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Long QT Syndrome (LQTS) is an acquired or inherited disorder characterized by
prolonged QT interval, exertion-triggered arrhythmias, and sudden cardiac death. One
of the most prevalent hereditary LQTS subtypes, LQT2, results from loss-of-function
mutations in the hERG channel, which conducts IKr, the rapid component of the
delayed rectifier K+ current, critical for cardiac repolarization. The majority of LQT2
mutations result in Class 2 deficits characterized by impaired maturation and trafficking
of hERG channels. Here, we have developed a high-throughput flow cytometric assay to
analyze the surface and total expression of wild-type (WT) and mutant hERG channels
with single-cell resolution. To test our method, we focused on 16 LQT2 mutations in
the hERG Per-Arnt-Sim (PAS) domain that were previously studied via a widely used
biochemical approach that compares levels of 135-kDa immature and 155-kDa fully
glycosylated hERG protein to infer surface expression. We confirmed that LQT2 mutants
expressed in HEK293 cells displayed a decreased surface density compared to WT
hERG, and were differentially rescued by low temperature. However, we also uncovered
some notable differences from the findings obtained via the biochemical approach.
In particular, three mutations (N33T, R56Q, and A57P) with apparent WT-like hERG
glycosylation patterns displayed up to 50% decreased surface expression. Furthermore,
despite WT-like levels of complex glycosylation, these mutants have impaired forward
trafficking, and exhibit varying half-lives at the cell surface. The results highlight utility
of the surface labeling/flow cytometry approach to quantitatively assess trafficking
deficiencies associated with LQT2 mutations, to discern underlying mechanisms, and
to report on interventions that rescue deficits in hERG surface expression.

Keywords: long QT syndrome type 2, HERG channels (Kv11), ion channel trafficking, flow cytometry, cardiac
arrhythmias

INTRODUCTION

Long QT Syndrome (LQTS) is an inherited or acquired disorder characterized by delayed
cardiac action potential repolarization, which predisposes to polymorphic ventricular tachycardias
(torsade de pointes), syncope, and sudden cardiac death (SCD) (Moss and Kass, 2005; Bohnen et al.,
2016). Congenital LQTS occurs in approximately 1 in 2000 live births (Schwartz et al., 2009), and
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accounts for a significant portion of ∼400,000 cases of SCD in
the United States each year (Tester and Ackerman, 2009; George,
2013). Loss-of-function mutations in several genes have been
linked to LQTS (LQT1-LQT13), with around 70% occurring
in genes encoding pore-forming subunits for the primary
repolarizing K+ currents in ventricular cardiomyocytes –
KCNQ1 (LQT1) and hERG (LQT2) (Bohnen et al., 2016).

The hERG potassium channels assemble as a tetramer of four
Kv11.1 α1 pore-forming subunits, and conduct IKr , the rapid
component of the delayed rectifier K+ current (Trudeau et al.,
1995). IKr is critical for proper cardiac repolarization, as well
as the suppression of arrhythmic events caused by premature
stimuli (Sanguinetti et al., 1995; Vandenberg et al., 2012). Over
500 LQT2 mutations in hERG have been described to date,
with ∼40% consisting of non-sense mutations and ∼60% being
missense mutations (Schwartz et al., 2009; Smith et al., 2016).
Four classes of mutations have been described: Class 1 mutations
affect channel synthesis or translation; Class 2 mutations affect
channel trafficking and intracellular transportation; Class 3
mutations alter channel gating; and Class 4 affect ion permeability
(Smith et al., 2016). It has become apparent that the vast
majority (∼88%) of LQT2 mutations are Class 2 type, featuring
compromised channel trafficking to the plasma membrane
(Anderson et al., 2006, 2014; Smith et al., 2016). Understanding
the mechanisms regulating hERG trafficking and how these may
be dysregulated in disease is important for molecular insights into
the pathophysiology of LQT2.

The hERG channels undergo several levels of post-
translational processing and maturation before the functional
channel reaches the cell surface (Figure 1). They are synthesized
in the endoplasmic reticulum (ER), which provides an
environment for optimum folding and assembly. In the ER,
the 132-kDa protein undergoes N-linked core glycosylation
of the protein, generating a 135-kDa immature protein (Zhou
et al., 1998b; Petrecca et al., 1999; Gong et al., 2002) (Figure 1,
left – step 1). From the ER, hERG that is properly folded and
assembled is exported via COPII vesicles (Delisle et al., 2009)
to the Golgi where it is matured through N-linked complex
glycosylation to generate a 155-kDa protein that is biochemically
distinguishable from the immature form (Figure 1, left – step 2).
Most studies investigating hERG trafficking defects in inherited
or acquired LQT2 have taken advantage of these biochemical
signatures, utilizing immunoblot assays to distinguish relative
expression of 135-kDa immature and 155-kDa mature bands
and, thereby, infer surface expression (Figure 1, left – step 3)
(Zhou et al., 1998b, 1999; Gong et al., 2002, 2005; Guo et al.,
2009; Dennis et al., 2011; Apaja et al., 2013; Ke et al., 2013).

