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Abstract: The increasing use of nanoparticles (NP) in commercial products requires elaborated
techniques to detect NP in the tissue of exposed organisms. However, due to the low amount of
material, the detection and exact localization of NP within tissue sections is demanding. In this
respect, Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and Ion Beam Microscopy
(IBM) are promising techniques, because they both offer sub-micron lateral resolutions along with
high sensitivities. Here, we compare the performance of the non-material-consumptive IBM and
material-consumptive ToF-SIMS for the detection of ZrO2 NP (primary size 9–10 nm) in rat lung tissue.
Unfixed or methanol-fixed air-dried cryo-sections were subjected to IBM using proton beam scanning
or to three-dimensional ToF-SIMS (3D ToF-SIMS) using either oxygen or argon gas cluster ion beams
for complete sample sputtering. Some sample sites were analyzed first by IBM and subsequently by
3D ToF-SIMS, to compare results from exactly the same site. Both techniques revealed that ZrO2 NP
particles occurred mostly agglomerated in phagocytic cells with only small quantities being associated
to the lung epithelium, with Zr, S, and P colocalized within the same biological structures. However,
while IBM provided quantitative information on element distribution, 3D ToF-SIMS delivered a higher
lateral resolution and a lower limit of detection under these conditions. We, therefore, conclude that
3D ToF-SIMS, although not yet a quantitative technique, is a highly valuable tool for the detection of
NP in biological tissue.

Keywords: ToF-SIMS; ion beam microscopy; particle-induced X-ray emission; ZrO2 nanoparticles;
lung tissue; instillation; toxicity; gas cluster ion beam; delayed extraction

1. Introduction

The detection of nanoparticles (NP) in tissue sections is an important prerequisite to determine
potential risks for human health upon nanoparticle exposition. Due to their small sizes and low
quantities the unambiguous detection and localization of NP is a demanding task. Time-of-Flight
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Secondary Ion Mass Spectrometry (ToF-SIMS) shows a high potential to detect a great variety of
NP composed of inorganic materials along with the organic and inorganic composition of tissue
thin sections. However, due to small masses of NP signal intensities are low and an unambiguous
identification is challenging. Low signal-to-noise ratios complicate the recognition of isotopic patterns
of the nanomaterial’s elements. Furthermore, the size of a NP is smaller than a single pixel in the
imaging analyses. Therefore, a second high resolution technique validating the identification and signal
distribution of the ToF-SIMS results is desirable to prove the correct interpretation of the ToF-SIMS
results at this stage of ToF-SIMS method development.

With a lateral resolution of the applied ToF-SIMS method of approximately 600 nm, we were
able to identify fluorescent SiO2 NP in lung tissue sections [1], and this localization was validated by
fluorescence microscopy. However, for the vast majority of NP not carrying a fluorescent label or not
showing plasmonic resonance, other high resolution techniques need to be explored if one aims to
validate ToF-SIMS results. In this respect, Ion Beam Microscopy (IBM) appears to be a well-suited
technology, because its lateral resolution of ca. 1 µm is similar to the one of ToF-SIMS. The IBM
technique combines the analysis of the particle-induced X-ray emission (PIXE) and the analysis of the
energy of the backscattered particles, referred to as Rutherford backscattering spectrometry (RBS). This
setup provides a high lateral resolution, undoubted element identification and their quantification [2–4].
As the technique is primarily non-destructive, successive analyses of tissue samples with IBM and
ToF-SIMS should allow the detection of NP along with components of the biological matrix. ToF-SIMS
detects molecules with a theoretically unlimited mass range. It allows the detection of organic as
well as inorganic species, whereby molecular fragments are gathered from the surface which can be
sputtered to obtain signals from deeper layers. IBM provides laterally resolved information on all
element concentrations which, in contrast to ToF-SIMS, are always gathered from the whole sample
depth. Thus, besides the benchmarking of the nanoparticle distribution complementary quantitative
information should be accessible.

The aim of this study was to compare the results of ToF-SIMS and IBM analyses side-by-side using
a 9–10 nm sized zirconium oxide (ZrO2) NP distributed in lung tissue. Several reasons prompted us to
choose this particular preparation: Firstly, own pilot experiments have shown that ZrO2 NP gives rise
to high signal intensities with both techniques, which is an important prerequisite for a comparative
study. Secondly, ToF-SIMS and IBM should be compared with respect to their ability to detect small
ZrO2 NP in tissue, and to derive further information on the distribution of tissue components, such
as the minor and trace elements by IBM, and elements and organic fragments by ToF-SIMS. Ideally,
comparative analyses should be performed at exactly the same spot of the sample. Thirdly, the study,
which is part of the special issue on “Nanoparticles in Vivo and in Vitro Studies: a Collection of Parallel
Approaches”, shall also contribute to our understanding of the toxicological relevance of ZrO2 NP
in the lung, which acts as the main entry port for airborne nanomaterials into the body. ZrO2 NP are
used in coatings of self-cleaning stoves, in dental filler material, or implant materials [5], and the toxic
effects of differentially coated ZrO2 NP on alveolar macrophages and on rat and allergic mouse lung
have been described in an accompanying publication [6]. Of note, ZrO2 NP administered to the lung has
been previously located mainly within alveolar macrophages by Raman microspectroscopy, hyperspectral
microscopy, and immunocytochemistry [6,7]. The present study comparing IBM and ToF-SIMS analyses
of ZrO2 NP distribution was carried out on rat lung tissue from this previous study [6].

