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Abstract: Drug–target interaction (DTIs) prediction plays a vital role in probing new targets for breast
cancer research. Considering the multifaceted challenges associated with experimental methods iden-
tifying DTIs, the in silico prediction of such interactions merits exploration. In this study, we develop
a feature-based method to infer unknown DTIs, called PsePDC-DTIs, which fuses information regard-
ing protein sequences extracted by pseudo-position specific scoring matrix (PsePSSM), detrended
cross-correlation analysis coefficient (DCCA coefficient), and an FP2 format molecular fingerprint
descriptor of drug compounds. In addition, the synthetic minority oversampling technique (SMOTE)
is employed for dealing with the imbalanced data after Lasso dimensionality reduction. Then, the
processed feature vectors are put into a random forest classifier to perform DTIs predictions on four
gold standard datasets, including nuclear receptors (NR), G-protein-coupled receptors (GPCR), ion
channels (IC), and enzymes (E). Furthermore, we explore new targets for breast cancer treatment
using its risk genes identified from large-scale genome-wide genetic studies using PsePDC-DTIs.
Through five-fold cross-validation, the average values of accuracy in NR, GPCR, IC, and E datasets
are 95.28%, 96.19%, 96.74%, and 98.22%, respectively. The PsePDC-DTIs model provides us with
10 potential DTIs for breast cancer treatment, among which erlotinib (DB00530) and FGFR2 (hsa2263),
caffeine (DB00201) and KCNN4 (hsa3783), as well as afatinib (DB08916) and FGFR2 (hsa2263) are
found with direct or inferred evidence. The PsePDC-DTIs model has achieved good prediction
results, establishing the validity and superiority of the proposed method.

Keywords: DTIs prediction; breast cancer; drug repurposing; machine learning; PsePSSM; DCCA
coefficient

1. Introduction

Breast cancer is the most common gynecological malignant tumor in the world [1],
with incidence rates that outdistance other cancers in both transitioned and transitioning
countries [2]. It is reported that the global incidence of breast cancer has increased at
a rate of 0.5% annually [3]. Actually, hereditary and genetic factors can account for 5%
to 10% of breast cancer cases [2]. So far, approximately 100 breast cancer risk loci have
been identified in a genome-wide association study (GWAS) [4]. However, only a few of
targets are specifically for the development of new drugs for breast cancer. For example,
in the ChEMBL dataset, there are 13 targets corresponding to 348 compounds, among
which 209 compounds’ max phase is phase 4 in terms of breast cancer. Therefore, with
the purpose of exploring new targets for drugs of breast cancer treatment, predicting new
drug–target interactions (DTIs) is a good solution. The cost and time factors associated with
the development of new drugs on a commercial scale [5–7] warrant the need for examining
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the already approved drugs. So, we explore new DTIs via drugs approved by FDA and the
breast cancer risk genes identified from large-scale genome-wide genetic studies [8–11].

Wet lab experiments can infer the DTIs by using various techniques of classical and
reverse pharmacology [12], while experimental methods identifying DTIs are expensive,
time-consuming, and challenging. Therefore, for complementing experimental results, the
in silico prediction of interactions between drugs and their targets is desirable [13]. The
computational (in silico) methods for predicting drug–target interactions can be broadly
classified into three categories: ligand-based approaches, docking-based approaches, and
chemogenomic approaches [13].

For the first category, the main idea of ligand-based approaches is that similar molecules
usually bind to similar protein targets and show similar properties [14,15]. However, the
disadvantages of these approaches are that disregarding the information on the protein
domain limits novel interactions to the link between known ligands and protein families,
and hence, insufficient known ligands of target proteins may lead to poor performance [16].
As to the second category, docking approaches are powerful molecular modeling methods,
which apply molecular dynamics using the 3D structures of the proteins as well as drugs
to predict DTIs [17,18]. However, they cannot be applied in some cases where the 3D
structures of proteins are not known. Most of the membrane proteins, for instance, have
no three-dimensional structures in the freely protein databases. The third category, i.e.,
chemogenomic approaches, integrates the chemical information of the compounds and
genomic information of proteins into a unified framework to predict DTIs. The preponder-
ance of chemogenomic approaches is due to the fact that they overcome the disadvantages
of ligand-based and docking-based approaches that have been discussed previously [19].
One of the chemogenomic methods categories, i.e., feature based methods, represents
the drug-target pair with a vector of descriptors that may be produced by combining the
properties of drug and targets, and can be put into various machine learning models to
predict novel interactions [17].

