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Succinate is a building block compound that the U.S. Department of Energy (DOE)

has declared as important in biorefineries, and it is widely used as a commodity

chemical. Here, we identified the two genes increasing succinate production of the

unicellular cyanobacterium Synechocystis sp. PCC 6803. Succinate was excreted under

dark, anaerobic conditions, and its production level increased by knocking out ackA,

which encodes an acetate kinase, and by overexpressing sigE, which encodes an

RNA polymerase sigma factor. Glycogen catabolism and organic acid biosynthesis

were enhanced in the mutant lacking ackA and overexpressing sigE, leading to an

increase in succinate production reaching five times of the wild-type levels. Our genetic

and metabolomic analyses thus demonstrated the effect of genetic manipulation of

a metabolic enzyme and a transcriptional regulator on succinate excretion from this

cyanobacterium with the data based on metabolomic technique.

Keywords: cyanobacteria, metabolism, metabolomics, sigma factor, succinate

Introduction

In 2004, the U.S. Department of Energy (DOE) selected the top 12 building block chemicals from
a list of more than 300 candidates that were produced from biomass (Werpy and Petersen, 2004).
Among these, four-carbon dicarboxylic acids, including succinate, were included. Succinate can
be used as a precursor to numerous chemicals such as a biodegradable plastic like polybutylene
succinate, fibers, and pigments (Zeikus et al., 1999; Hong and Lee, 2002; Werpy and Petersen,
2004). Succinate is currently derived from petroleum, but it could also be produced using bacteria
(McKinlay et al., 2007).

Production of succinate by recombinant heterotrophic bacteria such as Escherichia coli,
Corynebacterium glutamicum, Anaerobiospirillum succiniciproducens, Actinobacillus succinogenes,
and Mannheimia succiniciproducens has been intensively studied (Samuelov et al., 1991; Guettler
et al., 1999; Chatterjee et al., 2001; Hong and Lee, 2001; Hong et al., 2004; Lee et al., 2006). Succinate
is an intermediate in the tricarboxylic acid (TCA) cycle and is excreted by succinate-producing
cells during anaerobic fermentation (McKinlay et al., 2007). Succinate is produced from
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phosphoenolpyruvate via the reductive branch of the
TCA cycle, in which phosphoenolpyruvate is converted to
oxaloacetate by phosphoenolpyruvate carboxylase (PEPC) or
phosphoenolpyruvate carboxykinase (PEPCK) under anaerobic
conditions (McKinlay et al., 2007). Malate is produced from
oxaloacetate when catalyzed by malate dehydrogenase, and
fumarate is produced from malate when catalyzed by fumarase.
This is followed by the production of succinate when catalyzed
by succinate dehydrogenase (SDH; McKinlay et al., 2007). The
overexpression of a gene encoding PEPC in E. coli increases
succinate production 3.8-fold (Millard et al., 1996). The
introduction of PEPC, PEPCK, or malic enzyme (catalyzing
a reaction from pyruvate to malate), also enhances succinate
production in E. coli (Hong and Lee, 2001; Kim et al., 2004; Lin
et al., 2005; Zhang et al., 2009). The deletion of ldhA (encoding L-
lactate dehydrogenase), adhE (encoding alcohol dehydrogenase),
and ack-pta (encoding acetate kinase and phosphotransacetylase,
respectively) prevented the production of L-lactate, ethanol, and
acetate, that are by-products during anaerobic fermentation,
also increases the production of succinate in E. coli (Sánchez
et al., 2005a,b; Jantama et al., 2007). In addition, the activation
of the glyoxylate pathway by the deletion of iclR, which encodes
the transcriptional repressor of the genes related to glyoxylate
pathway, increased the succinate productivity in E. coli (Sánchez
et al., 2005a,b). Thus, inhibition of by-product formation

FIGURE 1 | Metabolic map surrounding succinate biosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. PEP, phosphoenolpyruvate; PEPC,

phosphoenolpyruvate carboxylase; PPS, phosphoenolpyruvate synthase; PK, pyruvate kinase; MDH, malate dehydrogenase; ME, malic enzyme; FH, fumarate

hydratase; SDH, succinate dehydrogenase; PDH, pyruvate dehydrogenase; DDH, D-lactate dehydrogenase, CS, citrate synthase; PTA, phosphotransacetylase; ACK,

acetate kinase; and ACS, acetyl-CoA synthetase.

combined with additional genetic engineering can up-regulate
succinate productivity.

