Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Di- μ-chlorido- μ-(dimethyl sulfide)bis\{dichlorido[(dimethyl selenide-кSe)(dimethyl sulfide- κS)(0.65/0.35)]niobium(III) \}(Nb — Nb)

Masatoshi Matsuura, ${ }^{\text {a }}$ Takashi Fujihara, ${ }^{\mathbf{b}_{*}}$ Akira Nagasawa ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\text {c,d }}$
${ }^{\text {a }}$ Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan,
${ }^{\text {b }}$ Comprehensive Analysis Center for Science, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan, ${ }^{\text {c }}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and d Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia Correspondence e-mail: fuji@chem.saitama-u.ac.jp

Received 5 July 2012; accepted 26 July 2012
Key indicators: single-crystal X-ray study; $T=150 \mathrm{~K}$; mean $\sigma(\mathrm{S}-\mathrm{C})=0.003 \AA$; disorder in main residue; R factor $=0.023 ; w R$ factor $=0.057$; data-to-parameter ratio $=26.1$.

The dinuclear compound, $\left[\mathrm{Nb}_{2} \mathrm{Cl}_{6}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}\right)_{1.7}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{Se}\right)_{1.3}\right]$, features an $\mathrm{Nb}^{\mathrm{III}}=\mathrm{Nb}^{\mathrm{III}}$ double bond $[2.6878$ (5) \AA]. The molecule lies on a twofold rotation axis that passes through the middle of this bond as well as through the bridging dimethyl sulfide ligand. The $\mathrm{Nb}^{\text {III }}$ ion exists in an octahedral coordination environment defined by two terminal and two bridging Cl atoms, and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Se} /\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}$ ligands. The (bridging) ligand lying on the twofold rotation axis is an ordered $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}$ ligand, whereas the terminal ones on a general position are a mixture of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Se}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}$ ligands in a 0.647 (2):0.353 (2) ratio (the methyl C atoms are also disordered).

Related literature

For background to this study, see: Cotton et al. (1985); Kakeya et al. $(2006 a, b)$. For the synthesis of the principal reactant, see: Tsunoda \& Hubert-Pfalzgraf (1982). For a related structure, see: Babaian-Kibala et al. (1991).

Experimental

Crystal data
$\left[\mathrm{Nb}_{2} \mathrm{Cl}_{6}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}\right)_{1.7}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{Se}\right)_{1.3}\right]$
$M_{r}=645.87$
Orthorhombic, Pbcn
$a=13.3314$ (11) \AA
$b=13.5952$ (12) \AA
$c=10.6649$ (9) \AA

Data collection

Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.655, T_{\text {max }}=0.709$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.057$
$S=1.03$
2218 reflections
85 parameters
$V=1932.9(3) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=4.63 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
$0.10 \times 0.09 \times 0.08 \mathrm{~mm}$

10299 measured reflections
2218 independent reflections 1975 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.028$

17 restraints
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.61 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.53 \mathrm{e} \mathrm{A}^{-3}$

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X$S E E D$ (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

This work was partly supported by the programs of the Grants-in-Aid for Scientific Research (to FT, No. 23510115) from the Japan Society for the Promotion of Science.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5971).

References

Babaian-Kibala, E., Cotton, F. A. \& Shang, M. (1991). Acta Cryst. C47, 16171621.

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Cotton, F. A., Duraj, S. A. \& Roth, W. J. (1985). Acta Cryst. C41, 878-881.
Kakeya, M., Fujihara, T., Kasaya, T. \& Nagasawa, A. (2006a). Organometallics, 25, 4131-4137.
Kakeya, M., Fujihara, T. \& Nagasawa, A. (2006b). Acta Cryst. E62, m553m554.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Tsunoda, M. \& Hubert-Pfalzgraf, L. G. (1982). Inorg. Synth. 21, 16-18. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

$\mathrm{Di}-\mu$-chlorido- μ-(dimethyl sulfide)-bis\{dichlorido[(dimethyl selenide-кSe)(dimethyl sulfide- κS) $(0.65 / 0.35)$]niobium (III) \} $(N b-N b)$