In this study, we develop a feature-based method to infer unknown DTIs, called
PsePDC-DTIs. The process of this method is described as follows. First, fusing protein
features are generated by the pseudo-position specific scoring matrix (PsePSSM) algorithm,
detrended cross-correlation analysis coefficient (DCCA coefficient), and FP2 fingerprint
features of drug molecules under four benchmark datasets. Secondly, the least absolute
shrinkage and selection operator (Lasso) method is used to reduce the dimension and
noise information in the original high-dimensional space. Thirdly, the synthetic minority
oversampling technique (SMOTE) is employed with Lasso feature-selected data for dealing
with a high degree of imbalance in the samples used in this study. Finally, an ensemble
classifier, random forest, is adopted to perform DTI predictions on four gold standard
datasets, including nuclear receptors, G-protein-coupled receptors, ion channels, and
enzymes. In the experiment, we make predictions concerning the gold standard DTI
datasets by 5-fold cross-validation. Moreover, we can predict new DTIs for breast cancer
with its risk genes by using PsePDC-DTIs.

2. Results
2.1. Performance Evaluation

In this study, the five-fold cross-validation approach is used to evaluate the perfor-
mance of the prediction model. For each data set, all the DTIs are randomly divided
into five parts of roughly equal size. Each part is taken in turn as the test set, while the
remaining four parts serve as the training set to establish a prediction model.

The following parameters, Accuracy (ACC), Specificity (SP), and Sensitivity (SE), F
score are calculated to assess the performance of the prediction model proposed in the
experiment. The definition is as follows:

ACC =
TP + TN

TP + TN + FP + FN
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SE =
TP

TP + FN

SP =
TN

TN + FP

F =
2TP

2TP + FP + FN
where true positive (TP) represents the number of positive pairs that are predicted to be
interacting, whereas false positive (FP) is the count of negative pairs that are predicted to
be interacting. Similarly, true negative (TN) is the total of negative pairs that are predicted
to be non-interacting and false negative (FN) represents the number of positive pairs that
are predicted to be non-interacting.

In addition, the receiver operating characteristic (ROC) is another important tool to
assess the generalization performance of the model. ROC curve is a plot of the true positive
rate (TPR) and false positive rate (FPR) which depicts the performance of a predictor
at various threshold values. To compare these curves, area under the curve (AUC) is
computed by summing the areas under the ROC curve.

A similar metric, the precision-recall curve (PR curve), can be obtained by using
precision and recall at multiple threshold settings. The precision and recall ratio are
defined as:

P =
TP

TP + FP

R =
TP

TP + FN
Area under the precision-recall (AUPR) can also be obtained by summing the areas

under the PR curve. For skewed datasets like the DTIs datasets in this paper, AUPR is
of more significance because it penalizes the false positives more as compared to AUC,
and is thus more suitable for imbalanced datasets. The higher the value of AUPR, the
better [20,21]. The general framework of the PsePDC-DTIs model is shown in Figure 1 for
an intuitive understanding.
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2.2. Features Generation
2.2.1. Parameter Setting for PsePSSM and DCCA Coefficient

Both the PsePSSM and the DCCA coefficient algorithms can control the validity of the
algorithm to extract the feature information of the protein sequences by adjusting some
of the parameters in the algorithm. The selection of parameters λ and s is very important
for the accuracy of a protein-target interactions prediction model. In order to discover the
merits of the feature parameters, we use the benchmark datasets as the research object,
while the optimal values of λ and s are selected by the prediction accuracy and average
prediction accuracy of the four datasets under different parameters [22,23].

In this paper, the λ value of PsePSSM algorithm indicates the sequence-order informa-
tion of the amino acid residues in the protein sequence. To find the optimal λ value, we set
the λ values from 0 to 15 in order. For the different λ values, the gold standard datasets
enzymes, ion channels, GPCRs, and nuclear receptors are classified by RF and tested by
5-fold cross-validation respectively. The results can be seen in Supplementary Table S2.
To find the best λ value more intuitively, the prediction accuracy and average accuracy
with different λ values for the four datasets is shown in Supplementary Figure S1. In order
to unify the parameters in the model, we take the λ value corresponding to the highest
average accuracy for the optimal parameter which is up to 97.425% with λ = 3. Therefore,
an 80-dimensional feature vector is acquired when using the PsePSSM method with the
optimal parameter λ value of 3 to extract features of each target protein.