Cyanobacteria are a group of bacteria that fix carbon
dioxide via oxygenic photosynthesis. The potential applications
of cyanobacteria in providing renewable energy and resources
may reduce the environmental burden. Genome information for
cyanobacteria is available (Kanesaki et al., 2012), and genetic
engineering is easily performed by homologous recombination
in several cyanobacterial strains, including the non-nitrogen
fixing cyanobacterium Synechocystis sp. PCC 6803 (hereafter
Synechocystis 6803; Ikeuchi and Tabata, 2001). The genome
of Synechocystis 6803 was the first sequenced among the
cyanobacteria (Kaneko et al., 1996), and it has been used
extensively in basic and applied sciences.

There are few reports of succinate production using
cyanobacteria. McNeely et al. revealed that five fermentation
products, lactate, acetate, succinate, alanine, and hydrogen,
were produced under dark, anaerobic conditions by the
marine cyanobacterium Synechococcus sp. PCC 7002 (hereafter
Synechococcus 7002; McNeely et al., 2010). A knockout of ldhA
increased acetate and hydrogen levels, and diminished lactate
production (McNeely et al., 2010). Succinate was excreted from
the ldhA knockout cells, but it was not detected from the
wild-type cells of Synechococcus 7002 (McNeely et al., 2010).
The filamentous, non-diazotrophic cyanobacteria Arthrospira
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maxima CS-328 cells produced lactate, acetate, ethanol, formate,
and hydrogen under dark, anaerobic conditions, but succinate
excretion was not detected (Carrieri et al., 2010, 2011). For
Synechocystis 6803, hydrogen is generated under both light
and dark, anaerobic conditions (Osanai et al., 2013). Organic
acids, including D-lactates, were highly produced by genetically
engineered Synechocystis 6803 cells, and succinate was also
generated but its levels were only 3% of total carbon excreted,
suggesting that genetic and metabolic engineering are necessary
to increase succinate production (Angermayr et al., 2014;
Hollinshead et al., 2014; McNeely et al., 2014). The genes
encoding enzymes for organic acid production exist in the
Synechocystis 6803 genome (Figure 1).

We reveal here that succinate was excreted from Synechocystis
6803 cells under dark, anaerobic conditions and the succinate
levels were enhanced by reducing acetate biosynthesis and
overexpressing sigE encoding a sigma factor. These results
demonstrated the genetic manipulation of two types of genes
increasing the succinate excretion from this cyanobacterium.

Materials and Methods

Bacterial Strains and Culture Conditions
The glucose-tolerant strain of Synechocystis sp. PCC 6803,
isolated by Williams (Williams, 1988), was grown in modified
BG-11 medium, consisting of BG-110 liquid medium (Rippka,
1988) supplemented with 5mM NH4Cl (buffered with 20mM
HEPES–KOH, pH 7.8). The GT-I strain, among GT substrains,
was used in the current study (Kanesaki et al., 2012). Liquid
cultures were bubbled with 1% (v/v) CO2 in air and incubated
at 30◦C under continuous white light (∼50–70µmol photons

m−2 s−1). For the mutant strains, 10, 0.3, and 10µg/mL of
kanamycin, gentamycin and chloramphenicol, respectively, were
added for preculturing. Modified BG-11 medium (containing
10mM NH4Cl in liquid medium) was solidified with agar (1.5%
w/v) for plate cultures, and similarly incubated in air at 30◦C
under continuous white light (∼50–70µmol photons m−2 s−1).
Cell densities were measured at A730 using a Hitachi U-3310
spectrophotometer (Hitachi High-Tech., Tokyo, Japan).

For succinate production, cells grown in 70mL modified
BG-11 medium (started from A730 = 0.4) for 3 days were
concentrated into 10mL HEPES buffer (20mM HEPES–KOH,
pH 7.8) or modified BG-11 medium to A730 = 20 in a GC vial.
The vial was sealed using butyl rubber, andN2 gas was introduced
using syringes for 1 h to produce anaerobic conditions. After
removing the syringes, the vial was wrapped with aluminum
foil and shaken at 30◦C. Cell cultures were then centrifuged at
5800 × g for 2min, the supernatant was filtrated, and 1mL
supernatant was freeze-dried for 1 day. The dried sample was
used for high-performance liquid chromatography analysis.

