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Comprehensive in situ mapping of human cortical
transcriptomic cell types
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The ability to spatially resolve the cellular architecture of human cortical cell types over

informative areas is essential to understanding brain function. We combined in situ

sequencing gene expression data and single-nucleus RNA-sequencing cell type definitions to

spatially map cells in sections of the human cortex via probabilistic cell typing. We mapped

and classified a total of 59,816 cells into all 75 previously defined subtypes to create a first

spatial atlas of human cortical cells in their native position, their abundances and genetic

signatures. We also examined the precise within- and across-layer distributions of all the cell

types and provide a resource for the cell atlas community. The abundances and locations

presented here could serve as a reference for further studies, that include human brain

tissues and disease applications at the cell type level.
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The human cortex contains roughly 80 billion cells1,2 and
understanding the identity of all the cells is challenging.
Evolving single-cell technologies have recently allowed

scientists to start to comprehend the cellular composition of the
human cortex3–5, enabling quantitative descriptions of cellular
diversity and definitions6. Hodge and colleagues characterized
15,928 cell nuclei from the human middle temporal gyrus (MTG,
Brodmann area 21, a part of the temporal lobe) by single-nucleus
RNA-sequencing (snRNA-seq)4. However, the precise laminar
locations and abundances of many of these cell types have not yet
been described, and beyond coarse layers most of these types are
at low proportions and intermingled with one another.
Hybridization-based in situ sequencing (HybISS) is an image-
based multi-targeted gene expression profiling technique that
allows the precise mapping of individual cells in human brain
tissues7. Various analytical approaches can assign detected tran-
scripts to segmented cells and subsequently, cells to cell types.
One such approach, probabilistic cell typing by in situ sequencing
(pciSeq), leverages single-cell RNA-sequencing data to guide cell
type assignment8,9. Here, we implement pciSeq to map cell types
across three human cortical sections as a proof of principle to
show an efficient and robust method to accurately resolve ana-
tomical organization of human tissue that is envisioned for such
efforts as the Human Cell Atlas10.

Results
As part of a Human Cell Atlas pilot project to explore cell-type
mapping with spatial transcriptomics methods (the SpaceTx
consortium), we obtained human temporal lobe tissue from
surgical resections (Fig. 1a). Using a panel of 120 genes chosen to
span snRNA-seq cell type definitions in the MTG, we applied
pciSeq to produce cellular maps of human brain tissue. We
mapped 59,816 cells of 75 transcriptomic cell types including 24
glutamatergic, 45 GABAergic, and 6 non-neuronal cell types
(Section A: 19,127 cells, 27.51 mm2; Section B: 28,694 cells,
41.41 mm2; Section C: 11,995 cells, 30.23 mm2; Fig. 1a, b; Sup-
plementary Fig. 1). pciSeq assigns cells, represented as pie charts,
with the angle of each slice proportional to the cell type prob-
ability. For instance, a cell of subclass Layer 2/3 can have a 72.8%
probability of being an Exc L2–3 LINC00507 FREM3 cell type and
27.2% being an Exc L2–3 LINC00507 GLP2R cell type (Fig. 1c;
Supplementary Fig. 2). Here, the highest probability in the pie
chart defines the final cell type for all downstream analysis. The
level of certainty for each cell subclass is shown in Supplementary
Fig. 3. The size of each pie chart is indicative of the number of
assigned transcripts. On average, 70.9 ± 7.4 transcripts and
30.4 ± 2.0 distinctive genes were measured in neuronal cells,
approximately twice as many as non-neuronal cells (Supple-
mentary Fig. 4). Counting the cell type occurrences in our tissue
sections shows that non-neuronal cell types outnumber neuronal
cell types by 3.38, comparable to published results that measured
a ratio of 3.76 over the entire human cortex1.

