different cAMP-regulating GPCRs are
typically co-expressed in one and the same cell raising the evident
issue of how the small inconspicuous molecule, cAMP, can
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trigger specific responses upon activation of a certain GPCR. This
is also true for striated muscle where a plethora of physiological
functions are subject to cAMP-dependent signaling. For skeletal
muscle, Berdeaux and Stewart have recently reviewed the differ-
ent functions of this pathway very nicely (Berdeaux and Stewart,
2012). Furthermore, lists of GPCRs (albeit likely not complete)
expressed in heart and skeletal muscles can be found in reviews
from Tang (Tang and Insel, 2004) and Jean-Baptiste (Jean-
Baptiste et al., 2005), respectively. So, how is specificity gained
in cAMP-dependent signaling pathways? The strongest current
line of evidence supports a microdomain hypothesis, wherein
spatial and temporal segregation of local rises of cAMP plus
scaffolding of essential downstream effectors and targets of cAMP
play pivotal roles (Steinberg and Brunton, 2001; Zaccolo et al.,
2002; Zaccolo, 2011; Edwards et al., 2012). Central players in this
scenario are variability of PKA isoforms, A kinase-anchoring pro-
teins (AKAPs), and PDEs. In its inactive state, PKA is comprised
of four subunits, i.e., two regulatory (PKA-R) and two catalytic
subunits (PKA-C) (Taylor et al., 2008). Upon binding of cAMP
to regulatory subunits, catalytic subunits are activated and detach
from regulatory subunits in order to phosphorylate targets. In
mammals, four isoforms of PKA-R are present, named as type
Iα, Iβ, IIα, IIβ. While PDEs impair cAMP from spreading all
over the cell through hydrolysis of the second messenger (Conti
and Beavo, 2007; Francis et al., 2011), AKAPs serve as scaffolds
integrating and anchoring many relevant partners of a GPCR-
linked signaling pathway (Scott et al., 2013). Indeed, AKAPs not
only bind to PKA (hence their name) but often also to GPCRs,
ACs, PDEs, protein phosphatases, and target molecules (Edwards
et al., 2012). Thereby, they integrate entire signaling complexes
and guarantee high efficiency and fidelity of signal transduction.
AKAPs belong to a large heterogeneous group of proteins,
which do not share sequence homology but a set of functional
properties. They typically exhibit a subcellular targeting domain,
interaction domains with other components of signal pathways,
and an amphipathic α-helical domain that serves as interaction
terminal with PKA-R (Scott et al., 2013). Indeed, the PKA-R
expose an N-terminal stretch called dimerization/docking-
(D/D-) domain that combines with the AKAP α-helical parts at
varying intensities and specificities. A typical and widely used
means to test the functional impact of AKAP-PKA interaction
is by introducing “AKAP disruptor peptides” which mimic the
AKAP interaction domain and thereby release PKA-R from its
normal microdomain (Scott et al., 2013). In summary, a large
part of cAMP-dependent signaling specificity appears to arise
from the interplay between PDEs and AKAPs and is sometimes
subsumed under the term “PKA microdomain hypothesis,”
recently described in depth in a couple of excellent reviews
(Zaccolo, 2011; Edwards et al., 2012; Scott et al., 2013). The
present contribution first addresses, how the “PKA microdomain
hypothesis” applies to skeletal muscle and what are potential links
to skeletal muscle diseases. In a second part, we review the current
knowledge on how catecholamines regulate muscle trophicity.

PKA MICRODOMAINS IN SKELETAL MUSCLE
Investigations dealing with the PKA microdomain hypothe-
sis usually address differential distribution patterns of distinct

PKA-R isoforms. Owing to its highly regular striated patterning
of sarcomeres, the contractile units of striated muscle, this tis-
sue is particularly amenable to investigating the distribution of
PKA-R isoforms relative to sarcomeric marker proteins. Another
region of interest is the nerve-muscle synapse, termed as endplate
or neuromuscular junction (NMJ), which instructs the rest of the
muscle fiber to contract upon stimulation. For both parts there is
now information concerning PKA-R distribution, alterations in
diseased muscle, as well as causes underlying and consequences
of these alterations. In the following we will describe the current
state of knowledge regarding these points.