2. Results and Discussion

The first part (2.1) will describe the detection of zirconium (Zr), phosphorous (P), and sulfur (S)
within a ZrO2 NP laden lung by IBM. Similarly, the subsequent parts (2.2 and 2.3) will describe a
ToF-SIMS analysis together with inorganic and organic components. The last chapter (2.4) is devoted
to the comparison of both techniques applied consecutively to the same position of a ZrO2 containing
tissue section. Representative examples showing the microscopic structure of cryo-sections as used
here are shown in an accompanying paper of this special issues [7].
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2.1. Typical IBM Results for an Individual Position

IBM analysis typically consists of two components. Particle-induced X-ray emission (PIXE)
yields a signal distribution of elements by analyzing the X-ray emission upon proton bombardment.
The Rutherford backscattering spectrometry (RBS) analyzes the energy of backscattered protons and
provides information on the elemental composition, depth profile, the accumulated charge, and the
thickness of a sample.

PIXE images of a ZrO2 containing tissue section three days post-instillation are shown in Figure 1a
where the signal distribution of phosphorus, sulfur, and zirconium is presented. The grey area indicates
a region-of-interest (ROI) comprising the network of alveolar septa, which are main constituents of
the lung parenchyma. The phosphorus image showed numerous elliptical structures of high intensity,
with diameters up to 20 µm. While frequency, distribution, and size of the smaller structures most
likely represented phosphate groups of the nuclear DNA within cell nuclei, larger spots may have been
caused by type-2 pneumocytes, which contain phospholipid-rich lamellar bodies as lung surfactant
precursors, or alveolar macrophages, which also may engulf portions of lung surfactant. Furthermore,
it had to be taken into account that the K line from phosphorus and L line from zirconium coincided
with each other. Therefore the phosphor distribution was partially influenced by the Lα emission from
the Zr signal. The sulfur distribution showed an overall medium intensity in alveolar septa with higher
intensity areas in P-rich (nuclear) regions. The sulfur distribution reflected sulfur-containing amino
acids in proteins, and the highest intensity should be found where the local protein concentration
is high. Again, nuclear structures bearing DNA-histone complexes may underlie this phenomenon.
The zirconium distribution showed some intense areas all of which are associated with P- and S-rich
regions. This, and the fact that the diameters of these patches were mostly below 10 µm, suggested
a significant concentration of nanoparticles and/or small agglomerates in single cells, like alveolar
macrophages and other cells of the alveolar septa. The concentration of NPs in different patches
detected in various PIXE images was calculated. The PIXE and RBS spectra were extracted from
the eight ROIs which mark the NP spots by the green circles (Figure 1a). After fitting the spectra,
the obtained concentration of Zr elements was recalculated in terms of NP number per µm2 assuming
a density of ZrO2 of 5680 kg/m3 per NP with a mean size of 9 nm. Figure 1b shows the histogram
of the NP loading across an evaluated lung section. The ROIs revealing a low NP loading of about
4000 NPs/µm2 were associated with the alveolar septa, composed of type-1 and type-2 pneumocytes.
A higher NP loading of up to 40,000 NPs/µm2 was found in ROIs 1 and 2 (Figure 1b). It may be
suggested that the high loading of NPs occurs in alveolar macrophages, which were in the close vicinity
of alveolar septum.

Figure 1. Particle-induced X-ray emission (PIXE) images of an air-dried lung section three days post
instillation of ZrO2 nanoparticles. (a) Signal distributions for P, S, and Zr, and Zr with superimposed
region-of-interest (ROI, grey area). P and S are assumed to be cellular components found within the
tissue at elevated levels. The Zr signals resemble accumulations of nanoparticles; (b) Histogram of
nanoparticle (NP) loading across a population of cells indicated by the green ROIs 1–8.