The conclusion that a majority of LQT2 mutations are of the
Class 2 type (i.e., trafficking-deficient) come from observations
that there is either a relative or a complete loss of the 155-
kDa mature hERG protein in most of these instances (Anderson
et al., 2006, 2014; Ke et al., 2013). An important feature of
many trafficking-deficient LQT2 mutants is that they are not
irretrievably lost, but can be rescued by incubation at low
temperature or with chemical chaperones such as the Kv11.1
channel blocker, E-4031 (Zhou et al., 1999; Ficker et al., 2002;
Anderson et al., 2006). Such correction typically results in the

re-emergence of the mature 155-kDa band, thereby providing
a signature that can be monitored to evaluate rescue efficacy
(Figure 1, right).

Despite the evident efficacy of the biochemical assay to
probe hERG protein trafficking, there are some potential
limitations to this approach. First, it does not provide a direct
measure of surface channels. This is pertinent giving findings
that glycosylation may not be absolutely required for surface
trafficking (Gong et al., 2002), and the possibility that some fully
glycosylated channels may still be compromised in their ability
to reach the cell surface (Dennis et al., 2011; Smith et al., 2011).
Second, the method may lack subcellular discrimination since
glycosylated channels could potentially reside in the Golgi as
well as post-Golgi compartments including the cell surface and
endosomes. Finally, the biochemical approach is relatively labor-
intensive which limits opportunities for rapid high throughput
screening strategies to identify novel trafficking correctors as
potential therapeutics. Here, we sought to develop an optical
high-throughput assay to monitor surface and total hERG
protein expression that would be useful to discern mechanisms
underlying LQT2 trafficking deficiencies and also amenable as an
assay for identifying new hERG protein trafficking correctors.

RESULTS

Design and Implementation of a Flow
Cytometric Assay to Analyze WT and
Mutant hERG Surface Expression
Previous studies from our laboratory and others have shown
the utility of a 13-residue high-affinity bungarotoxin binding
site (BBS) introduced as an extracellular epitope tag to
faithfully label surface population of distinct ion channels
and membrane proteins (Sekine-Aizawa and Huganir, 2004;
Wilkins et al., 2008; Yang et al., 2010; Aromolaran et al.,
2014; Cassidy et al., 2014). Building on previous work that
utilized an extracellular HA epitope for surface detection
of hERG (Ficker et al., 2003; Wible et al., 2005), we
introduced the BBS tag into the extracellular S1-S2 loop
of hERG to enable efficient detection of surface channels
in non-permeabilized cells with Alexa Fluor 647-conjugated
bungarotoxin (BTX647) (Figure 2A). We also fused YFP to
the C-terminus of hERG to enable simultaneous fluorescence
detection of total hERG expression (Figure 2A). Human
embryonic kidney (HEK293) cells transiently transfected with
wild-type (WT) BBS-hERG-YFP displayed robust fluorescence
signals for total (yellow; YFP) and surface (red; BTX647) channel
pools when imaged by confocal microscopy (Figure 2B). We
used flow cytometry to quantify total and surface BBS-hERG-
YFP channel pools in an unbiased and high-throughput manner,
all with single cell resolution (Figure 2C). Consistent with
the confocal microscopy results, cells expressing WT BBS-
hERG-YFP (i.e., YFP-positive cells) displayed robust surface
expression, with red fluorescence signals up to a 100-fold higher
than a threshold level established with single color controls
(Figures 2C,D).
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FIGURE 1 | hERG maturation, glycosylation, and surface trafficking. (Left)
Forward trafficking of WT hERG (green) is represented. WT hERG undergoes
assembly and post-translational N-linked core glycosylation (purple squares)
in the endoplasmic reticulum (step 1) and complex glycosylation (green circles)
in the Golgi (step 2). Functional channels on the cell surface contain the fully
glycosylated 155-kDa mature form of hERG (step 3). Immunoblot (inset, Left)
adapted from Gong et al. (2002) represents core glycosylated (135-kDa) and
complex glycosylated (155-kDa) hERG bands. (Right) Correctable LQT2
mutant (i.e., Class 2 trafficking defect) is represented at 37◦C (red) and
incubation with low temperature/chemical chaperone (blue). Immunoblot
(inset, Right) adapted from Zhou et al. (1999) demonstrates
temperature-dependent rescue of complex glycosylation.