SUBSYNAPTIC PKA MICRODOMAINS
The NMJ is the synapse between motoneuron and muscle
fiber and as such exerts the control over skeletal muscle con-
traction. The latter is triggered upon release of the neuro-
transmitter, acetylcholine, which activates postsynaptic nicotinic
acetylcholine receptors (AChR) leading to an endplate poten-
tial and ultimately to muscle contraction. Notably, AChR reaches
extremely high densities at the postsynaptic membrane of about
10,000 molecules per square micron and under normal condi-
tions AChRs are metabolically very stable with a half-life of about
13 days (Fambrough, 1979). Principal functions attributed to
cAMP/PKA-dependent signaling at the NMJ are synapse stabi-
lization and the metabolic control of AChR stability and function
(Li et al., 2001; Lanuza et al., 2002; Li et al., 2002; Nelson et al.,
2003). In situ hybridization showed a peculiar accumulation of
PKA-RIα transcripts in the NMJ region (Imaizumi-Scherrer et al.,
1996) and immunohistochemical analyses found both, PKA-RIα
and PKA-RIIα to be enriched close to the postsynaptic mem-
brane (Perkins et al., 2001). However, different studies using
fusions of different PKA-R D/D-domains with fluorescent pro-
teins only revealed PKA-RIα but not PKA-RIIα in numerous
punctiform structures just beneath the postsynaptic membrane
(Barradeau et al., 2001, 2002; Röder et al., 2010; Choi et al.,
2012). What do these puncta represent? The involvement of
PKA signaling in AChR stabilization suggested them to be intra-
cellular AChR carriers. As bona fide transmembrane proteins,
the subunits of the pentameric AChR are generated and assem-
bled in the endoplasmic reticulum, from where they are routed
over the Golgi apparatus to the plasma membrane (Marchand
et al., 2000, 2002; Marchand and Cartaud, 2002; Wanamaker and
Green, 2005, 2007). Using different elegant labeling approaches
with the highly AChR-selective snake venom, α-bungarotoxin,
Engel et al. showed by electron microscopy that AChR is endocy-
tosed in membrane-bound carriers (Engel et al., 1977; Fumagalli
et al., 1982) and several groups established an activity-dependent
metabolic stabilization of AChR (Fambrough, 1979; Levitt et al.,
1980; Loring and Salpeter, 1980; Levitt and Salpeter, 1981; Stanley
and Drachman, 1981, 1983; Salpeter and Loring, 1985; Shyng
et al., 1991; Xu and Salpeter, 1997, 1999). Next, Akaaboune
et al. demonstrated that AChR is recycled to the postsynaptic
membrane in an activity-dependent manner (Akaaboune et al.,
1999; Bruneau et al., 2005; Bruneau and Akaaboune, 2006). At
this point a large part of the lifecycle of AChRs was described
phenomenologically. However, amongst other open questions
it remained unclear, what molecules underlie the regulatory
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decision-making (e.g., dwell at postsynaptic membrane vs. endo-
cytose; recycle vs. degrade) and which machinery would support
these processes. Most knowledge was gathered regarding the clus-
tering of AChRs at the membrane, which is mediated by the
release of neuronal agrin (Nitkin et al., 1987), binding of agrin
to the MuSK co-receptor, LRP4, and activation of the receptor-
tyrosine kinase MuSK (Kim et al., 2008; Zhang et al., 2008; Zong
et al., 2012; Burden et al., 2013; Hubbard and Gnanasambandan,
2013). This then triggers AChR clustering by a yet ill-defined
mechanism, which involves the receptor-associated protein of the
synapse, rapsyn (Gillespie et al., 1996; Apel et al., 1997; Glass and
Yancopoulos, 1997; Ruegg and Bixby, 1998; Fuhrer et al., 1999;
Gautam et al., 1999).