Plasmid Construction of Knock-in Vectors
pTCP1556, pTCP0542, and pTCP1299
The kanamycin resistance cassette of the pTKP2031V vector
(Osanai et al., 2011) was removed by digestion with XhoI
and AatII (Takara Bio, Shiga, Japan). The chloramphenicol
resistance cassette from pKRP10 (Reece and Phillips, 1995) was
amplified by PCR with KOD polymerase (Toyobo, Osaka, Japan)
and the specific primers in Table S2, digested with XhoI and
AatII, and inserted into the XhoI-AatII sites of pTKP2031V.
The resultant plasmid was named pTCP2031. Regions of ddh
(slr1556), from −297 to +800 bp, acs (sll0542), from +921

FIGURE 2 | Levels of succinate, lactate, and acetate from the wild-type cyanobacterium Synechocystis 6803 using different media or buffers during

anaerobic conditions. Organic acids excreted from 3 days under dark, anaerobic cultivation were quantified by HPLC. Data represent means ± SD from three

independent experiments. +N designates 5mM NH4Cl was added to the BG-11 medium or 20mM HEPES–KOH (pH 7.8) buffer.
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to +1962 bp, and ackA (sll1299), from +270 to +1238 bp,
based on the translation initiation codons, were amplified by
PCR with KOD plus neo polymerase (Toyobo) and the specific
primers in Table S2. The fragments amplified by PCR were
digested with SphI and EcoRV (Takara Bio) and inserted into
the SphI-SmaI sites of the pUC119 vector (Takara Bio). The
resultant plasmid was digested with HincII (for ddh and ackA)
or ApaI (for acs), and the region including the chloramphenicol
resistance cassette, psbAII promoter, andNdeI-HpaI cloning sites
of pTCP2031 was amplified with KOD plus neo polymerase and
the specific primers 5′-TTTGCTTCATCGCTCGAG-3′ and 5′-
ATCCAATGTGAGGTTAAC-3′, and integrated into the HincII
or ApaI site of the plasmid. The resultant plasmids were named
pTCP1556, pTCP0542, and pTCP1299 for knockouts of ddh, acs,
and ackA, respectively. The sigE ORF was obtained by digestion
with NdeI and HpaI from pTGP0945-sigE plasmid (Osanai
et al., 2014a) and cloned into the NdeI-HpaI sites of pTCP1556,
pTCP0542, and pTCP1299. The plasmids were integrated into
the GT-I strain by natural transformation as described previously
(Osanai et al., 2011). Knockouts and the insertion of the sigEORF
were confirmed by PCR using GoTaq (Promega, Fitchburg, WI,
USA) with the primers in Table S2.

Immunoblotting
Cells were collected by centrifugation (5800 × g for 2min), and
the supernatant was removed and cells were frozen by liquid
nitrogen. Then, cells were dissolved in PBS-T and disrupted
by sonication as described previously (Osanai et al., 2014a).
Immunoblotting was performed as described previously (Osanai
et al., 2014a). Antisera against SigE were generated previously
(Osanai et al., 2009).

Glycogen Measurement
Glycogen levels were measured at the Biotechnology Center
of Akita Prefectural University (Akita, Japan), as described in
Osanai et al. (2014a).

LC-MS/MS Analysis
Equal amounts of cells (10mL cell culture with A730 =

1.0) were harvested by rapid filtration, and metabolites
were extracted using a previously described method (Osanai
et al., 2014b). Briefly, the cells were filtrated, and then
the intermediate metabolites were quenched and extracted
in 1.2mL of solvent mixture (CHCl3:CH3OH:H2O, 2.5:2.5:1,
v/v/v) containing 10µg/L D-(+)-camphor-10-sulfonic acid as an

FIGURE 3 | (A) Vector maps for three vectors disrupting ddh, acs, and ackA with or without sigE overexpression. Red arrows indicate the primer sets to confirm the

insertion of the vectors in the non-nitrogen fixing cyanobacterium Synechocystis sp. PCC 6803 genome. Asterisk (*) in pTCP1556 indicates that the sigE ORF was

inserted into the region from NdeI to 55-bp downstream of the HpaI site because of the star activity of HpaI. (B) The right bottom panels show DNA fragments

amplified by PCR with the primers in agarose gel electrophoresis as visualized by ethidium bromide. (C) Protein levels of SigE in GT, 1556E, 0542E, and 1299E

strains. Immunoblotting was performed with 12µg of total protein from cells grown under dark, anaerobic conditions for 3 days.
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internal standard. After centrifugation at 15,000 × g at 4◦C for
5min, 400µL of the upper phase was transferred to a new tube
and vacuum-dried.