As an initial test of the robustness of this assay to report
on trafficking-deficient LQT2 mutants, we examined the impact
of introducing an LQT2-causing point mutation in hERG,

C44F, which is known to be trafficking-deficient as it is not
post-translationally processed to the 155-kDa mature form
of the protein (Lupoglazoff et al., 2001; Anderson et al.,
2014). Consistent with this view, mutant BBS-hERGC44F-YFP
displayed no surface BTX647 red fluorescence in YFP-positive
cells (Figures 2E–G).

Surface Labeling Assay Reveals Distinct
Subtypes of LQT2-Causing Mutations in
the PAS Domain
The hERG1a protein contains two major intracellular domains –
the N-terminal Per-Arnt-Sim (PAS) domain and C-terminal
cyclic nucleotide binding domain (CNBD) – which interact
and require proper folding for effective channel trafficking
and gating (Muskett et al., 2011; Gianulis et al., 2013; Ng
et al., 2014; Wang and MacKinnon, 2017) (Figure 3A).
In a recent comprehensive study, Anderson et al. (2014)
conducted a large-scale analyses of hERG channel mutations
to better understand and characterize trafficking properties
of the channel resulting from mutations in distinct domains.
They expressed mutant hERG channels in a heterologous
expression system, under two corrective conditions –
incubation at decreased temperature (27◦C) or with the
drug E-4031, a potassium channel blocker and pharmacological
chaperone. Utilizing the immunoblot assay, they confirmed
the predominance of impaired trafficking as the mechanism
underlying loss-of-function of LQT2 mutant channels, and
further demonstrated five distinct subclasses of mutations: (1)
WT-like, (2) correctable by low temperature alone, (3) corrected
by E4031 alone, (4) corrected by both low temperature and

FIGURE 2 | Surface labeling of hERG channels. (A) Cartoon of BBS-hERG-YFP subunit. PASD (blue) and CNBD (red) structures adapted from Wang and
MacKinnon (2017) (PDB: 5VA2). The bungarotoxin binding site (BBS) epitope (S1-S2) allows for selective labeling of surface hERG channels while YFP signal
represents total hERG protein expression. (B) Confocal image of a live cell expressing BBS-hERG-YFP and stained with BTX647. (C) Flow cytometry dot plot
showing surface (BTX647 fluorescence) and total (YFP fluorescence) hERG expression in cells expressing BBS-hERG-YFP. Vertical and horizontal lines represent
thresholds for YFP and BTX647-positive cells, respectively, based on the analyses of single color controls. Represented are YFP-positive cells with BTX647 signal
above (red dots) or below threshold (green dots); BTX647-positive cells with YFP signal below threshold (gray dots); and untransfected cells (black dots).
(D) Histogram of BTX647 fluorescence in cells expressing WT BBS-hERG-YFP, generated from population of YFP-positive cells. Dotted line is threshold value for
BTX647 signal. (E–G) Data for cells expressing LQT2 mutant BBS-hERGC44F -YFP channels; same format as B–D.
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FIGURE 3 | Low temperature rescue of defective surface trafficking in 16 LQT2 hERG channels with mutations in the PAS domain. (A) Structure of the hERG PAS
domain in complex with CNBD, adapted from Wang and MacKinnon (2017) (PDB: 5VA2). Positions of 16 LQT2 mutations highlighted according to their reported
impact on hERG trafficking as assessed by the prevalence of the 155-kDa mature protein and the rescue of this band by low temperature and/or E4031–WT
glycosylation (blue), uncorrectable (red), temperature correctable only (yellow), and temperature and E4031 correctable (teal). (B) Western blot analyses of PAS
domain LQT2 mutants reproduced from Anderson et al. (2014) (with permission from Nature Communications). Horizontal dashes at the sides of the blots represent
140 kDa. (C) Quantification of surface hERG channels (Alexa647 fluorescence) from flow cytometry experiments (n = 8878–30497 cells; N = 4) for WT and LQT2
mutant hERG channels at 37 and 27◦C. Data are normalized to WT hERG surface expression at 37◦C. ∗p < 0.02 versus WT 37◦C, †p < 0.02 versus WT 27◦C,
two-way ANOVA followed by Dunnett’s test.

E4031, and (5) uncorrectable by either low temperature or
E4031.