To accommodate for tissue variability and size as tissue
sections were from surgical interventions, regions of interest
(ROIs) were outlined spanning the six neocortical layers and
some white matter (Fig. 1d; Supplementary Fig. 5a). First, we
investigated the distribution of the assigned cell types as a
function of cortical depth, measured from the pial surface
(Fig. 1e; Supplementary Fig. 6). Glutamatergic cells often
showed characteristic depth profiles corresponding to cortical
layers while GABAergic cells were less confined. However, the
VIP subclass and the LAMP5/PAX6/Other subclass had the
highest density in supragranular layers, whereas the PVALB
subclass and SST subclass peaked around the granular layer,
similar to what has been shown in mouse neocortex11,12.

Among the non-neuronal cells, oligodendrocytes were most
distinct, showing a higher cellular density in infragranular
layers and white matter. Counting the occurrence of neuronal
cell types showed a proportion of 67:33 for glutamatergic versus
GABAergic cells. Layer 2/3, Layer 4, Layer 5 IT, and Layer 6b
cells were the most abundant cell types in the glutamatergic
population and SST and PVALB cells in the GABAergic
population (Fig. 1f).

To further examine the neocortical architecture, we manually
demarcated the six cortical layers guided by known layer markers
(LAMP5, LINC00507, COL5A2, FEZF2) and estimated published
layer thickness13 (Fig. 2a, b; Supplementary Figs. 5b, 7 and 8a).
We quantified the ratio of cell types within and across layers.
Within-layer distribution of glutamatergic cells largely followed
the proposed layer locations of Hodge et al.4 (Fig. 2c). For
example, 79% of mapped cells in layer 2 were classified as Layer
2/3 cells whereas 53.7% of mapped cells in layer 4 were classified
as Layer 4 cells. Compared to glutamatergic neurons, GABAergic
neurons (Fig. 2d) and non-neuronal cells (Supplementary Fig. 8b)
were more homogeneously distributed. These trends followed the
snRNA-seq data (Supplementary Fig. 9a–c). Across layers, we
further separated the eight glutamatergic subclasses into the 24 cell
types, the four GABAergic subclasses into 45 types, and the five
non-neuronal subclasses into 6 types (Fig. 2e, f; Supplementary
Fig. 8c). Glutamatergic cell types of supragranular and granular
layers (L1–3 and L4, respectively) showed clear layer structure
(Fig. 2e), and similar across-layer distributions as the snRNA-seq
data (quantified with Pearson correlation coefficient; Supple-
mentary Figs. 9f and 10a). The mean correlation coefficient was
0.77 ± 0.05 for glutamatergic cells, which is in a similar range as
the sample-to-sample correlation of glutamatergic cells in our
pciSeq data (mean Pearson correlation coefficient: 0.85 ± 0.03).
Considering the layer-specificity of the genes that define these cell
types, we noted that cells in supragranular and granular layers
were well defined by the genes LINC00507 and COL5A2 respec-
tively and infragranular layers (L5–6) were mainly defined by
FEZF2 (Fig. 2g; Supplementary Fig. 11a). GABAergic cell types
were sparser than glutamatergic cell types, with LAMP5/PAX6/
Other and VIP cells escalating in supragranular layers and SST
and PVALB cells around the granular layer (Fig. 2f). Comparing
the differences in layer distribution of cells mapped with pciSeq
and snRNA-seq, the mean Pearson correlation coefficient was
0.63 ± 0.04 (Supplementary Figs. 9e and 10b). The mean sample-
to-sample correlation of GABAergic cells in our pciSeq was
0.67 ± 0.01, exposing more variability and less profound laminar
distributions compared to glutamatergic cells. However, many cell
types followed the proposed cell type location by Hodge et al.4,
such as the LAMP5 cell types. Also, ADARB2 (a marker for CGE-
derived cells, such as LAMP5 and VIP cells) and LHX6 (a marker
for MGE-derived cells, such as PVALB and SST cells) showed a
clear separation between cells in supragranular layers versus cells
in infragranular layers (Fig. 2h). Similar to glutamatergic cells,
marker gene expression was not entirely restricted to layers. While
VIP gene expression was most abundant in supragranular layers, it
could also be found in infragranular layers (Supplementary
Fig. 11b). Among the cell types in the non-neuronal population,
there was a notable increase in the density of cells in infragranular
layers and white matter (Supplementary Figs. 7c and 8a). The
oligodendrocytes (Oligo L1-6 OPALIN) exhibited a distinct layer
distribution being more abundant in the infragranular layers
(Supplementary Fig. 8c). This was consistent with the principal
marker for the oligodendrocytes, OPALIN as it was mostly
expressed in the infragranular layers and white matter (Supple-
mentary Figs. 8d and 11c). Quantifying the difference in layer
distribution between pciSeq and snRNA-seq showed lower
agreement (0.35 ± 0.18 mean Pearson correlation coefficient) to
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the snRNA-seq (Supplementary Figs. 9f and 10c) and could reflect
the difference in a sampling of snRNA-seq data, that contains 94%
neuronal cells vs. 6% non-neuronal cells. Azevedo et al.1 suggest
20% neuronal vs. 80% non-neuronal cell types in the cerebral
cortex. pciSeq results show comparable quantities for neuronal
(23%) vs. non-neuronal (77%) cells and also a sample-to-sample
correlation of non-neuronal cells in pciSeq data was high