Nanomaterials 2018, 8, 44 4 of 15

2.2. Individual Position SIMS Analysis: Inorganic Depth Profiling

In the first step, three-dimensional ToF-SIMS analyses (3D ToF-SIMS) were carried out using O2
+

sputtering, as this lowers the detection limit for the nanoparticles compared to Ar-cluster sputtering.
O2

+ sputtering ensures a high oxidation state of the Zr in the samples as it provides excess oxygen
and fosters the secondary ion yield of the electropositive Zr for 3D ToF-SIMS analyses. Furthermore,
due to the availability of O2 during the analysis, the maximum ionization yield of the Zr specific ZrO+

signal should be reached, which optimizes the signal-to-noise ratio for this channel.
ToF-SIMS analysis of a ZrO2 NP-containing lung tissue section three days post NP administration

is presented in Figure 2. The 3D data set was projected onto a 2D plane to enable a simple comparison
of signal distributions. Typically, the K2CN+ signal (m/z = 103.95, Figure 2a) is encountered in
tissue material and used as a marker ion, if ToF-SIMS analysis of biomaterials is conducted with O2

+

sputtering. The K4PO3
+ signal (m/z = 234.91, Figure 2b) can be used as an indication for the phosphate

distribution in K-rich tissue samples. In lung cells, this signal is therefore, mostly but not exclusively
indicative of nuclear structures, and often surrounded by K2CN+, as shown in Figure 2d. The highest
intensities of K4PO3

+ were found in alveolar edges, where phosphate-rich type-2 pneumocytes are
quite often located. Thus, the K4PO3

+ distribution resembled the distribution of phosphate-rich areas
as revealed by IBM and most likely represents phospholipids (i.e., type-2 pneumocytes) or nucleic
acids (i.e., nuclei).

Figure 2. Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) three-dimensional (3D) analysis
of an air-dried lung section three days post instillation of ZrO2 nanoparticles. Lateral distributions of
three secondary ions K2CN+, K4PO3

+, and ZrO+ are shown upon O2
+ sputtering. (a) K2CN+ shows the

typical alveolar structure of a lung section; (b) K4PO3
+ is found as patches within the tissue and with

high intensity in alveolar edges (yellow arrows); (c) ZrO+ is concentrated in single patches attached to
alveolar walls; the accumulations within the alveolar space most likely represent alveolar macrophages
(white arrow); (d) A correlation analysis of all ions with K2CN+ in red, ZrO+ in green, and K4PO3

+ in
blue reveals the respective lateral signal distribution. The white arrow points to a macrophage-like cell.
(MC: maximum counts per pixel, TC: total counts for the image).
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The ZrO+ image (m/z = 105.86, Figure 2c) presents the distribution of the nanoparticles.
The diameters of ZrO+ containing areas ranged from about 400 nm (corresponding to the size of
a single pixel) up to 10 µm. As the primary particle size was 9 nm and the mean size of agglomerates
within the instillation fluid amounted to 80 nm, the occurrence of more than one coherent ZrO+-positive
pixel suggests the presence of accumulated nanoparticle agglomerates. These agglomerations might
have formed in the absence of cells, i.e., secondary to the instillation process when instillation fluid is
resorbed and particles contact the lung surfactant or lung lining fluid.

A correlation analysis overlaying the different components in different colors was performed
(Figure 2d). The correlation analysis presents the tissue material marker ion K2CN+ in red, the ZrO+

signal in green, and the K4PO3
+ in blue. K4PO3

+ was predominantly found within the tissue at intense
K2CN+ signals. This indicated a correlation with dense tissue and related most likely to compartments
rich in nucleic acids or phospholipids. The ZrO2 nanoparticles were likely to have accumulated
alongside alveolar walls or were taken up by macrophage-like cells (Figure 2d, white arrow) typical
sizes [8]. Some smaller signals appeared to be in the alveolar spaces. It cannot be excluded that some
nanoparticles may have been displaced during the sectioning process. However, most of these were
still associated with tissue material of lower signal intensity.

2.3. Individual Position: Organic Depth Profiling

While the ToF-SIMS approach using O2
+ sputtering results in excellent resolution and low

detection thresholds, the extensive amount of fragmentation induced by the highly energetic O2
+

primary ions on organic molecules is less ideal for the detection of organic molecules. In particular,
large biomolecules are prone to fragmentation. However, studying the distribution of these molecules
may contain valuable information on the effects of nanoparticles in tissues. Although it is expected
to result in a higher detection limit, e.g., for Zr secondary ions, sputtering with large gas clusters
leads to a much better yield for larger molecules and larger fragments [9,10]. In particular, Ar-Cluster
sputtering leads to less fragmentation along with higher sputter yields per ion compared to smaller
clusters. In the next chapter, Ar1000

+ cluster sputtering is carried out and results will be compared to
those of O2

+ sputtering.
Figure 3 shows the distribution of the typical signals of the same lung tissue section. Besides the

tissue marker ion K2CN+ (a) and the NP-related ZrO+ (c), the distribution of the phosphatidylcholine
head group C5H15NPO4

+ (b) is shown as an example for larger organic molecular species, which are
not extensively fragmented but detected intact. C5H15NPO4

+ is a typical fragment of the important
membrane lipid phosphatidylcholine. Consequently, the lateral distribution reveals the presence of
this signal predominantly on the tissue material as expected for a membrane lipid. Several small
patches of high intensity are visible. These most likely indicate the presence of pneumocyte type-2 cells,
which produce the lung surfactant whose major phospholipid is phosphatidylcholine [11,12]. Of note,
C5H15NPO4

+ was not associated with accumulated ZrO+ (d), suggesting that (1) these NP, despite
their large BET(Brunauer-Emmet-Teller) surface do not extensively bind lung surfactant, and (2) are
not incorporated by type-2 pneumocytes.