As for the metabolic stabilization of AChRs different lines
of evidence indicate the involvement of the neuropeptide,
α-calcitonin-gene related peptide (αCGRP), and of cAMP/PKA-
dependent pathways (Poyner, 1992). αCGRP was found to raise
postsynaptic cAMP levels in the PKA-RIα microdomain (Röder
et al., 2010) and to rapidly phosphorylate the α- and δ-subunit of
AChR (Miles et al., 1987, 1989). Furthermore, αCGRP treatment
changed the electrophysiological characteristics of AChR (Mulle
et al., 1988) and it rescued denervation-induced fragmentation of
NMJs (Röder et al., 2010). Furthermore, αCGRP was described
to counteract PKC-induced destabilization of AChRs (Li et al.,
2001, 2002) and to stimulate AChR gene expression (New and
Mudge, 1986; Fontaine et al., 1987) as well as synaptic strength
(Lu et al., 1993). Experiments using AKAP disruptor peptides
suggested that the proper localization of PKA-RIα on the afore-
mentioned subsynaptic puncta is essential for AChR stabilization
(Röder et al., 2010) and in vivo imaging and biochemical assays
revealed that many of these structures indeed contain endocy-
tosed AChR (Röder et al., 2010). Altogether these findings suggest
that the PKA-RIα positive puncta represent αCGRP-sensitive
PKA microdomains on endocytic carriers containing AChR. The
actin-dependent motor protein, myosin Va, was found to be cru-
cial for tethering these carriers in close proximity to the NMJ
(Röder et al., 2010) (for schematic, see Figure 1), but which is
the AKAP used for anchoring PKA-RIα to the AChR-laden car-
riers? Previous reports suggested D-AKAP1 (Barradeau et al.,
2001, 2002; Perkins et al., 2001) as a candidate. However, this was
purely based on the general enrichment of this protein under-
neath the NMJ. A recent study followed another rationale and
looked for a protein that would (1) target to AChR, (2) exhibit
an AKAP-typical α-helical coiled-coil domain and (3) have inter-
action domains with other signaling components, and, based on
these pre-requisites, tested the hypothesis that rapsyn serves as
AKAP at this place. Rapsyn is a 43 kDa protein, that was originally
co-purified with AChR from Torpedo electroplax and that quan-
titatively and strongly interacts with AChR (Sobel et al., 1977;
Neubig et al., 1979; Porter and Froehner, 1985; Froehner, 1993).
From N- to C-terminus, rapsyn contains a myristoylation site,
seven tetratricopeptide repeats, an amphipathic α-helical region,
a RING-domain, and PKA- and PKC-phosphorylation consen-
sus sites (Ramarao and Cohen, 1998; Ramarao et al., 2001).
Notably, full-length rapsyn but not rapsyn lacking its α-helical
domain co-precipitated with PKA-RIα (Choi et al., 2012). In sil-
ico modeling identified functional sequence homology of that

FIGURE 1 | Schematic model of the hypothetic assembly of a PKA

microdomain beneath the NMJ. Amongst other potential roles at the
NMJ, PKA-RI is critical for proper lifetime regulation of AChR. At least a part
of these regulatory processes appears to be linked to the
endocytosis/recycling of AChR. From the endocytic compartment, AChRs
may either return to the postsynaptic membrane (recycling) or be routed to
a degradation pathway. To carry out its function, PKA-RI needs to be
recruited to endocytic/recycling vesicles which transport AChR and those
vesicles are to be tethered close to the postsynaptic membrane in order to
receive local rises of cAMP levels. Anchoring of PKA-RI to these vesicles is
mediated by rapsyn, while myo5a serves to restrain endocytic/recycling
vesicles in the actin-rich cortex underneath the NMJ. First messengers
triggering the relevant local rises in cAMP levels are still elusive and they
might originate from motoneurons, sympathetic nervous system or other
sites.

region with PKA-interaction domains of different AKAPs, and
rapsyn interacted with PKA-RIα in a bimolecular fluorescence
complementation assay both, in cells and in vivo (here in sub-
synaptic puncta) (Choi et al., 2012). Finally, over-expression of
a peptide derived from the rapsyn α-helical coiled-coil domain
displaced PKA-RIα from the NMJ puncta and severely impaired
AChR stability (Choi et al., 2012), strongly arguing for rapsyn
as the AKAP responsible for linking PKA-RIα to the subsynaptic
PKA microdomain (for schematic, see Figure 1).