(0.83 ± 0.06). Examining abundances for neuronal cells showed
that decreased abundances in pciSeq data were on average 1.5%
(25 GABAergic types) and 4.6% (8 glutamatergic cell types) less
abundant compared to snRNA-seq. Cells with increased abun-
dances in pciSeq data were on average 1.9% (20 GABAergic types)
and 2.3% (16 glutamatergic cell types) more abundant, confirming
the currently known proportions for neuronal cell types.
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Next, we analyzed the spatial proximity of the neuronal sub-
types in the tissues (Fig. 3a) and performed a neighborhood
enrichment analysis14. This analysis quantifies cluster proximity
with a permutation-based test, i.e. it compares the cell type labels
with a random configuration of labels by maintaining the posi-
tional information and counting the number of cells recovered in
each iteration. Our analysis showed four main enrichments.
Among the glutamatergic subclasses, Layer 5 NP cells showed
enrichment with Layer 5 IT and Layer 4 cells. Layer 6b cells were
enriched with Layer 6 CT and Layer 6 IT cells. Among the
GABAergic subclasses, VIP cells showed enrichment with
LAMP5/PAX6/Other cells and SST cells with PVALB cells, given
their preferential occurrences in supragranular and granular
layers, respectively (Fig. 3b). Similarly, Layer 2/3 cells exposed
neighborhood enrichment with supragranular interneurons,
while Layer 5 PT cells grouped with granular interneurons.

Since pciSeq also allows cell-type mapping of snRNA-seq data
sets that have not been used for gene panel selection, we further
applied this method using an independent snRNA-seq data set
from Lake et al.15. Three excitatory clusters (Ex2, Ex3, Ex7) in the
snRNA-seq data by Lake et al.15 matched one-to-one with clus-
ters in Hodge et al.4 and the remaining clusters mapped to
multiple clusters (see Supplementary Fig. 12c). Plotting the
locations for the individual cells of Lake et al.15 and coloring them
by the most probable cell subclass shows clear differences of
within- and across-layer distributions of cell types (Supplemen-
tary Fig. 12). However, the laminar distributions were not as fine
as with the snRNA-seq data by Hodge et al.4, that includes 24
glutamatergic cell types (Fig. 2e). Still, while the absolute abun-
dance of the 14 matched cell types was reduced compared to the
absolute abundance of the corresponding cell types in Fig. 2 (3255
cells vs. 5147 cells or 14 cell types vs. 24 cell types for Section A),
the relative abundances over the cortical layers show large
agreements between these two cell type maps. This highlights that
pciSeq comprehensively maps human cortical cell types and even
allows for fine-tuning when targeting more cell types with deeper
snRNA-seq data.