Figure 4 shows the distributions of signals most likely related to fragments of amino acids or
other tissue molecules. While no distinct localization patterns were obtained for C2H6N+ (m/z 44.05,
Figure 4a), most likely due to the ubiquitous occurrence of amino acids throughout all cells, other
fragments (C3H8N+ (m/z 58.06, Figure 4b), C4H8N+ (m/z 70.07, Figure 4c), C5H12N+ (m/z 86.10,
Figure 4d)) show a pattern resembling that of C5H15NPO4

+ from which they may have originated
(at least in part). All these distributions reflect the septal structure of the lung tissue (compare K2CN+

in Figure 3a) and were not associated with ZrO2 NP.
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Figure 3. ToF-SIMS 3D analysis of an air-dried lung section three days post instillation of ZrO2

nanoparticles. Lateral distributions of three secondary ions (a) K2CN+; (b) C5H15NPO4
+ (m/z = 184.09),

and (c) ZrO+ is shown upon Ar-cluster sputtering. A correlation analysis of all ions is shown in (d),
with K2CN+ in red, the C5H15NPO4

+ in blue and the ZrO+ in green. The lateral distribution of K2CN+

shows the typical lung tissue structure. The phosphocholine fragment C5H15NPO4
+ occurs in intense

patches embedded in the septal structure (resembling the distribution of type-2 cells). The ZrO+ signals
occurs in discrete intense areas sized 10–20 µm, which appear attached to the septal structure 10 µm.
(MC: maximum counts per pixel, TC: total counts for the image).

Figure 4. ToF-SIMS 3D analysis of an air-dried lung section three days post instillation of ZrO2

nanoparticles. Same site of analysis as shown in Figure 3. The lateral distribution of (a) C2H6N+;
(b) C3H8N+; (c) C4H8N+; (d) C6H12N+ obtained by Ar-cluster sputtering is shown. (a) C2H6N+;
(b) C3H8N+; fragments in (a,c) and most likely originate from amino acids; fragments in (b,c) originate
from phosphatidylcholine fragments. MC: maximum counts per pixel, TC: total counts for the image.
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2.4. Sequential Analysis of Identical Sample Sites: Ion Beam Microscopy (IBM)

To compare the results from IBM and ToF-SIMS analyses, a sequential analysis of the same site of
ZrO2-NP laden lung tissue was carried out. Since the ToF-SIMS using Ar-cluster or O2 sputtering is a
material-consuming (destructive) technique, IBM was done prior to ToF-SIMS analysis.

The IBM results show a notable distribution of P and S signals within the tissue section
(Figure 5a,b). Phosphorus reveals a patch pattern within the continuously distributed sulfur. Both
elements can be used to visualize lung tissue. The origin of the phosphorus signals are most likely
phospholipids from the tissue membranes or/and the phosphate of the nucleic acid backbone, which
are most concentrated within the nuclei of the cells. Sulfur is a general marker for cells as it occurs in
almost all proteins and cytoskeleton. The alveolar walls can be identified by the sulfur distribution
indicating the localization of the pneumocytes, macrophages and other cells. An enhanced occurrence
of sulfur and phosphorus elements was found in the alveolar junctions. The intense spots of the P and
S distributions in the alveolar junction region could indicate the presence of pneumocyte type-2 cells,
where their location is normally expected.

Surprisingly, the central area showed a highly intense chlorine signal co-localized with S and P
signals (Figure 5c,e). As the S signal was strongly interfered with by the intense Cl emission, it was
regarded as an artifact. The P signal, however, was partially separated from the Cl signal (as can
be seen from the emission spectrum (Figure 5f)) and indicated the validity of the assignment in the
P image. Furthermore, some Ca and K signals were found at that position, which suggested the
presence of a salt residue. Of note, no corresponding structure was detected by ToF-SIMS.

The zirconium distribution in Figure 5d only has a single area of notable intensity. This area is
found within the tissue structure. This intense signal is found co-localized with the sulfur intensity.
The higher sulfur as well as the phosphorous content compared with that in surrounding tissue could
be usually found in macrophages. Furthermore the spatially defined appearance of the zirconium
signal in a single area with a diameter of about 10 µm suggests also that the ZrO2 nanoparticles were
accumulated and might be contained in a macrophage. The achieved lateral resolution of about 1 µm
revealed the substructure of Zr agglomerates inside a cell.