GC-MS Analysis
Equal amounts of cells (10mL cell culture with A730 = 1.0)
were harvested by rapid filtration as mentioned above. GC-MS
was carried out using a GCMS-QP2010 Ultra, and the detailed
protocol is described in Osanai et al. (2015).

Measurement of Organic Acids by
High-Performance Liquid Chromatography
(HPLC)
Freeze-dried supernatants were resolved in 100µL of filtered
3mM perchloric acid. The resolved samples were analyzed by
HPLC using a LC-2000Plus Systems (JASCO, Tokyo, Japan) with
a photodiode array detector and two RSpak KC-811 columns
(Showa Denko, Tokyo, Japan). Organic acids were quantified
with 0.2mM bromothymol blue in 15mM sodium phosphate
buffer; peaks were detected at 445 nm. The column temperature

was 60◦C, and the flow rates of 3mM perchloric acid and
0.2mM bromothymol blue solutions were 1.0 and 1.5mL/min,
respectively.

Results

ackA Knockout and sigE Overexpression
Enhanced Succinate Production
The identities of the excreted organic acids from the wild-
type Synechocystis 6803 (GT) during anaerobic conditions were
determined first. After cultivation for 3 days under light, aerobic
conditions (1% CO2 in the air), cells were concentrated into
10mL BG-110 medium or HEPES buffer with or without
nitrogen sources (5mM NH4Cl) in a GC-vial, subjected to
anaerobic conditions by introducing N2 gas, and incubated for
3 days under dark conditions with shaking at 30◦C. Organic
acids excreted into the medium or buffer were analyzed by
HPLC. Succinate, lactate and acetate were detected, and the
succinate levels were highest in HEPES buffer with nitrogen

FIGURE 4 | Production of organic acids from the cyanobacterium Synechocystis 6803 strain overexpressing sigE and lacking ddh (slr1556), acs

(sll0542), or ackA (sll1299). (A) Levels of organic acids excreted during 3 days of dark, anaerobic cultivation were quantified by HPLC. 1ddh, 1acs, and 1ddh

indicate the knockout of mutants of each gene. 1556E, 0542E, and 1299E represent the strains overexpressing sigE and lacking ddh, acs, or ackA, respectively.

GOX50 designates the sigE-overexpressing strain. Data represent means ± SD from three or four independent experiments. Asterisks indicate statistically significant

differences between GT and the mutant strains (Student’s t-test; *P < 0.05, **P < 0.005). (B) The pie chart shows the ratio of succinate, lactate, and acetate excreted

from the cells under anaerobic conditions. Total organic acid acids are sum of succinate, lactate, and acetate amounts excreted from the cells. Ratio is calculated by

dividing the amount of each organic acid by the amounts of total organic acids.
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FIGURE 5 | Time-course analysis of levels of succinate, lactate, and acetate from the wild-type cyanobacterium Synechocystis 6803 and the 1299E

strain, which overexpresses sigE and lacks ackA. Organic acids excreted from 1 to 5 days under dark, anaerobic cultivation were quantified by HPLC. Data

represent means ± SD from three independent experiments.

source among the four conditions tested (Figure 2). Lactates
were not detected in HEPES buffer (Figure 2). Acetate levels
were higher in BG-11 or HEPES buffer without nitrogen
sources than those in BG-11 or HEPES buffer with nitrogen
sources (Figure 2). To reduce the cost of succinate production,
subsequent experiments were performed using HEPES buffer
without nitrogen sources.

To increase succinate production, we applied two strategies,
decreasing lactate and acetate by knocking out each of the
three genes (ddh, acs, or ackA; Figure 1) and promoting the
sugar catabolic pathway by overexpressing sigE, encoding an
RNA polymerase sigma factor, which activates the expression of
sugar catabolic enzymes (Osanai et al., 2011). Knock-in vectors,
which integrate the region containing the chloramphenicol
resistance cassette, the psbAII promoter from the D1 protein of
Photosystem II, and NdeI-HpaI cloning sites, were constructed
to generate the knockout mutants of ddh, acs, and ackA
(Figure 3A). The sigE open reading frame (ORF) was cloned
into the NdeI-HpaI sites to generate the sigE overexpression
strain combined with the ddh, acs, or ackA knockout, and the
resultant strains were designated as 1556E, 0542E, and 1299E,
respectively (Figure 3A). The insertion of these DNA fragments
was confirmed by PCR (Figure 3B). Immunoblotting confirmed
that SigE proteins in the three sigE-overexpressing strains were
higher than in GT after 3 days of cultivation under dark,
anaerobic conditions (Figure 3C).