NMJ structure and stability of AChR strongly suffer in muscles
from the mdx mouse model for Duchenne muscular dystrophy
(DMD) (Torres and Duchen, 1987; Lyons and Slater, 1991; Xu
and Salpeter, 1997; Grady et al., 2000; Shiao et al., 2004), in which
cAMP signaling is aberrant (Reynolds et al., 2008). That does,
of course, not mean that the altered signaling is the underly-
ing cause for the NMJ phenomena, but the typical subsynaptic
enrichment of PKA-RIα was lacking in about half of all fibers
in mdx muscles, microdomain specificity to different GPCR ago-
nists was subverted, and AChR turnover was inversely correlated
with PKA-RIα accumulation beneath the NMJ (Röder et al.,
2012). Altogether this set of data suggests a link between defect
subsynaptic microdomain formation of PKA-RIα in dystrophic
muscles and the observed alterations in NMJ morphology and
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AChR stability. In general, the concept of an AChR stabilizing
role of cAMP was also tested in the context of another devastating
group of muscle diseases, i.e., congenital myasthenic syndromes
(CMS). These are rare genetic diseases that affect either pre-
or postsynaptic components of the NMJ and lead to impaired
neuromuscular transmission and muscle weakness (Palace and
Beeson, 2008). Many forms of CMS also present low levels of
AChR at the NMJ. Although the underlying mechanisms for
that might differ between distinct mutations, the finding that
sympathomimetic substances, such as ephedrine and salbutamol,
can significantly improve these patients’ symptoms (Edgeworth,
1930; Schara et al., 2009; Lashley et al., 2010; Liewluck et al., 2011;
Finlayson et al., 2013), suggests an involvement of catecholamines
in AChR turnover. Since ephedrine and salbutamol both can acti-
vate β2-ARs and thus affect cAMP production, this could point
to a possible role of cAMP in stabilizing AChR and/or leading to
higher AChR expression. Certainly, further research is needed to
better understand these effects.

PKA MICRODOMAINS AT THE SARCOMERIC REGION
Sarcomeric PKA microdomain organization was addressed either
by immunohistochemical staining of PKA-R isoforms (Perkins
et al., 2001) or by expression studies using fluorescent protein-
labeled Epac-based cAMP biosensors (Nikolaev et al., 2004)
targeted to PKA microdomains by virtue of D/D domains
(Di Benedetto et al., 2008) specific for either PKA-RIα (RIα-
EPAC-camps) or PKA-RIIα (RIIα-EPAC-camps) (Röder et al.,
2009). Both approaches yielded essentially identical results (for
schematic, see Figure 2). While PKA-RIα was found in a broad
band overlapping with the sarcomeric actin filaments, PKA-RIIα
exhibited highly confined striated localization that coincided
with both, the m-band and the z-line. Experiments using over-
expression of AKAP disruptor peptides showed that this peculiar
distribution pattern is largely based on AKAP-dependent subcel-
lular targeting (Röder et al., 2009). Harnessing the cAMP-sensor
domain of the EPAC-camps biosensors furthermore showed a

FIGURE 2 | PKA-R isoforms display differential distribution patterns in

skeletal muscle sarcomeres. Immunohistochemical and GFP-based
sensor analyses showed that PKA-RIα essentially co-distributes with
microfilaments and PKA-RIIα with m-bands and z-lines. These distribution
patterns are the most prevalent in mouse muscle. They are based on
AKAP-binding and can be subverted in diseased muscle, such as upon
dystrophy. AKAPs relevant for these distribution patterns are still elusive,
but myospryn is very likely to participate in the anchoring of PKA-RIIα.