Masatoshi Matsuura, Takashi Fujihara, Akira Nagasawa and Seik Weng Ng

Comment

The chemistry of the lower oxidation states of niobium in discrete complexes remains relatively unexplored. Our research group has already carried out X-ray crystallographic determinations of the complexes of the general formula $\left[\mathrm{Nb}_{2} \mathrm{Cl}_{6} L_{3}\right]$ ($L=$ tetrahydrothiophene $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~S}$, dimethyl sulfide (Kakeya et al., 2006a, 2006b). These complexes have a triply bridged face-sharing dioctahedral structure with one thioether as a bridging ligand and two terminal Cl^{-}and thioether. A series of ligand substitution reactions of these complexes with monodentate oxygen donors and substituted phosphanes has been explored. The structures of the face-sharing dioctahedral complexes preserve their original geometry in the case of reaction with monodentate ligands and ligand substitution occurred only at terminal positions (Cotton et al., 1985). We report here the first success in determining the structure of $\left[\mathrm{Nb}_{2} \mathrm{Cl}_{6}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{Se}\right)_{1.3}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}\right)_{1.7}\right.$ (Scheme I), which has selenoether as ligands at terminal positions.
The molecule has dinuclear bridging unit $\left[\mathrm{Nb}_{2}(\mu-\mathrm{Cl})_{2}\left(\mu-\mathrm{Me}_{2} \mathrm{X}\right)\right](\mathrm{X}=$ mixture of $\mathrm{S}, \mathrm{Se})$ with the terminal $\mathrm{Me}_{2} \mathrm{X}$ ligands in a trans orientation to the bridging $\mathrm{Me}_{2} \mathrm{~S}$ (Fig. 1). The average $\mathrm{Nb}-(\mu-\mathrm{Cl})$ and $\mathrm{Nb}-\left(\mu-\mathrm{Me}_{2} \mathrm{~S}\right)$ distances fall within the range of those for $\left[\mathrm{Nb}_{2}\left(\mu-\mathrm{Cl}_{2}\right)_{2} \mathrm{Cl}_{4}\left(\mu-\mathrm{Me}_{2} \mathrm{~S}\right)\left(\mathrm{Me}_{2} \mathrm{~S}\right)_{2}\right]$, which has the same bridging unit (Kakeya et al., 2006a, 2006b). The terminal $\mathrm{Nb}-\mathrm{Cl}$ lengths are shorter than the corresponding distances to the bridging atoms. If the terminal metalchalcogen bond were purely ionic, the distance should coincide with the sum of ionic radii of metal and chalcogen. Since the ionic radii of the trivalent niobium, Se^{2-} and S^{2-} given in the literature are $0.72 \AA, 1.98 \AA$ and $1.84 \AA$, the bond distances of the metal and chalcogen is $2.70 \AA$ for Se^{2-} and $2.56 \AA$ for S^{2-}. We find that the difference between bond lengths and sum of the those radii is smaller in the title compound than in $\left[\mathrm{Nb}_{2} \mathrm{Cl}_{6}\left(\mathrm{Me}_{2} \mathrm{~S}\right)_{3}\right]$. This difference is ascribed to the influence of the covalency of the metal-chalcogen interactions. Other geometrical parameters also lie within the same ranges as in analogous dinuclear niobium complexes (Kakeya et al., 2006a, 2006b).

Experimental

All the reactions were carried out under a dry argon atmosphere by using standard Schlenk tube techniques.
$\left[\mathrm{Nb}_{2} \mathrm{Cl}_{6}\left(\mathrm{Me}_{2} \mathrm{~S}\right)_{3}\right]$ was prepared by a literature method (Tsunoda \& Hubert-Pfalzgraf, 1982). $\mathrm{Me}_{2} \mathrm{Se}(0.10 \mathrm{ml}, 1.3 \mathrm{mmol})$ was added to $\left[\mathrm{Nb}_{2} \mathrm{Cl}_{6}\left(\mathrm{Me}_{2} \mathrm{~S}\right)_{3}\right](200 \mathrm{mg}, 0.34 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ and stirred for 1 d at room temperature. The resulting solution was concentrated to dryness to give red purple powders. The crude product was washed with hexane and dried under reduced pressure. A mixture of $\left[\mathrm{Nb}_{2} \mathrm{Cl}_{6}\left(\mathrm{Me}_{2} \mathrm{~S}\right)_{3}\right]$ and a compound believed to be $\left[\mathrm{Nb}_{2} \mathrm{Cl}_{6}\left(\mathrm{Me}_{2} \mathrm{Se}\right)_{2}\left(\mathrm{Me}_{2} \mathrm{~S}\right)\right]$ was obtained as red purple powders (130 mg , yield 58% identified by ${ }^{1} \mathrm{H} N M R$). The latter compound was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$-hexane (1:4) to give red crystals. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta 3.33\left(6 H\right.$, bridging- $\left.\mathrm{Me}_{2} \mathrm{~S}\right), 2.49(12 H$, terminal- $\mathrm{Me}_{2} \mathrm{Se}$). ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{~K}, \mathrm{CDCl}_{3}$): $\delta 30.0$ (2 C , bridging- $\mathrm{Me}_{2} \mathrm{~S}$), 14.1 (4 C, terminal- $\mathrm{Me}_{2} \mathrm{~S}$). FAB-MS(nitrobenzyl alcohol matrix): $m / z=644[\mathrm{M}-\mathrm{Cl}]^{+}$.