Figure 5. PIXE images of a ZrO2 laden lung tissue section 3 days post instillation. Images (a–d) show the
elemental distribution patterns of the elements P, S, Cl and Zr in lung tissue (field-of-view: 100 × 100 µm2).
The overlay image (e) reveals the co-localization of S with Cl and Zr elements. The intense Cl signal (c)
in the center interferes with the signal of S. The interference is revealed by the PIXE emission spectrum
from the central area (f).
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2.5. Sequential Analysis of Identical Sample Sites: ToF-SIMS

Results of the sequential analyses carried out first by IBM and than by ToF-SIMS are shown
in Figures 6–8. Treatment with the high-energy proton beam led to locally confined changes of the
tissue surface (Figure 7a,f), which were used to identify the region-of-interest for the subsequent
ToF-SIMS measurement. To maximize the signal yields especially for zirconium, we chose the more
fragmenting O2

+ ion beam sputter method for the comparative analysis, as it increases the yields for
electropositive elements.

Furthermore, the lateral distributions of the signals from zirconium derived ions (ZrOx
+) were

analyzed. The respective isotopic signal distributions were used to ensure the identity of the Zr derived
signals combined (compare Appendix A). Figure 6 shows several intense Zr signals with diameters
below 1 µm and up to 9 µm. As the pixel size limits the minimum diameter for signals to about 600 nm,
smaller nanoparticles appeared as single pixels.

Figure 6. ToF-SIMS 3D analysis of the ZrO2 NP containing lung section previously subjected to IBM
measurement (see Figure 5). The lateral distribution of ZrO+ reveals several intense signals; image
contrast was enhanced to visualize small signals. The central ZrO+ signal (yellow arrow) corresponds
to the Zr signal in Figure 5. MC: maximum counts per pixel, TC: total counts for the image.

The lateral distribution of the total ion intensity reveals the overall structure of the analyzed tissue
(Figure 7a). The area subjected to IBM analysis was easily recognized due to its reduced total secondary
ion yield and the increased levels of small organic fragments (Figure 7f). To better compare ToF-SIMS
and IBM images, we analyzed the distribution of S and P using SO2

+ (m/z 63.97, Figure 7b) and PO+

(m/z 46.96, Figure 7d) signals, which show lung tissue typical distributions if compared to the analyses
shown above. A comprehensive image is presented as a RGB overlay, and shows the tissue-related
SO2

+ signal in blue, the phosphate signal in green, and the Zr oxide particle signal in red (Figure 7e).
The RGB image shows agglomerated ZrO2 NP in the tissue, revealing that most nanoparticles were
directly associated with the tissue.

As the ion-beam-treated area was visible on ToF-SIMS images, we speculated that the sample was
altered during the IBM analysis. A careful evaluation of ToF-SIMS analyses from ion-beam-treated sites
showed that a slightly higher amount of small organic fragments (e.g., C5H9 (m/z 69.07, Figure 7f))
were detected in the ion beam-treated area and its close vicinity. It is conceivable that due to the impact
of high energy protons, alterations of the organic material occurred. This would especially be the
case with breaking of chemical bonds (similar to the proton beam writing process) [13,14], as it would
potentially explain the slightly elevated levels of small organic fragments. This shows that the IBM
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technique could at least gradually change the molecular composition of tissue components, and this
aspect is of importance for the direct comparison of results.

Figure 7. ToF-SIMS 3D analysis of a ZrO2 NP containing lung section three days post-instillation,
previously subjected to IBM measurement (see Figure 5). Lateral distributions of selected secondary
ions. (a) The total ion distribution clearly indicates the area of proton bombardment during IBM
analysis; (b) The SO2

+ distribution resembles the tissue structure; (c) The lateral distribution of 90ZrO+

reveals several intense signals. The central Zr signal (yellow arrow) corresponds to the Zr signal in
Figure 5; (d) The PO+ image indicates the presence of phosphorus related compounds, which are
typically nuclei and membrane lipids; (e) The red-green-blue (RGB) overlay shows the localization of
the ZrO+ (red), PO+ (green) and SO2

+ (blue); (f) The C5H9 distribution reveals elevated levels of small
organic molecules indicating fragmentation of larger molecules in the area that was treated with the
ion beam. (MC: maximum counts per pixel, TC: total counts for the image).