differential sensitivity of the two microdomains. While the cAMP
concentration in the RIα-microdomain was elevated in the pres-
ence of the agonist, αCGRP, the RIIα-microdomain responded to
norepinephrine with increased cAMP levels (Röder et al., 2009).
Both effects were ablated by AKAP disruptor peptides (Röder
et al., 2009). These data demonstrate that the sarcomeric region
of skeletal muscle exhibits clearly defined and functionally dis-
tinct PKA microdomains, which are organized by specific AKAPs.
At present, it is unclear which AKAP(s) mediate the anchor-
ing of PKA-RIα and PKA-RIIα to the different domains in the
sarcomeric region but one eminent protein, myospryn, is cer-
tainly carrying out a part of this function. This 449 kDa heavy
protein with the official gene name CMYA5 (cardiomyopathy-
associated 5) was identified by expression profiling of a cardiac
muscle library and has since been found to interact specifically
with PKA-RIIα but not (or hardly) with the other PKA-R iso-
forms (Reynolds et al., 2007). Intriguingly, endogenous myospryn
localization in the sarcomere exhibited the expected m- and z-line
expression pattern fitting to PKA-RIIα distribution (Reynolds
et al., 2007) while in another study myospryn showed only faint
m-line and strong I-band distribution (Sarparanta et al., 2010).
Whether this could indicate natural variability or be due to
other factors is unclear, but myospryn is now widely considered
to be an important determinant for PKA microdomain forma-
tion in skeletal and heart muscle. In the recent past, more and
more proteins were found to interact with myospryn, including
the structural proteins α-actinin (Durham et al., 2006), desmin
(Kouloumenta et al., 2007), dystrophin (Reynolds et al., 2008),
and titin (Sarparanta et al., 2010), as well as proteolytic enzymes
such as the muscle-specific protease, calpain 3 (Sarparanta et al.,
2010), and the protein phosphatase calcineurin (Kielbasa et al.,
2011). Notably, these proteins all play important roles in muscle
integrity and metabolic adaptations suggesting a mediator role of
myospryn in these processes (Sarparanta, 2008). This is corrob-
orated by feedback loops: Expression of myospryn is modulated
by the cAMP-dependent CREB pathway, and it is known to be
a direct target of the myocyte enhancer factor MEF2A (Durham
et al., 2006). Furthermore, absence or malfunction of myospryn
is observed in a couple of muscle diseases including tibial and
limb-girdle muscular dystrophies (TMD and LGMD2J, respec-
tively) (Sarparanta et al., 2010) as well as the most abundant
and severe form of muscular dystrophies, i.e., DMD (Reynolds
et al., 2008). Notably, in the DMD mouse model, mdx, myospryn
showed altered subcellular distribution and specific PKA activ-
ity was strongly reduced (Reynolds et al., 2008). This also fits
to another study, where PKA-RIα distribution in the sarcom-
eres was altered and, in particular, the microdomain selectivity to
respond to the specific agonists, norepinephrine and αCGRP, was
completely subverted (Röder et al., 2009). In summary, although
the precise function of cAMP microdomain organization in
skeletal muscle sarcomeres is still elusive, there are correlations
between aberrant cAMP signaling and severe muscle diseases.
Based on this rationale, urocortins were tested as therapeutics
against muscular dystrophy (Hinkle et al., 2007; Reutenauer-
Patte et al., 2012). Urocortins are neuropeptides that bind to the
GPCRs, corticotropin-releasing factor (CRF) receptors (CRFR),
of which CRF2R is highly abundant in skeletal muscle. Notably, in
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dystrophic mdx mice treatment with urocortins significantly ame-
liorated a set of symptoms, ranging from fiber necrosis to muscle
function. Possible mechanisms of action might include cAMP-
induced activation of PKA and Epac, which in turn may address
altered Ca2+ handling in skeletal muscle fibers (Reutenauer-Patte
et al., 2012).