As the formulation refined to $\left[\mathrm{Nb}_{2} \mathrm{Cl}_{6}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{Se}\right)_{1.3}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}\right)_{1.7}\right]$, the crystal is probably not reprensentative of the bulk formulation.

Refinement

The H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.98 \AA$ for CH_{3}, and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}$ of the carrier atoms.
The chalcogen ligand on the general position is disordered; the atom refined to a 0.647 (2) $\mathrm{Se}: 0.353 \mathrm{~S}$ mixture. The Se1-C distances were restrained to $1.95 \pm 0.01 \AA$ and the $\mathrm{S} 1^{\prime}-\mathrm{C}$ distances to $1.80 \pm 0.01 \AA$. The temperature factors of Se 1 and S1' were made identical.

The refinement led to an $\mathrm{Nb} 1-\mathrm{Se} 1$ distance of $2.72 \AA$ but a much longer $\mathrm{Nb} 1-\mathrm{S} 1^{\prime}$ distance of $2.79 \AA$ (a normal Nb-S bond is approximately $2.40 \AA$). Refinement then proceeded by setting the $\mathrm{Nb} 1-\mathrm{S} 1$ (ordered sulfur) and the $\mathrm{N} 1 \mathrm{~b}-\mathrm{S} 1^{\prime}$ (disordered sulfur) bond distances to be within $0.01 \AA$ of each other. The two methyl groups were each split into two components, and the temperature factors of the primed atoms were set to those of the unprimed ones. Additionally, the anisotropic temperature factors were tightly restrained to be nearly isotropic. This model gave distances of 2.420 (1) \AA for the ordered atom and 2.543 (6) \AA for the disordered atom.

The failure of the Hirshfeld test for the $\mathrm{Nb} 1-\mathrm{Se} 1$ and $\mathrm{Nb} 1-\mathrm{S} 1$ ' bonds is attributed to the tight restraints imposed on the disordered ligand.
Arising from the refinement, the compound is formulated as $\left[\mathrm{Nb}_{2} \mathrm{Cl}_{6}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{Se}\right)_{1.3}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}\right)_{1.7}\right]$.

Computing details

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figure 1

Thermal ellispoid plot (Barbour, 2001) plot of $\left[\mathrm{Nb}_{2} \mathrm{Cl}_{6}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{Se}\right)_{1.3}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}\right)_{1.7}\right]$ at the 70% probability level. The disorder is not shown and symmetry-related atoms are not labeled.

Di- μ-chlorido- μ-(dimethyl sulfide)-bis\{dichlorido[(dimethyl selenide- $\kappa \mathrm{Se}$)(dimethyl sulfide- $\kappa \mathrm{S}$)

(0.65/0.35)]niobium(III)\}(Nb—Nb)

Crystal data

$\left[\mathrm{Nb}_{2} \mathrm{Cl}_{6}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}\right)_{1.7}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{Se}\right)_{1.3}\right]$
$M_{r}=645.87$
Orthorhombic, Pbcn
Hall symbol: -P 2n 2ab
$a=13.3314$ (11) \AA
$b=13.5952(12) \AA$
$c=10.6649(9) \AA$
$V=1932.9$ (3) \AA^{3}
$Z=4$

Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: Bruker TXS fine-focus rotating anode
Bruker Helios multilayer confocal mirror monochromator
Detector resolution: 8.333 pixels mm^{-1} φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$F(000)=1238$
$D_{\mathrm{x}}=2.219 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3921 reflections
$\theta=2.9-28.5^{\circ}$
$\mu=4.63 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Block, red
$0.10 \times 0.09 \times 0.08 \mathrm{~mm}$
$T_{\text {min }}=0.655, T_{\text {max }}=0.709$
10299 measured reflections
2218 independent reflections
1975 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=2.1^{\circ}$
$h=-15 \rightarrow 17$
$k=-16 \rightarrow 17$
$l=-12 \rightarrow 13$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.057$
$S=1.03$
2218 reflections
85 parameters
17 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from
neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0281 P)^{2}+2.0744 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.61 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.53$ e \AA^{-3}

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$	Occ. ($<1)$
Nb1	$0.468766(18)$	$0.233109(19)$	$0.36981(2)$	$0.01461(9)$	
Se1	$0.43903(16)$	$0.38286(10)$	$0.54126(16)$	$0.0169(2)$	$0.647(2)$
S1' $^{\prime}$	$0.4374(8)$	$0.3682(6)$	$0.5299(8)$	$0.0169(2)$	0.353
C11	$0.57325(6)$	$0.16964(6)$	$0.53247(6)$	$0.02378(16)$	
C12	$0.31130(5)$	$0.16593(6)$	$0.42645(7)$	$0.02496(17)$	
C13	$0.38916(5)$	$0.33927(5)$	$0.20578(6)$	$0.02154(16)$	
S1	0.5000	$0.08504(7)$	0.2500	$0.0173(2)$	
C1	$0.3683(5)$	$0.3155(6)$	$0.6751(7)$	$0.0327(8)$	$0.647(2)$
H1A	0.3411	0.2533	0.6434	0.049^{*}	$0.647(2)$
H1B	0.3133	0.3570	0.7053	0.049^{*}	$0.647(2)$
H1C	0.4148	0.3021	0.7442	0.049^{*}	$0.647(2)$
C2	$0.3289(7)$	$0.4616(8)$	$0.4702(10)$	$0.0240(12)$	$0.647(2)$
H2A	0.2946	0.4234	0.4051	0.036^{*}	$0.647(2)$
H2B	0.3562	0.5219	0.4333	0.036^{*}	$0.647(2)$
H2C	0.2812	0.4785	0.5367	0.036^{*}	$0.647(2)$
C1'	$0.3660(7)$	$0.3227(8)$	$0.6639(10)$	$0.0327(8)$	0.353
H2D	0.2942	0.3330	0.6490	0.049^{*}	$0.3532(16)$
H2E	0.3863	0.3584	0.7396	0.049^{*}	$0.3532(16)$
H2F	0.3791	0.2524	0.6751	0.049^{*}	$0.3532(16)$
C2'	$0.3338(14)$	$0.4497(16)$	$0.489(2)$	$0.0240(12)$	0.353
H3D	0.2715	0.4241	0.5255	0.036^{*}	$0.3532(16)$
H3E	0.3273	0.4534	0.3981	0.036^{*}	$0.3532(16)$
H3F	0.3470	0.5156	0.5231	0.036^{*}	$0.3532(16)$
C3	$0.4005(2)$	$0.0020(2)$	$0.2071(3)$	$0.0246(6)$	
H3A	0.3415	0.0398	0.1811	0.037^{*}	0.037^{*}
H3B	0.3831	-0.0393	0.2793	0.037^{*}	
H3C	0.4227	-0.0398	0.1376		

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Nb 1	$0.01621(14)$	$0.01427(14)$	$0.01335(13)$	$-0.00034(9)$	$-0.00035(9)$	$0.00066(9)$
Se 1	$0.0202(2)$	$0.0139(6)$	$0.0167(4)$	$-0.0004(4)$	$0.0026(3)$	$-0.0051(3)$
$\mathrm{S} 1^{\prime}$	$0.0202(2)$	$0.0139(6)$	$0.0167(4)$	$-0.0004(4)$	$0.0026(3)$	$-0.0051(3)$
$\mathrm{Cl1}$	$0.0265(4)$	$0.0263(4)$	$0.0185(3)$	$0.0031(3)$	$-0.0059(3)$	$0.0021(3)$
Cl 2	$0.0209(4)$	$0.0286(4)$	$0.0254(4)$	$-0.0064(3)$	$0.0031(3)$	$-0.0001(3)$