2.6. Sequential Analysis of Identical Sample Sites: Comparison of IBM vs. ToF-SIMS

The results of the IBM analysis were compared to ToF-SIMS results (Figure 8). Elemental
distributions of the X-ray emission on the left (a–c) were compared to the oxygen containing secondary
ion distributions on the right (d–f). For S and SO2

+, a high degree of correlation was obvious. With
both techniques, a relatively weak signal distribution resembled the tissue structure with several
higher intensity signals at the alveolar junctions. However, a difference was seen in the intense signal
in the centre of the PIXE image (Figure 8a,b). This central structure consisted of K, Ca, P, and Cl that
formed a salt deposit as a result of the preparation process, and appeared to be an artifact (see above).
Also, an indication for this deposit was found neither on micrographs taken after the IBM analysis
(not shown), nor in the ToF-SIMS analysis. As the structure was found in the centre of an alveolus,
where it was not linked to the tissue material, we assumed that this salt deposit was moved during
transport. However, the ToF-SIMS distributions of SO2

+ and PO+ both revealed an area similar in size
and shape in the lower left corner of the alveolar structure (indicated by blue arrows) which might
represent the salt deposit at its new position.

The P and PO+ distribution overall was highly similar. However, the ToF-SIMS image apparently
presented the intense signals of the IBM at a higher resolution and enabled a more detailed assessment
of the substructure compared to the IBM.
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Figure 8. Comparison of the IBM and ToF-SIMS lateral distributions for selected signals side-by-side in
the ZrO2 NP containing lung section of Figure 5. The IBM distributions (a–c) were tilted to enable a
direct comparison to the ToF-SIMS images (d–f, magnified). All distributions show a reasonably high
congruency. The central, intense area of the S and P distribution from the IBM results has no direct
equivalent in the ToF-SIMS results (interpreted as an artifact, see text). However, an area of similar size
and shape is found in the lower left of the alveolar structure in the SO2

+ and PO+ ToF-SIMS images
(blue arrows). The border of the field-of-view of the IBM is indicated by a dashed line in (c).

With respect to the Zr/ZrO+ signals, a coincidence was obtained for the highly intense signal
spot seen in the lower parts of Figure 8c,f, although the detailed structure of Zr differed for both
methods. Interestingly, the ToF-SIMS analysis revealed additional small ZrO+ signals (Figure 8f, yellow
arrows), suggesting a lower limit of detection for the ToF-SIMS analysis along with a better lateral
resolution. In fact, the routinely achieved lateral resolution in IBM experiments is about 1 µm, with
limits of detection being in the parts-per-million (ppm) range [15,16]. In contrast, a lateral resolution
of less than 30 nm (under ideal conditions) and limits of detection in the ppm-ppb (parts-per-billion)
range may be achieved with ToF-SIMS analysis [17,18]. However, for both techniques the analytical
parameters might still show some room for improvements. Prolonged measurement times and high
performance detectors might lead to higher signal intensities and lower limits of detection in both
instruments, but these were not available for this study. The application of high performance PIXE
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detectors will result in improved limits of detection and reduce measurement times. For ToF-SIMS,
the amount of material eroded by the sputter beam per analysis cycle could be reduced to enhance the
amount of material exposed to the analysis beam. It can be assumed that in particular for this analysis
more signal intensity could be revealed under extended measurement conditions, since the majority
of the signal intensity of the nanoparticles is only acquired towards the end of the analysis. Also,
the lateral resolution (limited by the pixel number at a given Field-of-view to achieve a reasonably
fast analysis) could be significantly improved for the detection of smaller agglomerates by selecting
a smaller field-of-view or raising the pixel number per length unit. However, in favor of analyzing
a larger area and measurement time constraints, a lateral resolution similar to the IBM was selected for
this study.

The IBM provides element (inorganic) information [2,19–21], whereas ToF-SIMS detects inorganic
and organic species [22]. The detection of molecular information is only possible by ToF-SIMS,
and works especially well for Ar-cluster ions. Therefore, in contrast to the IBM, ToF-SIMS also can
serve for speciation analyses [23,24]. However, the certainty for the identification for even smaller
quantities of small nanomaterials (i.e., weak signals) in a complex matrix in ToF-SIMS is challenging,
because interfering signals could hinder the separation of small partially overlapping NP-related
signals in crowded mass spectra. In IBM, the certainty of the identification depends on the assignment
and selection of the correct emission lines and is comparatively high.

Quantitative information is routinely obtained for the IBM measurements without the need for
standards or prior knowledge on the sample composition. In ToF-SIMS, quantitative information is
only achievable by great efforts for simple, highly characterized samples (e.g., silicon wafers doped
with boron) with the help of matrix-matched reference samples. For complex tissue samples, no simple
routines exist for the quantification only based on ToF-SIMS results. Matrix effects are reported for
ToF-SIMS as well, whereas the IBM does not suffer from severe matrix effects.