Discussion
Taken together, we mapped 24 glutamatergic, 45 GABAergic, and
6 non-neuronal cell types previously classified by snRNA-seq4.
Within the targeted gene list, classical markers for glutamatergic,
GABAergic and non-neuronal cell types were included to aid in
probabilistic assignment of cells in situ. However, some classical
markers such as SST, a main marker in the human cortex, were
not prioritized by the gene selection approach. Therefore, SST
subclass genes were used for cell calls. The combinatorial detec-
tion approach of the genes allows and assures the precise
assignment of molecularly defined cell classes as well as their
subtypes in situ. Even fine cell types can be typed, such as the
Sst+ Chodl+ cell type (Inh L3-6 SST NPY), a well-characterized
but rare cell type16,17.

Our spatially resolved, transcriptomically profiled tissue sec-
tions display a similar non-neuronal to neuronal ratio as the
previously reported, immunocytochemically measured ratio in
the entire cerebral cortex1. Comparison to published sequencing
data also suggests a high correlation in the layer distribution
between in situ data and snRNA-seq4 data. Here, manual layer
annotations were guided by four known marker genes but layer
outlines could also be identified by cellular granularity or more
automated approaches18,19 which take into consideration that
layer boundaries are not sharp. We found mainly glutamatergic
cell types to arrange in layers but they were less layer-restricted
than expected4, advocating that anatomical location alone is not
sufficient to characterize a cell.

pciSeq presents itself as a powerful tool in cell type assignment
across large tissue areas, not only for In situ sequencing data but
also other spot-based spatial approaches20,21. The presented
human cortical maps include a comprehensive reference of the
cells in the human temporal lobe, their spatial location, abun-
dances, and gene expression signatures, all central features out-
lined by the Human Cell Atlas10 and others6. This work embodies
the vision and paves the path towards a spatial Human Cell
Atlas10, utilizing the predefined taxonomy of cells4 to create maps
of histological tissue structures.

Methods
Tissue description. Tissue procurement from neurosurgical donors was per-
formed outside of the supervision of the Allen Institute at local hospitals, and tissue
was provided to the Allen Institute under the authority of the IRB of each parti-
cipating hospital. A hospital-appointed case coordinator obtained informed con-
sent from donors prior to surgery. Tissue specimens were de-identified prior to
receipt by Allen Institute personnel. The specimens collected for this study were
apparently non-pathological tissues removed during the normal course of surgery
to access underlying pathological tissues. Tissue specimens collected were deter-
mined to be non-essential for diagnostic purposes by medical staff and would have
otherwise been discarded. Section A and C were from the MTG of a 38-year old
male epilepsy donor. Section B was from the frontotemporal parietal lobe of a 72-
year-old male tumor case.

Tissue preparation. Tissue collection and processing were performed as pre-
viously described in Hodge et al.4, in accordance with the provisions of the United
States Uniform Anatomical Gift Act of 2006 described in the California Health and
Safety Code section 7150 (effective 1 January 2008) and other applicable state and
federal laws and regulations. In short, surgically resected temporal lobe tissue was
divided into 500 μm slices using an EMS TC-1 tissue chopper. The 500 μm sections
were then further sliced to 10 μm and collected on slides. Slices were placed on the
flat bottom surface of a cryo-embedding mold and embedded in OCT. After 15 min
of equilibration in OCT, slices were frozen in a dry ice—ethanol slurry, vacuum
sealed, and stored at −80 °C. Tissue sections for HybISS experiments were received
from the Allen Institute under the SpaceTx consortium and all ethical regulations
were followed.