C13	$0.0244(4)$	$0.0224(4)$	$0.0179(3)$	$0.0073(3)$	$0.0008(3)$	$0.0027(3)$
S1	$0.0198(5)$	$0.0147(5)$	$0.0174(5)$	0.000	$-0.0024(4)$	0.000
C1	$0.045(2)$	$0.0319(19)$	$0.0213(18)$	$-0.0017(16)$	$0.0105(15)$	$0.0018(15)$
C2	$0.0259(18)$	$0.022(3)$	$0.024(4)$	$0.0093(15)$	$-0.0041(18)$	$0.003(2)$
C1 $^{\prime}$	$0.045(2)$	$0.0319(19)$	$0.0213(18)$	$-0.0017(16)$	$0.0105(15)$	$0.0018(15)$
C2 $^{\prime}$	$0.0259(18)$	$0.022(3)$	$0.024(4)$	$0.0093(15)$	$-0.0041(18)$	$0.003(2)$
C3	$0.0249(15)$	$0.0219(16)$	$0.0270(16)$	$-0.0055(12)$	$-0.0045(13)$	$0.0007(12)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{Nb} 1-\mathrm{Cl} 2$	2.3676 (7)	C1—H1A	0.9800
Nb1-Cl1	2.3863 (7)	C1-H1B	0.9800
Nb1-S1	2.4204 (8)	C1-H1C	0.9800
$\mathrm{Nb} 1-\mathrm{Cl} 3$	2.5039 (7)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9800
$\mathrm{Nb} 1-\mathrm{Cl}^{\text {i }}$	2.5140 (7)	C2-H2B	0.9800
Nb1-S1'	2.543 (6)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	0.9800
$\mathrm{Nb} 1-\mathrm{Nb} 1{ }^{\text {i }}$	2.6878 (5)	C1'-H2D	0.9800
Nb1—Se1	2.7650 (10)	C1'-H2E	0.9800
Se1-C1	1.941 (6)	C1'-H2F	0.9800
Se1-C2	1.968 (6)	C2'-H3D	0.9800
S1'- Cl^{\prime}	1.825 (9)	C2'-H3E	0.9800
$\mathrm{S} 1^{\prime}-\mathrm{C} 2^{\prime}$	1.822 (9)	C2'-H3F	0.9800
$\mathrm{Cl} 3-\mathrm{Nb} 1^{\text {i }}$	2.5140 (7)	C3-H3A	0.9800
S1-C3	1.801 (3)	C3-H3B	0.9800
$\mathrm{S} 1-\mathrm{C} 3{ }^{\text {i }}$	1.801 (3)	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	0.9800
$\mathrm{S} 1-\mathrm{Nb} 1^{\text {i }}$	2.4204 (8)		
$\mathrm{Cl2}-\mathrm{Nb} 1-\mathrm{Cl} 1$	101.10 (3)	$\mathrm{C} 3-\mathrm{S} 1-\mathrm{Nb} 1^{1}$	120.94 (10)
$\mathrm{Cl} 2-\mathrm{Nb} 1-\mathrm{S} 1$	88.07 (2)	$\mathrm{C} 3{ }^{\mathrm{i}}-\mathrm{S} 1-\mathrm{Nb} 1^{\mathrm{i}}$	121.93 (10)
$\mathrm{Cl1}-\mathrm{Nb} 1-\mathrm{S} 1$	89.00 (2)	C3-S1-Nb1	121.93 (10)
$\mathrm{Cl} 2-\mathrm{Nb} 1-\mathrm{Cl} 3$	91.42 (3)	C3i-S $1-\mathrm{Nb} 1$	120.94 (10)
$\mathrm{Cl} 1-\mathrm{Nb} 1-\mathrm{Cl} 3$	164.53 (3)	$\mathrm{Nb} 1{ }^{\text {i }}$ - $\mathrm{S} 1-\mathrm{Nb} 1$	67.46 (3)