The comprehensive study by Anderson et al. (2014), in
combination with previous studies looking at PAS domain
mutations (Gianulis and Trudeau, 2011; Harley et al., 2012;
Ke et al., 2013; Perry et al., 2016), provided a valuable resource
and opportunity to test the robustness of the flow cytometry
approach and its potential utility in providing mechanistic
information beyond that provided by the biochemical method.
To accomplish this, we focused on 16 mutations clustered in the
PAS domain that based on the relative prevalence of 155-kDa
fully glycosylated band were previously classified as: (1) WT-
like (N33T, R56Q, A57P; blue), (2) uncorrectable (C44F, N45Y;
red), (3) temperature correctable only (I42N, Y43C, C49Y, G53D;
yellow), and (4) both low temperature and E4031 correctable

(S26I, K28E, F29L, I30T, A32T, Y54H, E58A; teal) (Figure 3B;
Western blots reproduced from Anderson et al., 2014).

We expressed WT and mutant BBS- and YFP-tagged hERG
channels in HEK293 cells, under both 37◦C and low temperature
(27◦C) conditions. Quantification of surface intensity from four
independent experiments are shown, normalized to WT surface
expression at 37◦C (Figure 3C). Reassuringly, comparison of
the surface density data to the immunoblotting study shows
areas of concordance. First, we observed that all the LQT2
mutant channels displayed significant deficits in surface density
compared to WT when cells were incubated at 37◦C. Second,
incubation at 27◦C resulted in rescued surface density for all
mutants except C44F and N45Y. However, there were some
notable differences from the previous study. We observed a
significant reduction in surface density of N33T, R56Q, and A57P
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channels that were previously classified as WT-like based on their
glycosylation pattern at 37◦C (Figure 3C). Moreover, the low
temperature rescue of I42N and Y43C channels was only partial,
which was not evident by the biochemical assay (Figures 3B,C)
(Anderson et al., 2014).

Overall, these results validate the utility of the flow cytometry
approach to quantify surface expression of WT and LQT2 hERG
channels in a robust and sensitive manner, and to quantitatively
evaluate correction of trafficking deficiencies.

LQT2 Mutations With WT-Like
Glycosylation Patterns Demonstrate
Reduced Surface Expression, Impaired
Forward Trafficking, and Distinct
Half-Lives at the Cell Surface
The discrepancy between the biochemical and flow cytometry
approaches in the assignment of WT-like properties to N33T,
R56Q, and A57P channels was interesting as it suggested that the
presence of a WT-like abundance of the 155-kDa mature protein
does not necessarily translate to normal channel surface density.
On the basis of the flow cytometry approach, these mutants
would be more appropriately characterized as temperature
correctable, rather than WT-like (Figures 4A–D).

It was instructive to consider the potential mechanisms
contributing to the deficits in surface expression of these mutant
channels despite their WT glycosylation patterns. In principle,
these could be mediated by impaired forward trafficking,
decreased stability of the channel at the surface, or a combination
of both mechanisms. An advantage of the flow cytometry
approach is it can be adapted to probe these possibilities utilizing
two complementary, optical pulse-chase assays (Kanner et al.,
2017). To test differences in forward trafficking, we utilized a live-
cell assay to analyze the delivery of new channels to the surface
over time (Figure 4E). Live, non-permeabilized cells expressing
WT or mutant BBS-hERG-YFP channels at 37◦C for 24 h were
moved to 4◦C to halt all trafficking processes and subsequently
exposed to unconjugated BTX to block all extracellular BBS
epitopes initially present at the plasma membrane (pulse).
Cells were then incubated at 37◦C for varying time periods
(chase), after which cells were returned to 4◦C and the newly
delivered surface channels labeled with BTX647 and quantified
by flow cytometry. Control cells expressing WT BBS-hERG-
YFP demonstrated a steady delivery of new channels to the
surface (Figure 4F). In contrast, all three mutants demonstrated
impaired delivery of new channels to the surface as evident by a
significantly reduced plateau in BTX647 fluorescence (Figure 4F).

To determine the residence time of channels at the cell
surface, we utilized a second optical, pulse-chase assay to measure
removal of channels from the plasma membrane (Figure 4G).
Live, non-permeabilized cells expressing WT and mutant BBS-
hERG-YFP channels incubated at 27◦C for 24 h (to ensure a
comparable number of channels initially at the cell surface)
were moved to 4◦C and labeled with biotinylated bungarotoxin
(BTX-biotin) at 4◦C (pulse). Cells were then incubated at
37◦C for varying time periods to resume trafficking (chase),
and subsequently labeled with streptavidin-conjugated Alexa

Fluor 647 (SA-647) at 4◦C. In this paradigm, SA-647 labeling
would only occur on channels that were initially present at
the surface and labeled with BTX-biotin during the pulse
period. As expected, WT hERG channels demonstrated an
exponential decrease in surface labeling over time (Figure 4H).
Interestingly, the three mutants demonstrated different rates of
decline in surface labeling (Figure 4H), implying different rates
of internalization, with R56Q displaying the most rapid removal
from the cell surface.