The s value of DCCA coefficient algorithm determines the length of each overlapping
segment in which the covariance and variance of the residuals are calculated. In the gold
standard datasets E, IC, GPCRs, and NR, the length of the shortest protein sequence is 83,
therefore, the maximum s value is allowed for 82. To find the optimal s value, we set s
values from 9 to 81 in turn. For the different s values, benchmark datasets are classified
by RF and tested by 5-fold cross-validation respectively. In order to unify the parameters
in the model, we take the s value corresponding to the highest average accuracy for
the optimal parameter, which is up to 97.2925% when s = 36. The prediction accuracy
and average prediction accuracy with different values of the four datasets is shown in
Supplementary Figure S2 and Table S3.

2.2.2. The Dimensionality of the Generated Features

We can obtain a 526-dimension feature vector which is composed of an 80-dimension
vector generated by PsePSSM, 190-dimension vector generated by DCCA coefficient, and
256-dimension vector of the FP2 format molecular fingerprint.

2.3. Predictive Performance of Lasso for Dimensionality Reduction

As mentioned above, there are 526-dimension features for prediction, and the Lasso
dimensionality reduction algorithm can extract useful information and discard redundancy
from the complex information in the feature vector, which can improve the prediction
process to some extent. The performance evaluation parameters for Lasso are shown
in Supplementary Table S4. As we can see from Supplementary Table S4, the values of
different indicators are comparable before and after using Lasso, which illuminates the
ability of Lasso for extracting useful information.

2.4. Predictive Performance of SMOTE for Imbalanced Datasets

The classification of data with imbalanced class presents a significant drawback of the
performance attainable using most standard classifier learning algorithms, which assume a
relatively balanced class distribution and equal misclassification costs [24]. For this reason,
as mentioned above, the SMOTE method has been used to convert the Lasso feature-
selected data from imbalanced to balanced form, which is implemented in the DMwR R
package where the oversampling parameter, the undersampling parameter, and the nearest
neighbor algorithm parameter are set to 500, 120, and 5, respectively.
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Due to the number of positive examples is much smaller than the number of neg-
ative examples, the indicators SE and SP are proportional to the correct proportion of
positive and negative examples in the sample, and the indicator ACC has no significance
in measuring the merits of the algorithm [23]. Therefore, the indicators that can reason-
ably measure the evaluation performance of the prediction model are AUC and AUPR
among the above-mentioned indicators. To reflect the effect of data balance on the predic-
tion performance of the model more directly, the visual display of the AUC and AUPR
comparison under NR, GPCR, IC, and E datasets on unbalanced datasets and balanced
datasets is shown in Figure 2. The evaluation indicators mentioned above are shown in
Supplementary Table S5.
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Figure 2 illuminates that the datasets after SMOTE processing have been vastly im-
proved as far as AUC and AUPR are concerned. For the increase of AUC value after
balancing, the highest is in the NR dataset with 0.1399, followed by GPCR dataset with
0.0623, E dataset with 0.0314, and IC dataset with 0.0300. As to AUPR, the highest is in
GPCR dataset with 0.4994, followed by NR dataset with 0.4931, IC dataset with 0.2838,
and E dataset with 0.1989. So, we can conclude that SMOTE processing lead to a greater
improvement in the prediction performance.

2.5. Predictive Performance of RF for DTIs Prediction

A classifier plays an important role in the quality of a prediction model, and thus
might influence the prediction performance. In order to explore the machine learning
(ML) methods which are used frequently, we investigate seven common classification
algorithms of ML (i.e., random forest, naïve Bayes, decision tree, support vector machine,
oneR, k-nearest neighbors, repeated incremental pruning to produce error reduction).

To ensure fairness, the target protein sequences are extracted by PsePSSM and DCCA
coefficient for the four datasets constructed, and the drug compounds are expressed by
FP2 format molecular fingerprint descriptor. After fusing the features, the Lasso method
for dimensionality reduction and SMOTE method for skewed datasets are used. To obtain
robust results and accurate comparison, we keep the same experimental conditions, where
the same training drugs-target interaction pairs and test drugs-target interaction pairs are
used across the seven classifiers in each cross-validation [25]. The prediction results on
four datasets of seven classifiers are shown in Supplementary Table S6.