S1-Nb1-Cl3	100.57 (2)	Se1-C1-H1A	109.5
$\mathrm{Cl} 2-\mathrm{Nb} 1-\mathrm{Cl}^{\text {i }}$	166.23 (3)	Sel-C1-H1B	109.5
$\mathrm{Cl} 1-\mathrm{Nb} 1-\mathrm{Cl3}^{\text {i }}$	90.05 (3)	$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
$\mathrm{S} 1-\mathrm{Nb} 1-\mathrm{Cl3}^{\text {i }}$	100.29 (2)	Se1-C1-H1C	109.5
$\mathrm{Cl} 3-\mathrm{Nb} 1-\mathrm{Cl}^{\text {i }}$	76.37 (3)	$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{Cl2}-\mathrm{Nb} 1-\mathrm{S} 1^{\prime}$	87.8 (2)	$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{Cl1}-\mathrm{Nb} 1-\mathrm{S}^{\prime}$	82.5 (3)	Se1-C2-H2A	109.5
$\mathrm{S} 1-\mathrm{Nb} 1-\mathrm{S} 1^{\prime}$	169.6 (2)	$\mathrm{Se} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{Cl} 3-\mathrm{Nb} 1-\mathrm{S} 1^{\prime}$	89.0 (3)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{Cl3}^{\mathbf{i}}-\mathrm{Nb} 1-\mathrm{S1}^{\prime}$	85.7 (2)	$\mathrm{Se} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{Cl} 2-\mathrm{Nb} 1-\mathrm{Nb} 1^{\text {i }}$	121.15 (2)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{Cl} 1-\mathrm{Nb} 1-\mathrm{Nb} 1^{\text {i }}$	120.69 (2)	$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{S} 1-\mathrm{Nb} 1-\mathrm{Nb} 1^{\text {i }}$	56.272 (14)	$\mathrm{S} 1^{\prime}-\mathrm{C} 1^{\prime}-\mathrm{H} 2 \mathrm{D}$	109.5
$\mathrm{Cl} 3-\mathrm{Nb} 1-\mathrm{Nb} 1^{\text {i }}$	57.795 (18)	S1'-C1'-H2E	109.5
$\mathrm{Cl} 3-\mathrm{Nb} 1-\mathrm{Nb} 1^{\text {i }}$	57.431 (17)	$\mathrm{H} 2 \mathrm{D}-\mathrm{C1}-\mathrm{H} 2 \mathrm{E}$	109.5
$\mathrm{S} 1{ }^{\prime}-\mathrm{Nb} 1-\mathrm{Nb} 1^{\text {i }}$	133.6 (2)	S1'- ${ }^{\text {C1 }}{ }^{\prime}-\mathrm{H} 2 \mathrm{~F}$	109.5
$\mathrm{C} 2-\mathrm{Nb} 1-\mathrm{Se} 1$	89.33 (4)	$\mathrm{H} 2 \mathrm{D}-\mathrm{C} 1{ }^{\prime}-\mathrm{H} 2 \mathrm{~F}$	109.5
$\mathrm{Cl1}-\mathrm{Nb} 1-\mathrm{Se} 1$	82.48 (5)	$\mathrm{H} 2 \mathrm{E}-\mathrm{C} 1^{\prime}-\mathrm{H} 2 \mathrm{~F}$	109.5