MECHANISMS OF cAMP-INDUCED EFFECTS ON SKELETAL
MUSCLE PROTEIN METABOLISM
Skeletal muscle constitutes about 40–60% of our body masses. It
is, thus, not only driving locomotion but also represents a major
metabolic organ due to its enormous energy expenditure, its
capability to take up glucose in an insulin-dependent manner, and
its role as amino acid-source during catabolic conditions (Sandri,
2008; Glass, 2010). All these functions are intimately linked to the
sarcomeres, which constitute the vast excess of skeletal muscle tis-
sue. GPCR- and cAMP-mediated signaling can act on different
time scales, ranging from the seconds to days range, correlat-
ing to either direct activation of targets (e.g., by PKA-dependent
phosphorylation) or to changes in transcriptional profiles (e.g.,
by modulation of CREB activity). In contrast to their catabolic
effects on lipids and carbohydrate metabolism, catecholamines
exert an anabolic effect on skeletal muscle protein metabolism
(Navegantes et al., 2002). This effect is mediated by β2-ARs
and involves cAMP signaling (Navegantes et al., 2000, 2002).
Numerous studies have shown that β2-adrenergic agonists, such
as clenbuterol (“older” generation) and formoterol (“newer” gen-
eration), induce hypertrophy of skeletal muscle in rodents, large
animals and humans (Lynch and Ryall, 2008). β-agonist-induced
hypertrophy seems to be specific for striated muscle, since smooth
muscles do not increase in size in response to these agents (Reeds
et al., 1986) and β2-adrenergic agonists inhibit smooth mus-
cle cell proliferation (Southgate and Newby, 1990; Tomlinson
et al., 1994; Indolfi et al., 1997). Experiments conducted in β2-
AR−/− mice (Hinkle et al., 2002) have convincingly shown that
β2-AR is responsible for this anabolic effect. Indeed, β2-AR−/−
mice display decreased cross-sectional area of type I and IIA
fibers compared with age-matched wildtype mice (Bacurau et al.,
2009), an effect that is associated with lower muscle cAMP levels
(Gonçalves et al., 2009).

The molecular mechanisms by which cAMP signaling induces
growth and muscle-sparing responses are uncertain and may
involve an increase in the rate of protein synthesis and/or a
decrease in protein degradation (Navegantes et al., 2002; Lynch
and Ryall, 2008). A large body of evidence indicates that the
in vivo effects of cAMP-inducing agents are in part due to inhi-
bition of muscle proteolysis (Figure 3). Indeed, both chemical
and surgical sympathectomy in fed rats lead to an increase in
the activity of the Ca2+-dependent proteolytic system, which
suggests the existence of an adrenergic tonus on skeletal mus-
cle that keeps this pathway inhibited under normal conditions
(Navegantes et al., 1999, 2001). Accordingly, the administra-
tion of β2-adrenergic agonists is accompanied by a reduction
in calpain 1 activity and an increase in the activity of calpas-
tatin, an endogenous inhibitor of calpains (Bardsley et al., 1992;
Parr et al., 1992). More recently, it has been demonstrated that
β2-adrenergic agonists might attenuate muscle atrophy through
inhibitory effects on the ubiquitin-proteasome system, the main

FIGURE 3 | Hypothetical model of the mechanisms involved with the

inhibition of the Ca2+-dependent and Ubiquitin-proteasome

proteolytic systems in skeletal muscle by catecholamines and

β2-agonists. AC, adenylate cyclase; CREB, cAMP response element
binding protein; IBMX, isobutylmethylxanthine; PKA∗, activated PKA; PTX,
pentoxifylline; ?, unknown effect.

intracellular pathway for protein degradation in skeletal mus-
cle (Yimlamai et al., 2005; Gonçalves et al., 2012). This effect is
mediated through a cAMP/Akt-dependent pathway (Kline et al.,
2007; Gonçalves et al., 2009, 2012), which leads to the phos-
phorylation of Foxo3a and, consequently, the suppression of
atrogin-1/MAFbx and MuRF1, two ubiquitin E3-ligases involved
in muscle atrophy (Bodine et al., 2001; Centner et al., 2001; Lecker
et al., 2004; Sandri et al., 2004). Moreover, treatment with PDE
inhibitors increased muscle cAMP levels and decreased the rate of
total protein degradation in muscles from diabetic (Baviera et al.,
2007) and fasted rodents (Lira et al., 2007) through a clear reduc-
tion in the activity of the Ca2+-dependent proteolytic system and
the ubiquitin-proteasome system. The fact that the antiprote-
olytic effect of both β2 agonists (Gonçalves et al., 2012) and PDE
inhibitors (Baviera et al., 2007) in vitro was inhibited by H89, a
PKA inhibitor, and mimicked by 6-BNZ-cAMP, a PKA activator,
further supports the idea that activation of the cAMP cascade
via a PKA-dependent pathway is one of the regulatory mecha-
nism(s) to prevent excessive skeletal muscle protein breakdown.
Given that in dystrophic muscle the Ca2+-dependent proteolytic
system and the ubiquitin-proteasomal system are activated on the
one hand (Kar and Pearson, 1976; Spencer and Tidball, 1996;
Kumamoto et al., 2000) and PKA signaling, on the other hand, is
disturbed (Reynolds et al., 2008; Röder et al., 2009), it is reason-
able to suggest that increased calpain and proteasome activities
contribute to dystrophic pathology and, by extension, that pro-
tease inhibition by cAMP-inducing agents could be a treatment
strategy for DMD.