HybISS. Technical details and descriptions of the HybISS method can be found
published in Gyllborg et al.7 as well as transcript identity and coordinates for
Sections A and B. The same gene panel and experimental procedures were used in
the generation of Section C. In brief, after fixation sections were permeabilized with
0.1 M HCl for 5 min and washed with PBS. mRNA was reverse transcribed priming
with random decamers, RNase inhibitor, and reverse transcriptase (BLIRT)

Fig. 1 Cell types of the human temporal lobe. a Three tissue sections from the temporal lobe (Sections A–C) and the mouse visual cortex for size
reference. b Spatial maps of cell types across human temporal lobe, including 24 glutamatergic, 45 GABAergic and 6 non-neuronal cells. The cells are
represented as pie charts where the angle of each slice is proportional to the likelihood of the cell being of a certain type and the size of the pie chart is
indicative of the number of transcripts. The colors correspond to the cell subclasses stated below the maps. Red rectangles mark the regions of interest
(ROIs) in d. c Genes are assigned to cells, and cells are subsequently classified based on single-nucleus RNA-sequencing (snRNA-seq) data. Examples
shown are median cells for each cell subclass, i.e. cells with the median count of the number of transcripts being assigned within each subclass. The
number next to the cell subclass label denotes the cell location in Supplementary Fig. 2. The probability for each cell type is listed below the example cells.
d ROIs spanning across the neocortical layers in the tissue sections in a. e Mean cortical depth profiles from the ROIs, with the transparent shades
representing the standard error of the mean. Y-axis represents occurrences after smoothening data with a kernel (100 bins). Separated histograms for each
cell subclass are shown in Supplementary Fig. 6. f Mean counts of each cell subclass found within the ROIs (error bars represent standard error of the
mean, n= 3 tissue sections).
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overnight at 37 °C. Tissue sections were then fixed for 40 min post reverse tran-
scription and subsequently washed with PBS. Phosphorylated padlock probes
(PLPs) were hybridized at a final concentration of 10 nM/PLP and ligated in the
same reaction with Tth Ligase (BLIRT) and RNaseH. This was performed at 37 °C
for 30 min and then moved to 45 °C for 1.5 h. Sections were washed with PBS and
RCA was performed with phi29 polymerase (BLIRT) and Exonuclease I (Thermo
Fisher Scientific) overnight at 30 °C. The sections were treated with TrueBlack
Lipofuscin Autofluorescence Quencher (TLAQ) (Biotium) for 45 s and

immediately washed with PBS. Bridge-probes (10 nM) were hybridized at RT for
1 h in hybridization buffer (2× SSC, 20% formamide), followed by hybridization of
readout detection probes (100 nM) and DAPI (Biotium) in the hybridization buffer
for 2 h at RT. The genes targeted in the HybISS experiments (capturing arms of
PLPs) were manually and computationally curated as a part of the Chan Zucker-
berg Initiative SpaceTx Consortium. The panels and the computational selection
were based on snRNA-seq data from human MTG4,22. The main computational
algorithms used were NSforest23, ProMMT24, and mfishtools25. Imaging was

Fig. 2 Layer-specificity and molecular composition of neurons in the human temporal lobe. a Location of glutamatergic cells colored by the most
probable cell subclass and annotated neocortical layers (L1–6). b Same as in a for GABAergic cells. c The within-layer relative distribution of the
glutamatergic cells and the number of cells counted for each layer in brackets. d Same as b for the GABAergic cells. e Across-layer distribution of
glutamatergic cell types. The colored bars represent the relative proportion of each cell type in each layer (L1–6). Error bars represent the standard error of
the mean (n= 3 tissue sections). f Same as e for GABAergic cell types. g Mean log2-transformed expression of known glutamatergic marker genes. h
Same as g for GABAergic marker genes.
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performed using a standard epifluorescence microscope (Zeiss Axio Imager.Z2)
connected to an external LED source (Lumencor® SPECTRA X light engine) as
described in Gyllborg et al.7.

Image analysis. The same in-house software as in Gyllborg et al.7 was used for the
generation of the spatial gene expression data and is available at https://
github.com/Moldia.