Depth information in IBM analyses is directly obtained via the RBS spectrometry, which also
provides direct information if materials are internalized into cells or covered by tissue material. Depth
resolutions of 100 nm are achieved [2,19]. In ToF-SIMS, depth information is accessed via repeated
cycles of surface analysis and surface erosion. Consequently, information on the internalization of
materials can be obtained by interpreting the appearance of signals in successive scans. Furthermore,
depth distributions as well as 3D distributions of signals can be analyzed. Depth resolutions of about
20 and 10 nm were published for low energy Cs and Ar-cluster ion sputtering of multilayer amino acid
films, respectively [25]. However, this excellent resolution comes at the cost of analysis time, which is
increasing with lower energy ions (i.e., lower sputter yields).

Both ToF-SIMS and ion beam microscopy need vacuum conditions. Vacuum compatibility for
biological samples can be achieved by chemical fixation or analysis in the frozen state [26–28].

The influence of the proton beam on the samples integrity was estimated as the site of the analysis
is visible in the successive ToF-SIMS images and a slightly higher amount of small organic fragments
was found in the irradiated area. However, the extent of the damaging influence was not fully assessed
during this study (compare Figure 7f). In comparison, ToF-SIMS 3D imaging, by nature, is a sample
consuming technique. This is because signals can only be acquired if the respective materials are
sputtered and ionized. Especially for the sensitive detection of low amounts of particle within complex
matrices, it is necessary to obtain as much intensity as possible i.e., consume as much material as
possible to ensure a comprehensive detection of all nanoparticles.

While ToF-SIMS already is a large and complex instrument, the IBM is still much more demanding
in terms of size and complexity. Consequently, the pricing of commercially available ToF-SIMS
instruments is much lower than for the IBM instruments, which need elaborate particle accelerators
and a variety of detection components and are not available as complete kits. The time requirements
for ToF-SIMS analyses of a single biological tissue area under the conditions shown here typically
are in the order of 8–16 h (depending on the depth resolution and sample thickness). For the IBM
measurements, approximately one hour is needed to reach ppm detection limits, however, these
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large-scale devices usually are shared among several institutions. In consequence, “beam time” for
measurements is precious.

In summary, each technique revealed the position of nanoparticle agglomerations within a tissue
section individually and in a successive analysis of the same section. Significant congruency in the
lateral distributions for phosphorous, sulfur and zirconium enabled a cross-validation of the results
of both techniques. Due to its non-consuming nature and high lateral resolution, the IBM analysis
enhances the confidence for the assignments of low intensity signals (especially for nanomaterials) in
ToF-SIMS analyses and allows a cross-validation for early ToF-SIMS method development studies.

A promising strategy for achieving quantitative information in ToF-SIMS might be achieved
by using IBM and ToF-SIMS for selected samples to obtain quantitative information and establish
sensitivity factors for defined experimental conditions/sample matrices.

3. Conclusions

The detection of ZrO2 nanoparticles in a real-world sample (lung tissue section from a toxicity
study) was successfully shown by both ion beam techniques, IBM and ToF-SIMS. It is of toxicological
relevance that with both techniques, ZrO2 NP occurred in the lung as agglomerates, most probably
in phagocytic cells, whereas no or negligible small quantities were associated with the lung
epithelium. Each technique revealed the position of nanoparticle agglomerations within a tissue
section individually. ToF-SIMS additionally could reveal the distribution of molecular fragment
signals, which is in general not possible by IBM. Significant congruency in the lateral distributions
was found for the localization of phosphorous-, sulfur-, and zirconium-containing compounds for
both techniques enabling a cross-validation of the results. A comparison of the results revealed
similar lateral resolutions with a slight advantage on the ToF-SIMS side. Lower limits of detection
for the ToF-SIMS analysis were found in this study, whereas for the IBM measurement quantitative
information is obtained without sample consumption. In consequence, a successive analysis by both
techniques delivers an extremely high confidence on the validity of the distributions of nanomaterials
and other components in tissue sections at high lateral resolutions, along with quantitative information.

4. Materials and Methods

4.1. ZrO2 Nanoparticles

ZrO2 nanoparticles investigated in this study had a primary size of 9–10 nm according to electron
microscopy, a surface area of 117 m2/g, and were surface-coated with either tetraoxadecanoic acid or
acrylate. A detailed characterization has been published previously [5].