DISCUSSION

In this study, we sought to develop a high-throughput optical
flow cytometric assay that enables quantitative assessment of WT
and LQT2 hERG channel trafficking, and rescue of trafficking-
deficient mutants by low temperature or pharmacological
chaperones. The method is complementary to other previously
described approaches to monitor hERG channel trafficking,
including a biochemical assay that assesses relative abundance of
immature 135-kDa and fully glycosylated 155-kDa forms of the
protein. By comparing results from the flow cytometric analyses
of 16 PAS domain mutant hERG channels to published data of
the same mutations assessed by the biochemical approach, we
find not only areas of concordance that validates the assay, but
also some discrepancies that highlight advantages of the flow
cytometry method. We discuss the flow cytometry assay and our
results in the context of established methods to monitor hERG
channel trafficking and some of the results obtained with these
approaches.

Complex Glycosylation as a Marker for
hERG Maturation and Surface Trafficking
The first studies elucidating glycosylation as a critical player in
the maturation of WT hERG channels were reported almost two
decades ago (Zhou et al., 1998b, 1999; Petrecca et al., 1999). It
was further shown that while certain LQT2 mutations displayed
post-translational processing similar to WT, others exhibited
an impaired maturation evident as an absence of the 155-kDa
fully processed protein band (Zhou et al., 1998a; Anderson
et al., 2006, 2014). Moreover, treatment of cells with protease
led to the digestion and disappearance of the mature 155-kDa
band, with no effect on the immature 135-kDa band, consistent
with the mature protein being predominantly at the cell surface
(Zhou et al., 1998b; Rajamani et al., 2006). Consequently,
biochemical analyses of the relative abundance of 135- and 155-
kDa hERG bands has been a standard widely adopted tool to
analyze trafficking of WT and mutant hERG channels under
different conditions. Nevertheless, it is noteworthy that Gong
et al. (2002) demonstrated that while N-linked glycosylation of
hERG occurs at residue N598, mutating this site did not abolish
hERG channel surface expression despite the disappearance of
the 155-kDa form of the protein. Hence, while glycosylation is
important for hERG maturation, it is not absolutely required for
assembly and expression of functional hERG channels at the cell
surface. This suggests the possibility that a sole reliance on the
biochemical assay to categorize mechanisms underlying LQT2
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FIGURE 4 | LQT2 hERG channels with WT glycosylation patterns show reduced surface expression. (A–D) Representative histograms representing surface intensity
from HEK293 cells expressing BBS- and YFP-tagged (A) WT HERG (gray) at 37◦C, and LQT2 mutants (B) N33T, (C) R56Q, and (D) A57P incubated at 37◦C
(orange) and 27◦C (blue). (E) Schematic adapted from Kanner et al. (2017), showing optical pulse-chase assay for measuring BBS-hERG-YFP forward trafficking.
Cells expressing BBS-hERG-YFP were incubated at 37◦C for 24 h prior to the experiment. BBS-tag on channels initially at the cell surface was blocked by
incubation with untagged α-bungarotoxin (BTX) at 4◦C. Cells were washed and placed back at 37◦C for varying time intervals (10, 20, 40, 60 min) to resume delivery
of new channels to the surface membrane. Newly delivered channels were labeled with Alexa Fluor 647 conjugated BTX (BTX647) at 4◦C and analyzed using flow
cytometry. (F) Time evolution of BBS-hERG-YFP delivery to the surface for WT (•, n = 7312–8016 cells; N = 2), N33T (�, n = 6886–7533 cells; N = 2), R56Q (N,
n = 7756–9248 cells; N = 2), A57P (H, n = 9159–10139 cells; N = 2). Smooth curves are fits of an exponential growth function to the data: y=A(1−e−t/τ). For WT (•),
A = 560.7 ± 47.5, τ = 53.6 ± 9.5 min; N33T (�), A = 293.1 ± 42.2, τ = 42.2 ± 12.3 min; R56Q (N), A = 248.6 ± 35.5, τ = 30.4 ± 10.4 min; A57P (H),
A = 276.2 ± 40.0, τ = 44.5 ± 12.6 min. (G) Schematic adapted from Kanner et al. (2017), showing optical assay for measuring BBS-hERG-YFP stability at the cell
surface. Cells expressing BBS-hERG-YFP were incubated at 27◦C for 24 h prior to the experiment. Channels initially at the cell surface were labeled with
biotin-conjugated BTX (BTX-biotin) at 4◦C. Cells were washed and incubated at 37◦C for varying time intervals (10, 20, 40, 60 min) to allow for internalization of
surface channels. The remaining surface channels were labeled with Alexa Fluor 647-conjugated streptavidin (SA-647) at 4◦C. (H) Time evolution of loss of surface
BBS-hERG-YFP channels WT (•, n = 8184–10128 cells; N = 3), N33T (�, n = 8499–10175 cells; N = 3), R56Q (N, n = 9460–12338 cells; N = 3), A57P (H,
n = 7123–8911 cells; N = 3). Smooth curves are fits of an exponential decay function to the data: y=(1−A)e−t/τ+A . For WT (•), A = 0.19 ± 0.02, τ = 12.9 ± 0.9 min;
N33T (�), A = 0.10 ± 0.02, τ = 10.6 ± 0.8 min; R56Q (N), A = 0.05 ± 0.004, τ = 8.2 ± 0.2 min; A57P (H), A = 0.15 ± 0.05, τ = 16.5 ± 3.2 min. ∗ and ∗, p < 0.05
for N33T and R56Q, respectively, compared to WT; two-way ANOVA followed by Dunnett’s test.