ON THE ORIGIN AND DESTINATION OF CATECHOLAMINES
IN SKELETAL MUSCLE
It is general knowledge that sympathetic first messengers can
be released from either adrenal medulla as hormones or from
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sympathetic neurons as neurotransmitters directly onto target tis-
sues (Mason, 1968). However, surprisingly little is known about
the real contributions of these different modes of sympathetic
activities in most tissues (Daly and McGrath, 2011) and this holds
true also for skeletal muscle. Yet, to our knowledge, there are a few
studies reporting on direct innervation of skeletal muscle fibers
by non-myelinated, noradrenergic fibers (Boeke, 1909a,b, 1913;
Barker and Saito, 1981; Tadaki et al., 1995), suggesting that sym-
pathetic actions on skeletal muscle are at least partially mediated
by neural mechanisms. Accordingly, a study using surgical abla-
tion of sympathetic ganglia, which innervate hind limb muscles
have shown that direct innervation of skeletal muscles by auto-
nomic nerves is critical for muscle homeostasis (Navegantes et al.,
2004) and a wealth of investigations has dealt with the effects of
sympathetic agonists on skeletal muscle force potentiation and
release of acetylcholine from motoneurons (see, e.g., Oliver and
Schäfer, 1895; Goffart and Ritchie, 1952; Krnjevic and Miledi,
1958; Bowman and Raper, 1967). The latter are processes, which
are likely to need fast regulation in the course of fight-or-flight
situations. This triggered us to reinvestigate the distribution of
sympathetic innervation in skeletal muscle and to address dif-
ferences between sympathetic targets in healthy and dystrophic
muscles. Thus, we first studied the distribution of the sympathetic
neuron marker, tyrosine hydroxylase (TOH) in longitudinal sec-
tions of mouse hindlimb muscle and found this marker protein
to be concentrated on top of most NMJs (Figure 4A). This is

FIGURE 4 | Tyrosine hydroxylase (TOH) immunofluorescence is present

in sparse axon-like processes and at NMJs. Mouse hindlimb muscles
were sectioned and then stained with α-bungarotoxin-AlexaFluor555
(AChR) and an antibody against TOH. Then, confocal microscopy was
performed. All panels show maximum z-projections of several optical
slices. From left to right, fluorescence signals of AChR, TOH, and overlays
are depicted. In overlays, AChR and TOH appear in red and green,
respectively. (A) Overview picture showing that most NMJs display
enrichments of TOH immunofluorescence. (B) Note thin and pearl chain-like
TOH-positive process that ends next to TOH-positive accumulation, which
shows a complementary distribution with respect to AChR. (C) Detail of a
NMJ with TOH staining complementary to AChR labelling and with
emanating axon-like process.

in accordance with previous studies carried out in several ver-
tebrate species, including man (Chan-Palay et al., 1982a,b). In
many cases, enrichments of TOH immunostaining in proximity
to NMJs were connected to pearl chain-like processes, which are