Cellular segmentation. Cells were segmented using CellProfiler 2.2.026 in which
the diameter of the objects was set to fit the span of nuclei sizes. The DAPI images
were tiled to reduce the computational requirements. A manual threshold was set
for localizing the nuclei. The localized objects were then expanded and subse-
quently converted to images. The area and location of the objects were recorded.

pciSeq. The pciSeq pipeline can be found at https://github.com/acycliq/
full_coronal_section and is described in Qian et al.8. The pciSeq pipeline works by
assigning genes to cells and then cells to cell types. This assignment is done using a
probabilistic framework based on single-cell RNA sequencing data. The automated
workflow consists of top-hat filtering of HybISS and DAPI images, initial nonlinear
image registration, spot detection, fine image registration, crosstalk compensation,
gene calling, and cell calling. Thresholding for spot detection was initially opti-
mized in Qian et al.8 and depends on the signal-to-noise ratio, i.e. the spot intensity
and the averaged intensity around the spot. Here, the threshold was adjusted
manually, as HybISS signal-to-noise ratio and spot intensity after top-hat-filtering
are on average two times higher than the signal-to-noise ratio in Qian et al.8. DAPI
images were segmented with standard watershed segmentation. The input data for
cell calling consists of the area, the global x and y coordinates, and the unique
cellular identifier of the segmented cells. In addition, global x and y coordinates of
the transcript, the transcript type, and the cell that the transcript belongs to are
needed for each transcript. Cell type definitions used in pciSeq were downloaded
from the Allen Brain Atlas (https://portal.brain-map.org/atlases-and-data/rnaseq).
All of the colors used in the figures follow the cell type color definition formulated
by the Allen Institute.

pciSeq processing module. The downstream processing of the data (available
upon request) was done using a set of functions created in-house (https://
github.com/Moldia/pciseq_processing_module). The set of tools included finding
the most probable cell type call from the pciSeq output, plotting these cell type
calls, plotting the cell types individually, adding polygon labels to the cells, and
creating cell-by-gene matrices of the called cells.

ROI and layer annotations. The ROIs were drawn using napari27, a multi-
dimensional image viewer for python. The ROIs were outlined to cover the six
neocortical layers and some white matter. The area of each ROI was the same for
all tissue sections (3.2 mm2). The layers were annotated in apart based on the

expression of known marker genes (LAMP5, LINC00507, COL5A2, FEZF2) in
addition to the relative thickness of cortical layers13.

Statistics and reproducibility. For the pciSeq to snRNA-seq correspondence
analysis, the mean relative layer distribution was calculated for each cell type in
the pciSeq data and the snRNA-seq data, where the layer distribution was
extracted from the metadata from Hodge et al.4. The Pearson r correlation
coefficient was then calculated on the laminar distributions per cell type and
plotted on the x-axis. The relative occurrences of cell types were plotted on the y-
axis (for glutamatergic, GABAergic, and non-neuronal cells separately), sub-
tracting relative snRNA-seq occurrences from relative pciSeq occurrences for
each cell type. The mean correlation coefficient was calculated for pciSeq vs.
snRNA-seq and also the sample-to-sample correlation was calculated for the
three tissue sections.

Neighborhood enrichment analysis. The neighborhood enrichment analysis was
performed using squidpy14. The connectivity matrix was computed for each section
by itself and then compiled by calculating mean scores.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Single-nucleus RNA-sequencing cell type definitions are from Hodge et al.4 and can be
accessed through the Allen Brain Atlas data portal at https://portal.brain-map.org/
atlases-and-data/rnaseq. Cell metadata for the cell maps and figures are provided
as Supplementary Data. Cell-by-gene matrices are available upon request.

Code availability
The code and software used to generate the plots for the Figures is available at the
following repository: https://github.com/Moldia/spatial_mapping_of_human_cortical_
cells

Received: 20 January 2021; Accepted: 22 July 2021;
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