Although the knockouts of ddh and acs did not increase
the succinate levels, the ackA knockout increased the succinate
level to 34.8mg/L compared with the 13.9mg/L produced

by the parental wild-type strain under the same conditions.
sigE overexpression (GOX50) alone increased the succinate
level to 20.3mg/L, and an additional knockout of ddh, acs,
or ackA enhanced the levels to ∼35.6, 29.4, or 71.5mg/L,
respectively (Figure 4A). The wild-type cells produced less
than 10mg/L lactate, while the lactate levels increased in the
ackA knockout to 51.7 mg/L, and sigE overexpression with
an acs or ackA knockout enhanced the levels to 30.0 or 93.5
mg/L, respectively (Figure 4A). Acetate levels were decreased
to 62.0mg/L by the ackA knockout, compared with 294.3mg/L
acetate produced by wild-type cells, and the ratio of succinate
and lactate to acetate increased in the ackA knockout mutant
(Figures 4A,B). The strain lacking ackA and overexpressing
sigE (1299E) had the highest succinate levels and ratios among
the eight strains (Figures 4A,B). A time-course experiment
analyzed different lengths of dark, anaerobic incubations and
showed that a 3- or 4-day incubation period was long enough
to produce sufficient quantities and ratios of succinate in
1299E (Figure 5). The succinate production rates from 1299E
were 1.38 and 1.18mg/L/h for 3- and 4-day incubation,
respectively (Figure 5). Therefore, subsequent experiments were
performed using a 3-day incubation period under dark, anaerobic
conditions.

A Metabolome Analysis
A metabolome analysis using the GT and 1299E strains grown
under aerobic and anaerobic conditions was then performed
to clarify the metabolic profiles. After dark, aerobic cultivation,
ADP-glucoses disappeared and the levels of several sugar
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FIGURE 6 | Levels of metabolites in primary metabolism of the cyanobacterium Synechocystis 1299E strain, which overexpresses sigE and lacks

ackA. Data represent means ± SD from three independent experiments. Metabolite levels were calibrated relative to that of corresponding metabolites in the

wild-type strain (GT) under aerobic conditions (set at 100%). P designates phosphate. Asterisks indicate the statistically significant differences between GT and 1299E

(Student’s t-test; *P < 0.05).

TABLE 1 | Relative glycogen levels in GT and 1299E.

Strain Aerobic Anaerobic

GT 100 ± 13.1 67.6 ± 10.8

1299E 104.4 ± 1.7 29.5 ± 4.8

Data represent means ± SD results from four independent experiments. Glycogen levels

were calibrated relative to that in GT under light conditions (set at 100%). ND, glycogen

under detectable levels.

phosphates increased (Figure 6 and Table S1). The fructose-1,
6-bisphoshate and dihydroxyacetone phosphate levels increased
more than 10 times under anaerobic conditions in the wild-
type strain (Figure 6). Phosphoenolpyruvate, pyruvate and
acetyl-CoA decreased greatly under anaerobic conditions
(Figure 6). The levels of sugar phosphates, such as glucose-
1-phosphate, glucose-6-phosphate, ribulose-5-phosphate,
6-phosphogluconate, fructose-6-phosphate, and fructose-1,

6-bisphosphate, in the 1299E strain under anaerobic conditions,
were higher than those in the wild-type strain (Figure 6).
Phosphoenolpyruvate and acetyl-CoA were lower in the 1299E
strain than in the wild-type strain, and organic acids, such as
succinate, lactate, malate, and fumarate, were higher in the 1299E
strain than in the wild-type strain under anaerobic conditions
(Figure 6).

The quantification of the glycogen levels before and after
anaerobic cultivation for 3 days revealed that 33% of glycogen
was consumed in the wild-type strain; however, 70% of glycogen
were consumed in the 1299E strains (Table 1).