mutations could potentially misclassify some as being in the Class
2 trafficking-deficient category.

There has been relatively scant research on the prevalence of
the opposite phenomenon: Does a WT-like glycosylation pattern
guarantee channel surface density similar to WT hERG? Previous
studies found that despite rescue of the mature 155-kDa band in

antidepressant-induced and inherited G601S LQT2 by lysosomal
inhibitors and microtubule depolymerization, respectively, there
was no subsequent rescue in functional hERG expression at
the surface membrane (Dennis et al., 2011; Smith et al., 2011).
Of the 16 PAS domain LQT2 mutations we studied, three
had been previously classified as WT-like on the basis of their
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glycosylation patterns (Anderson et al., 2014). Remarkably, we
found that all three exhibited significantly reduced surface
expression compared to WT hERG, demonstrating lack of an
absolute correlation between relative abundance of the 155-
kDa mature protein form and its level of expression at the
cell surface. We further found that the putative WT-like LQT2
mutant channels displayed impaired forward trafficking. Given
that these mutants have WT glycosylation patterns, they have
presumably reached or passed through the Golgi compartment.
We cannot distinguish from our results whether the impaired
forward trafficking arises from deficits in transport from the
Golgi to the cell surface, or whether it mostly reflects shortfalls
in some post-Golgi recycling compartments. This is pertinent
as robust Rab11-mediated recycling of hERG channels has been
observed (Lamothe and Zhang, 2013; Chen et al., 2015).

Differential Plasma Membrane Stability
of LQT2-Causing Mutants
Our flow cytometry method indicated that the residence time
of WT hERG channels at the cell surface was short, with an
apparent half-life of ∼9 min. The measured half-life was even
shorter with the LQT2 mutations R56Q (∼5.7 min), and to
a lesser extent N33T (7.3 min), but not A57P (∼11.7 min).
Overall, the flow cytometry approach suggests a more rapid
removal of surface hERG channels than has been previously
reported. There have been several approaches applied to analyze
the turnover or stability of hERG channels at the cell surface.
One method uses the biochemical approach to follow the
loss of the fully glycosylated hERG protein band in cells
treated with brefeldin A. The half-life for the disappearance
of the fully glycosylated hERG protein from this approach is
on the order of ∼10 h. This biochemical method measures
the turnover of mature hERG proteins, and is distinguished
from our approach which directly measures the removal of
surface channels. Notably, it has been demonstrated using the
biochemical approach that some LQT2 mutations, including
R56Q, display a decreased protein stability compared to WT
hERG (Ke et al., 2013). Our finding that R56Q is more rapidly
removed from the cell surface is in broad agreement with this
previous report.