FIGURE 5 | β2-AR-immunofluorescence is found in motoneurons and

muscle fibers and is severely altered in dystrophic muscle. Mouse
hindlimb muscles of wildtype (A,B,E left) or dystrophic mdx mice (C,D,E

right) were sectioned and then stained with α-bungarotoxin-AlexaFluor555
(AChR) and an antibody against β2-AR. Then, confocal microscopy was
performed. (A–D) Show maximum z-projections of several optical slices, in
(E) single optical slices are depicted. From left to right, fluorescence signals
of AChR, β2-AR, and overlays are depicted. In overlays, AChR and β2-AR
appear in red and green, respectively. In wildtype muscles, β2-AR
immunofluorescence covers entire motor nerve bundles (A) and perfectly
matches the AChR arborized structures in the NMJ (B). This is typical for
the distribution of motoneuronal markers. Conversely, β2-AR
immunofluorescence is much sparser in dystrophic muscle (C) and exhibits
only partial overlap with AChR staining (D). In muscle fibers of wildtype
animals (E left) β2-AR is found in triple striations per sarcomer, similar to
the distribution of PKA-RIIα (see Figure 2). This striation is mostly absent in
dystrophic muscle (E right), where β2-AR distribution is often uniform along
the fibers. Finally, anostomotic β2-AR-positive, axon-like processes of
unknown identity are also often seen running along muscle fibers (E left).
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likely to represent sympathetic axons (Figure 4B). Notably, while
previous investigators performed immunostainings on transverse
muscle sections and thus proposed TOH to be present in the
motoneuronal presynaptic portion of NMJs (Chan-Palay et al.,
1982a,b), the analysis of our longitudinal slices revealed that TOH
immunofluorescence does not match postsynaptic AChR staining
as it would be typical for motoneuronal markers, but was mostly
just in the gaps between the NMJ pretzel structure (Figure 4C).
That fits to the older observations from Boeke based on tis-
sue silver impregnation (Boeke, 1909a,b, 1913) and corroborates
his suggestion that sympathetic neurons run and terminate next
to motoneurons. Future investigations should be carried out to
further strengthen this finding.

Next, we addressed the expression pattern of β2-AR in
hindlimb muscle. This showed immunohistochemical signals of
β2-AR in at least four different locations: (1) larger blood ves-
sels (not depicted), (2) motoneurons (Figures 5A,B), (3) muscle
fibers (Figure 5E, left panel), and (4) ill-defined anastomotic
fibers (Figure 5E, on left panel see central part of the picture).
Since the presence of β2-AR had been found by staining and
anticipated to be present due to functional roles in blood ves-
sels (Daly and McGrath, 2011), motoneurons (Melamed et al.,
1976; Wohlberg et al., 1986; Bondok et al., 1988; Adachi et al.,
1992; Parkis et al., 1995; Zeman et al., 2004; Tartas et al., 2010;
Noga et al., 2011; Baker and Baker, 2012) and muscle fibers
(Gross et al., 1976; Cairns and Dulhunty, 1993a,b; Cairns et al.,
1993; Kokate et al., 1993; Navegantes et al., 1999, 2000, 2001,
2002, 2003, 2004; Prakash et al., 1999; Decostre et al., 2000;
Gonçalves et al., 2012), our findings in wildtype muscles were

corroborating previous reports. However, the difference between
wildtype and dystrophic mdx muscles was striking, both with
respect to neuronal as well as muscle staining: First, while the
typical pretzel-shaped postsynaptic AChR signals in wildtype
muscle were perfectly mirrored by presynaptic β2-AR stain-
ing (Figures 5A,B) in almost fibers, this was much rarer the
case in mdx synapses (Figures 5C,D), which were also highly
fragmented as reported previously (Torres and Duchen, 1987;
Lyons and Slater, 1991; Grady et al., 2000). Second, while β2-AR
immunofluorescence displayed a highly regular striated pattern-
ing in wildtype muscle (Figure 5E, left panel), it was almost uni-
formly distributed in many fibers from mdx muscles (Figure 5E,
right panel). In summary, these data show that there are signif-
icant differences in distribution of β2-AR between healthy and
dystrophic muscles. In the context of the PKA microdomain
hypothesis this could be an additional level of dysregulation lead-
ing to alterations of cAMP with all the sequelae as discussed
before.
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