Discussion

Fermentation is closely related to sugar metabolism. In
Synechococcus 7002, the levels of excreted fermentation products
were altered by the disruption of glgC, which encodes
ADP-glucose pyrophosphorylase (Guerra et al., 2013). Lactate
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FIGURE 7 | Schematic model of succinate production from Synechocystis 6803. sigE overexpression activates sugar catabolism, possibly leading to

increased succinate production. The ackA knockout reduces acetate biosynthesis, resulted in increased production of succinate and lactate production.

production in the glgC knockout strain was approximately half of
that in the wild-type, while acetate and alanine production were
not significantly affected (Guerra et al., 2013). The reason for the
decreased lactate excretion may be the slower catabolic rate of
reduced sugars in the glgC knockout mutant (Guerra et al., 2013).
The rate of sugar catabolism, not the amount of total reduced
sugars, was important for the increased lactate production
(Guerra et al., 2013). This finding was consistent with our results
that sigE overexpression, which accelerated glycogen degradation
and glucose catabolism (Osanai et al., 2011), increased succinate
production in Synechocystis 6803 (Figures 4A, 7). Glycogen
degradation was enhanced by sigE overexpression during dark,
anaerobic conditions (Table 1), possibly leading to increases in
the biosynthesis of intracellular organic acids (Figure 6 and Table
S1), which in turn led to the production of extracellular succinate
at a higher level (Figures 4A, 7).

A metabolome analysis revealed that the levels of fructose-
1,6-bisphosphate and dihydroxyacetone phosphate increased
more than 10 times after dark, anaerobic cultivation in the wild-
type strain (Figure 6). Glyceraldehyde-3-phosphate production
also increased, but 3-phosphoglycerate/2-phosphoglycerate,
phosphoenolpyruvate, pyruvate, and acetyl-CoA decreased
after dark, anaerobic cultivation in the wild-type strain
(Figure 6). These results suggest that important enzymatic
reactions exist downstream of glyceraldehyde-3-phosphate
under dark, anaerobic conditions. Glyceraldehyde-3-phosphate
dehydrogenase, which produces glycerate-1,3-bisphosphate from
glyceraldehyde-3-phosphate, is encoded by gap1 and gap2, and
the reactions were uniquely catalyzed by the two enzymes in
Synechocystis 6803. Gap1 catalyzes the catabolic reactions and

Gap2 catalyzes the anabolic reactions (Koksharova et al., 1998).
In addition, the gap1 transcript levels are regulated by at least
two transcriptional regulators, SigE and a response regulator
Rre37 (Osanai et al., 2005; Azuma et al., 2011), indicating the
importance of gap1 in the sugar catabolism of Synechocystis 6803.
The flux into the TCA cycle in Synechocystis is relatively low
compared with other heterotrophic bacteria (You et al., 2015).
Current results demonstrate that the flux into succinate can be
up-regulated by our genetic modification under dark, anaerobic
conditions.

A knockout of ackA reduced the acetate level but a
knockout of acs did not affect the acetate level (Figure 4A),
suggesting the major route of acetate biosynthesis under
dark, anaerobic conditions is through an AckA-dependent
pathway in this cyanobacterium (Figure 1). Prochlorococcus
species lack ackA in their genomes (KEGG database URL:
http://www.genome.jp/kegg-bin/show_pathway?syn00620), and
thus, acetate biosynthesis pathway may be diverse among
cyanobacteria. The mutant lacking ddh showed diminished
lactate production, but lactate was produced by sigE
overexpression even in the ddh knockout (Figure 4A).
These results indicate another pathway for lactate
biosynthesis exists in this cyanobacterium. Lactate can
be synthesized from lactoylglutathione, which is derived
from dihydroxyacetone phosphate (KEGG database URL:
http://www.genome.jp/kegg-bin/show_pathway?syn00620), and
the pathway may be activated by sigE overexpression. Our
metabolome analysis revealed that NADPH disappeared, and
that malate, fumarate, and succinate generally increased in the
strains producing more succinate (Figure 6 and Table S1). These
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data suggest that succinate is produced through the reverse
TCA cycle, as shown in Figure 1, as in other heterotrophic
bacteria (Lee et al., 2006). Thus, the metabolic flux toward
succinate production has been clarified in this cyanobacterium
by the metabolome analysis. Pyruvate and phosphoenolpyruvate
were severely reduced by light-to-dark transition (Iijima et al.,
2015), and thus, the provision of these metabolites may be
important to increase organic acid production under dark,
anaerobic conditions. The current results demonstrated that
a combination of the genetic manipulation of genes encoding
a metabolic enzyme and a sigma factor succeeded in up-
regulating the succinate levels. Future study about the detailed
metabolic regulation will contribute to further understanding
of the mechanistic implication of succinate excretion from this
cyanobacterium.
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