Another approach similar in principle to the method
described here utilizes a hemagglutinin (HA) tag engineered into
the extracellular S1-S2 loop of hERG. The labeling and fate of
surface channels are then detected either by confocal microscopy
in single cells, or cell surface ELISA in a population of cells
(Wible et al., 2005; Apaja et al., 2013; Karnik et al., 2013).
Apaja et al. (2013) utilized the cell surface ELISA approach to
measure the plasma membrane residence time of WT and LQT2
hERG proteins. They measured a plasma membrane half-life
of the WT protein of ∼ 9 and 3 h in HeLa and H9C2i cells,
respectively. It is not clear why the two methods, which seem
similar in principle, give rise to such disparate values for the
residence time of hERG channels in the plasma membrane. One
possibility is that the different cell types used in the studies could
have an impact. To this point, Apaja et al. (2013) observe a
threefold difference in the hERG plasma membrane residence
time between HeLa and H9C2i cells. Another factor could be

the stable versus transient expression of hERG channels in
heterologous systems. As demonstrated in several studies with
cystic fibrosis transmembrane conductance regulator (CFTR)
trafficking, differences among absolute half-lives of channels at
the cell surface may appear in heterologous systems and primary
cells (albeit with similar relative changes of mutant relative to
WT) (Sharma et al., 2004; Swiatecka-Urban et al., 2005; Cholon
et al., 2010). Thus, future studies applying the BTX647 labeling
method in the native cellular context of primary adult rodent
cardiomyocytes will be important for distinguishing among these
different possibilities.

A caveat for approaches that utilize epitope and fluorescent
protein tags is the potential for unanticipated effects on hERG
channel trafficking. This concern is mitigated by our findings
that: (1) the tagged WT hERG trafficks robustly to the cell surface,
and (2) the impact of PAS domain mutations on hERG surface
density is largely consistent with expectations based on previous
analyses of glycosylation patterns and low temperature rescue.

Flow Cytometry as a Versatile Assay to
Classify Trafficking-Deficient hERG
Mutants and Elucidate New Therapeutic
Strategies
Beyond the enhanced sensitivity and capacity to increase
mechanistic insights, an important advantage of the flow
cytometry method is its versatility compared to existing
approaches. Existing ELISA-based assays rely on total
fluorescence/chemiluminescence from cell populations. The
lack of single cell resolution limits comparisons to homogeneous
populations and potentially overlooks critical points in
quality control (i.e., punctate/apoptotic cells, variable protein
expression). Confocal studies allow for cellular/subcellular
visualization, but do not provide the ability to easily quantify
a large number of cells in an unbiased fashion. The flow
cytometry method combines benefits of both approaches,
enabling rapid analyses of a large population of cells with
single-cell resolution, accounting for variations in transfection
efficiency, and permitting normalization of channel surface
expression to total protein expression levels. As such, there is
no need to make stable cell lines for different mutations, and
the capability to simultaneously analyze many colors at a time
allows for potential applications that require multiplexing. Lastly,
recent development and availability of 96-well flow cytometry
protocols allow this approach to be adapted for medium- to
high-throughput formats to identify novel correctors of hERG
channel trafficking in a mutation-specific manner (Krutzik and
Nolan, 2006; Duensing and Watson, 2018).

Although we have not conducted functional studies on
these LQT2 mutants, it is important to note that previous
studies observed changes in gating kinetics in certain PAS
domain mutations (Chen et al., 1999; Gianulis and Trudeau,
2011). As such, the mere rescue of trafficking deficiencies may
not be sufficient for therapeutic rescue of hERG function in
the complex electrical milieu of the cardiac action potential
(Perry et al., 2016). This highlights the need for combinatorial
approaches for treating LQT2 pathology at both the cell biological
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(i.e., impaired forward trafficking, reduced residency time at the
cell surface), and biophysical (i.e. conductance, gating kinetics)
level. As there is no single mutation that is dominant in LQTS
(with more variants being continually discovered), the use of
new methods, such as flow cytometry, to further hone existing
classifications of mutations and elucidate therapeutic subclasses
will be critical in the pursuit of precision medicine for inherited
arrhythmias and other ion channelopathies.

MATERIALS AND METHODS

Molecular Biology and Cloning of
Plasmid Vectors
The BBS-hERG-YFP constructs were engineered on the
previously described hERG1a-YFP template (Puckerin
et al., 2016), which utilized overlap extension PCR to fuse
enhanced yellow fluorescent protein (EYFP) in frame to the
C-terminus of hERG1a. A 13-residue bungarotoxin-binding site
(BBS; TGGCGGTACTACGAGAGCAGCCTGGAGCCCTACC
CCGAC) (Sekine-Aizawa and Huganir, 2004; Yang et al.,
2010) was then introduced between residues T436/E437
in the extracellular S1–S2 loop of hERG using the Quik-
Change Lightning Site-Directed Mutagenesis Kit (Stratagene)
according to the manufacturer’s instructions. 16 LQT2 mutations
were introduced in the PAS domain of BBS-hERG-YFP via
site-directed mutagenesis.