4.2. Animal Experiments and Lung Tissue Preparation

Preparation of NP suspensions for instillation and instillation experiments were described
before [6]. In brief, tetraoxadecanoic acid or acrylate-coated ZrO2 NP were suspended in sterile
H2O, coated with rat serum albumin to prevent agglomeration, and further diluted in the instillation
fluid (25 mM sodium bicarbonate gassed with 5% CO2 to pH 7.4–7.8); 0.5 mL of this fluid containing
1.2 or 2.4 mg of either ZrO2 NP quality was intratracheally instilled under isoflurane anaesthesia.
Particle size in the instillation fluid as measured by optical tracking methods was 71–80 nm [6].
Animals used in this study were deeply anaesthetized with ketamine and xylazine, and bled via the
Aorta descendens three days post-instillation. The left lung was inflated with 3 mL Cryomatrix
(Thermo Shandon Ltd., Runcorn, UK), snap frozen in liquid nitrogen, and stored at −80 ◦C.
Seven µm-thick cryo-sections were cut from the hilar region of the left lung. Sections investigated by
ToF-SIMS were from rat lungs laden with 2.4 mg acrylate-coated ZrO2 (see Figures 2–4), were mounted
onto room temperature indium tin oxide-coated slides. After drying, sections were kept frozen and
transferred to the pre-cooled chamber of the ToF-SIMS instrument, where they were dried completely
under vacuum (pressure < 1 × 10−6 mbar). Sections used for IBM or for the comparison of IBM and
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ToF-SIMS were from rat lungs laden with 1.2 mg tetraoxadecanoic acid-coated ZrO2 (see Figure 1,
and Figures 5–8). Sections were mounted onto a room temperature polypropylene foil fixed in custom
made metal frames fitting into the IBM sample chamber. After drying, sections were transported on
dry ice, immersed in cold methanol for 10 min, and dried prior to IBM investigation.

4.3. ToF-SIMS Analysis—Sputter Conditions

Measurements using O2 sputtering were performed at a TOF-SIMS5 (ION-TOF, Münster,
Germany). An ion dose of Bi3 at 25 keV of about 1.3 × 1011 ions was applied to an analysis raster
of 200 × 200 µm2 or rather 300 × 300 µm2 with a pixel raster of 512 × 512 pixels. O2 was used as a
sputter ion at an energy of 1 keV. A total sputter dose of 2.2–4.7 × 1015 ions was applied to a sputter
raster size of 600 × 600 µm2 or rather 900 × 900 µm2. The delayed extraction mode in combination
with non-interlaced sputtering at a cycle time of 70 µs resulting in a mass range up to 350 Da was
used. The calibration of the mass spectra was facilitated by the use of Na+, K+, Na2CN+, Na2CNO+,
and K2OH+. Mass resolutions (R = m/∆m) between 2000 and 7000 were achieved.

Measurements using Ar-cluster sputtering were performed at an upgraded TOF-SIMS4 instrument
(ION-TOF, Münster, Germany). An ion dose of Bi3 at 25 keV of 1.67 × 109 ions was applied to an
analysis raster of 300 × 300 µm2 with a pixel raster of 256 × 256 pixels. Ar1000 clusters were used as
sputter ions at an energy of 10 keV. A total sputter dose of 1.13 × 1013 ions was applied to a sputter
raster size of 500 × 500 µm2. The non-interlaced sputtering mode was used at a cycle time of 200 µs
resulting in a mass range up to 1500 Da was used. The calibration of the spectra was facilitated by
the use of the small organic ions (CH3

+, C2H5
+, C3H7

+, and C4H9
+). Mass resolutions (R = m/∆m)

between 3100 and 9000 were achieved.
The resulting 3D distributions of the signals were projected onto a 2D plane to enable a simple

comparison of the signals.

4.4. Ion Beam Microscope Analysis

Ion beam measurements were conducted at the Leipzig Ion Nanoprobe LIPSION (Leipzig,
Saxony, Germany) of the Felix-Bloch-Institute for Solid State Physics. The measurements were executed
with a proton beam of an energy of 2.25 MeV with a beam current of about 1 nA under vacuum
conditions of 5.0 × 10−3–1.0 × 10−5 Pa. The spatial resolution was set to approximately 1 µm.

The PIXE spectroscopy employed a Canberra PIXE detector (Meriden, CT, USA) consisting of
a high purity Germanium crystal (95 mm2 active area) additionally covered with a 60 µm polyethylene
layer, in order to avoid the penetration of backscattered protons.

For the RBS spectrometry measurements, the backscattered protons were detected using
a passivated implanted planar silicon (PIPS)-detector from Canberra (Meriden, CT, USA). Rutherford
backscattering spectrometry was applied to determine accumulated charge, atom density (atoms/cm2)
and element matrix composition (C, N, and O). These data were used as input parameters to calculate
the concentration of ZrO2 in ng/cm2 from the integral intensity of the Zr K-line from the PIXE
spectrum [2,16,29].

The data was collected using the MpSys Software (MARC Group of Prof Jamieson, Melbourne,
Australia). The charge, density and element concentration were determined by fitting the experimental
RBS and PIXE data in SIMNRA 6.0 (Mayer, M., Garching, Germany) and GeoPIXE5.1b software
(CSIRSO, Melbourne, Australia).
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Appendix A

Figure A1. Correlating signal distributions of ZrO2-related isotopes. The lateral signal distributions
of the main ZrO isotopes 90ZrO+ (a) 92ZrO+ (b) and 94ZrO+ (c) are in agreement with each other.
Consequently, all the observed signals are derived from the same ZrO2 source and the identity of the
ZrO2 particles is confirmed.
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