S1—Nb1—Se1	170.45 (5)	S1'-C2'-H3D	109.5
$\mathrm{Cl} 3-\mathrm{Nb} 1-\mathrm{Se} 1$	88.67 (5)	S1'-C2'-H3E	109.5
$\mathrm{Cl3}^{\text {i }}$ - $\mathrm{Nb} 1-\mathrm{Se} 1$	84.11 (4)	H3D-C2'-H3E	109.5
S1'-Nb1-Se1	1.6 (3)	S1'-C2'-H3F	109.5
$\mathrm{Nb} 1{ }^{\mathrm{i}}-\mathrm{Nb} 1-\mathrm{Se} 1$	132.31 (4)	H3D-C2'-H3F	109.5
C1—Se1-C2	100.2 (3)	H3E-C2'-H3F	109.5
$\mathrm{C} 1-\mathrm{Se} 1-\mathrm{Nb} 1$	102.0 (3)	S1-C3-H3A	109.5
$\mathrm{C} 2-\mathrm{Se} 1-\mathrm{Nb} 1$	104.6 (4)	S1-C3-H3B	109.5
$\mathrm{C} 1^{\prime}-\mathrm{S} 1^{\prime}-\mathrm{C} 2^{\prime}$	89.8 (9)	H3A-C3-H3B	109.5
$\mathrm{C} 1{ }^{\prime}-\mathrm{S} 1^{\prime}-\mathrm{Nb} 1$	111.5 (5)	$\mathrm{S} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
$\mathrm{C} 2{ }^{\prime}-\mathrm{S} 1^{\prime}-\mathrm{Nb} 1$	113.9 (10)	H3A-C3-H3C	109.5
$\mathrm{Nb} 1-\mathrm{Cl} 3-\mathrm{Nb} 1^{\text {i }}$	64.77 (2)	$\mathrm{H} 3 \mathrm{~B}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
$\mathrm{C} 3-\mathrm{S} 1-\mathrm{C} 3^{\text {i }}$	102.3 (2)		
$\mathrm{Cl} 2-\mathrm{Nb} 1-\mathrm{Se} 1-\mathrm{C} 1$	35.3 (2)	$\mathrm{Cl} 1-\mathrm{Nb} 1-\mathrm{Cl} 3-\mathrm{Nb} 1^{\text {i }}$	89.16 (10)
$\mathrm{Cl1}-\mathrm{Nb} 1-\mathrm{Se} 1-\mathrm{C} 1$	-66.0 (2)	$\mathrm{S} 1-\mathrm{Nb} 1-\mathrm{Cl} 3-\mathrm{Nb} 1^{1}$	-38.270 (17)
$\mathrm{Cl} 3-\mathrm{Nb} 1-\mathrm{Se} 1-\mathrm{C} 1$	126.7 (2)	$\mathrm{Cl} 3-\mathrm{Nb} 1-\mathrm{Cl} 3-\mathrm{Nb} 1^{\mathrm{i}}$	59.87 (2)
Cl3- ${ }^{\text {i }}$ - ${ }^{\text {- }}$ - $\mathrm{Se} 1-\mathrm{C} 1$	-156.8 (2)	$\mathrm{S} 1{ }^{\prime}-\mathrm{Nb} 1-\mathrm{Cl} 3-\mathrm{Nb} 1^{\text {i }}$	145.7 (2)
$\mathrm{Nb1}{ }^{\text {i }}$ - $\mathrm{Nb} 1-\mathrm{Se} 1-\mathrm{C} 1$	168.8 (2)	$\mathrm{Se} 1-\mathrm{Nb} 1-\mathrm{Cl} 3-\mathrm{Nb} 1^{\text {i }}$	144.13 (4)
$\mathrm{Cl} 2-\mathrm{Nb} 1-\mathrm{Se} 1-\mathrm{C} 2$	-68.8 (4)	$\mathrm{Cl} 2-\mathrm{Nb} 1-\mathrm{S} 1-\mathrm{C} 3$	16.75 (12)
$\mathrm{Cl1}-\mathrm{Nb} 1-\mathrm{Se} 1-\mathrm{C} 2$	-170.1 (4)	$\mathrm{Cl1}-\mathrm{Nb} 1-\mathrm{S} 1-\mathrm{C} 3$	117.89 (12)
$\mathrm{Cl} 3-\mathrm{Nb} 1-\mathrm{Se} 1-\mathrm{C} 2$	22.7 (4)	$\mathrm{Cl} 3-\mathrm{Nb} 1-\mathrm{S} 1-\mathrm{C} 3$	-74.34 (12)
$\mathrm{Nb1}{ }^{\text {i }}$ - $\mathrm{Nb} 1-\mathrm{Se} 1-\mathrm{C} 2$	64.8 (4)	Cl 3 - $-\mathrm{Nb} 1-\mathrm{S} 1-\mathrm{C} 3$	-152.23 (12)