Cell Culture and Transfections
Low passage human embryonic kidney (HEK293) cells were
cultured at 37◦C in Dulbecco’s Modified Eagle’s Medium
(DMEM) supplemented with 8% fetal bovine serum (FBS) and
100 mg/mL of penicillin–streptomycin. HEK293 cell transfection
was accomplished using the calcium phosphate precipitation
method. Briefly, plasmid DNA was mixed with 7.75 µL of 2M
CaCl2 and sterile deionized water (to a final volume of 62.5 µL).
The mixture was added dropwise, with constant tapping to
62.5 µL of 2x Hepes buffered saline containing (in mM): HEPES
50, NaCl 280, Na2HPO4 1.5, pH 7.09. The resulting DNA–
calcium phosphate mixture was incubated for 20 min at room
temperature and then added dropwise to HEK293 cells (60–
80% confluent). Cells were washed with Ca2+-free phosphate
buffered saline after 4–6 h and maintained in supplemented
DMEM.

Flow Cytometry Assay of Total and
Surface Q1 Channels
Cell surface and total ion channel pools were assayed by
flow cytometry in live, transfected HEK293 cells as previously
described (Yang et al., 2010; Aromolaran et al., 2014). Briefly, 48 h
post-transfection, cells cultured in 12-well plates gently washed
with ice cold PBS containing Ca2+ and Mg2+ (in mM: 0.9 CaCl2,
0.49 MgCl2, pH 7.4), and then incubated for 30 min in blocking
medium (DMEM with 3% BSA) at 4◦C. HEK293 cells were then
incubated with 1 µM Alexa Fluor 647 conjugated α-bungarotoxin
(BTX-647; Life Technologies) in DMEM/3% BSA on a rocker at

4◦C for 1 h, followed by washing three times with PBS (containing
Ca2+ and Mg2+). Cells were gently harvested in Ca2+-free PBS,
and assayed by flow cytometry using a BD LSRII Cell Analyzer
(BD Biosciences, San Jose, CA, United States). CFP- and YFP-
tagged proteins were excited at 407 and 488 nm, respectively, and
Alexa Fluor 647 was excited at 633 nm.

Optical pulse chase assays to monitor rates of channel
forward trafficking and internalization were conducted on
live, transfected HEK293 cells as previously described (Kanner
et al., 2017). For the forward trafficking studies, cells were
incubated at 37◦C for 24 h prior to the experiments. Cells were
placed on 4◦C to halt trafficking processes and washed twice
with PBS containing Ca2+ and Mg2+. For forward trafficking
experiments, cells were incubated with 3 µM untagged BTX
in DMEM/3% BSA at 4◦C for 1 h to block surface channels,
and then washed three times with PBS containing Ca2+ and
Mg2+. Cells were incubated with DMEM/3% BSA and placed
at 37◦C to resume trafficking for different time intervals (0,
10, 20, 40, 60 min). Cells were then returned to 4◦C and
newly delivered channels were labeled with 1 µM BTX-647
in DMEM/3% BSA for 1 h. Finally, cells were washed three
times with PBS containing Ca2+ and Mg2+, gently harvested
in Ca2+-free PBS, and assayed by flow cytometry. For surface
stability/internalization experiments, cells were incubated at
27◦C for 24 h prior to the experiments. Cells were placed on
ice (4◦C) to halt trafficking processes and washed twice with
PBS containing Ca2+ and Mg2+. Cells were then incubated in
DMEM/3% BSA blocking medium for 30 min at 4◦C followed
by a 1 h incubation at 4◦C (pulse) with 1 µM biotinylated
α-bungarotoxin (BTX-biotin; Life Technologies), with gentle
rocking. Cells were washed three times in PBS containing
Ca2+ and Mg2+ and placed in DMEM/3% BSA at 37◦C for
different time intervals (0, 10, 20, 40, 60 min) to resume
trafficking (chase). Cells were returned to 4◦C, washed once with
PBS, and channels remaining at the surface were labeled with
streptavidin-conjugated Alexa Fluor 647 (Life Technologies).
Finally, cells were washed three more times with PBS with Ca2+

and Mg2+, harvested in Ca2+-free PBS, and assayed by flow
cytometry.

Data and Statistical Analyses
Data were analyzed off-line using FlowJo, Microsoft Excel,
Origin and GraphPad Prism software. Statistical analyses were
performed in Origin or GraphPad Prism using built-in functions.
Statistically significant differences between means (p < 0.05)
were determined using two-way ANOVA, followed by Dunnett’s
correction for multiple comparisons. Data are presented as
means± SD.
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