$\mathrm{Cl} 2-\mathrm{Nb} 1-\mathrm{Sl}^{\prime}-\mathrm{C} 1^{\prime}$	33.1 (6)	S1'- ${ }^{\text {Nb }} 1-\mathrm{S} 1-\mathrm{C} 3$	83.3 (13)
$\mathrm{Cl1}-\mathrm{Nb} 1-\mathrm{Sl}^{\prime}-\mathrm{Cl}^{\prime}$	-68.4 (6)	$\mathrm{Nb1}{ }^{\text {i }}$ - $\mathrm{Nb} 1-\mathrm{S} 1-\mathrm{C} 3$	-113.40 (12)
$\mathrm{S} 1-\mathrm{Nb} 1-\mathrm{S} 1^{\prime}-\mathrm{C} 1^{\prime}$	-33.5 (19)	$\mathrm{Cl} 2-\mathrm{Nb} 1-\mathrm{S} 1-\mathrm{C} 3{ }^{\text {i }}$	-115.09 (12)
$\mathrm{Cl} 3-\mathrm{Nb} 1-\mathrm{S} 1^{\prime}-\mathrm{Cl}^{\prime}$	124.6 (6)	$\mathrm{Cl} 1-\mathrm{Nb} 1-\mathrm{S} 1-\mathrm{C3}^{\text {i }}$	-13.95 (12)
$\mathrm{Cl3}{ }^{\text {i }}-\mathrm{Nb} 1-\mathrm{S} 1^{\prime}-\mathrm{Cl}^{\prime}$	-159.0 (7)	$\mathrm{Cl} 3-\mathrm{Nb} 1-\mathrm{S} 1-\mathrm{C} 3{ }^{\text {i }}$	153.82 (12)
$\mathrm{Nb1}{ }^{\text {i }}-\mathrm{Nbl}-\mathrm{S} 1^{\prime}-\mathrm{Cl}^{\prime}$	165.8 (4)	$\mathrm{Cl} 3-\mathrm{Nb} 1-\mathrm{S} 1-\mathrm{C} 3^{\text {i }}$	75.93 (12)
$\mathrm{Cl} 2-\mathrm{Nb} 1-\mathrm{S} 1^{\prime}-\mathrm{C} 2^{\prime}$	-66.7 (10)	$\mathrm{S} 1{ }^{\prime}-\mathrm{Nb} 1-\mathrm{S} 1-\mathrm{C} 3{ }^{\text {i }}$	-48.6 (14)
$\mathrm{Cl1}-\mathrm{Nb} 1-\mathrm{S} 1^{\prime}-\mathrm{C} 2^{\prime}$	-168.2 (10)	$\mathrm{Nb} 1{ }^{\text {i }}-\mathrm{Nb} 1-\mathrm{S} 1-\mathrm{C} 3^{\text {i }}$	114.76 (12)
$\mathrm{S} 1-\mathrm{Nb} 1-\mathrm{S} 1^{\prime}-\mathrm{C} 2^{\prime}$	-133.3 (13)	$\mathrm{Cl} 2-\mathrm{Nb} 1-\mathrm{S} 1-\mathrm{Nb} 1^{1}$	130.15 (2)
$\mathrm{Cl} 3-\mathrm{Nb} 1-\mathrm{S} 1^{\prime}-\mathrm{C} 2^{\prime}$	24.8 (10)	$\mathrm{Cl} 1-\mathrm{Nb} 1-\mathrm{S} 1-\mathrm{Nb} 1^{1}$	-128.71 (2)
$\mathrm{Cl} 3{ }^{\text {i- }} \mathrm{Nb} 1-\mathrm{S} 1^{\prime}-\mathrm{C}^{\prime}$	101.2 (10)	$\mathrm{Cl} 3-\mathrm{Nb} 1-\mathrm{S} 1-\mathrm{Nb} 1^{1}$	39.061 (18)
$\mathrm{Nb} 1^{\mathrm{i}}-\mathrm{Nb} 1-\mathrm{S} 1^{\prime}-\mathrm{C}^{\prime}{ }^{\prime}$	66.0 (11)	$\mathrm{Cl} 3-\mathrm{Nb} 1-\mathrm{S} 1-\mathrm{Nb} 1^{\text {i }}$	-38.832 (17)
$\mathrm{Cl2}-\mathrm{Nb} 1-\mathrm{Cl} 3-\mathrm{Nb} 1^{\text {i }}$	-126.58 (2)	$\mathrm{S} 1^{\prime}-\mathrm{Nb} 1-\mathrm{S} 1-\mathrm{Nb} 1^{\text {i }}$	-163.3 (13)

Symmetry code: (i) $-x+1, y,-z+1 / 2$.