From the boldfaced fonts in Supplementary Table S6, we observe that RF significantly
outperformed the other machine learning methods under four datasets in terms of ACC,
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SP, F, AUC, and AUPR metrics. However, for the SE metric, SVM secured the first position
with SE values of 96.98%, 97.50%, and 97.81% which is 1.15%, 1.96%, and 0.20% higher
than RF in GPCR, IC, and E datasets, respectively. However, each of the SE values in these
three datasets is over 95%, which means that more than 95% of actual DTIs can be correctly
identified.

Figure 3 shows one of the ROC curves of seven different classification algorithms
under the NR, GPCR, IC, and E datasets in five-fold cross-validation, while other ROC
curves are shown in Supplementary Figure S3. Figure 4 reveals one of the PR curves of
seven different classifiers under four datasets in five-fold cross-validation, while other PR
curves can be found in Supplementary Figure S4.

According to Figures 3 and 4, the ROC and PR curves of the four datasets almost
surround others with random forest as the classifier, and the corresponding AUC and
AUPR values are also larger. Therefore, we choose random forest as the classification
algorithm of the prediction model.
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2.6. Predictive Performance of PsePDC-DTIs Compared with State-of-the-Art Methods

There are a variety of prediction models proposed for detecting DTIs. Our method
applies LASSO to select features and SMOTE to balance data for DTIs under gold standard
datasets and evaluates prediction performance based on five-fold cross-validation. To
further expound the efficiency of the predictor in this study, we compared our prediction
performance with other methods which also used the same benchmark datasets and tested
by five-fold cross-validation [16]. Table 1 lists the comparison results of other models,
including NetCBP [26], Huang et al. [27], Bigram-PSSM [21], iDTI-ESBoost [20], Li et al. [28],
KBMF2K [29], and NRLMF [30]. It can be seen that our predictor PsePDC-DTIs achieves
AUC values of 0.9886, 0.9923, 0.9956, and 0.9983 on the NR, GPCR, IC, and E datasets,
respectively, which significantly outperforms other methods for all datasets.

Table 1. Performance comparison of different approaches on benchmark datasets in terms of AUC.

Models NR GPCR IC E

NetCBP [26] 0.8394 0.8235 0.8034 0.8251
Huang et al. [27] 0.9634 0.9053 0.9382 0.9601

Bigram-PSSM [21] 0.8690 0.8720 0.8890 0.9480
iDTI-ESBoost [20] 0.9285 0.9322 0.9369 0.9689

Li et al. [28] 0.9300 0.9171 0.8856 0.9288
KBMF2K [29] 0.8240 0.8570 0.7990 0.8320
NRLMF [30] 0.9500 0.9690 0.9890 0.9870

PsePDC-DTIs 0.9886 0.9923 0.9956 0.9983
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Moreover, Mousavian et al. [21] argued that the AUPR is a more accurate measure for
evaluating performance in dealing with highly imbalanced datasets compared to the AUC
for the reason that the highly ranked false positive samples are punished by the AUPR
much more than the AUC. To compare the performance in terms of AUPR among Bigram-
PSSM [21], iDTI-ESBoost [20], and NRLMF [30], we reported the AUPR values of the three
predictors in Table 2. The AUPR values of our model PsePDC-DTIs are 0.9875, 0.9923,
0.9958, and 0.9984 on the NR, GPCR, IC, and E datasets, respectively. This clearly shows
that our method PsePDC-DTIs outperforms other methods in terms of AUPR as well.

Table 2. Performance comparison of different approaches on benchmark datasets in terms of AUPR.

Models NR GPCR IC E

Bigram-PSSM [21] 0.4110 0.2820 0.3900 0.5460
iDTI-ESBoost [20] 0.7900 0.5000 0.4800 0.6800

NRLMF [30] 0.7280 0.7490 0.9060 0.8920
PsePDC-DTIs 0.9875 0.9923 0.9958 0.9984

The values of AUC and AUPR demonstrated above indicate the effectiveness of the
extracted feature information, dimensionality reduction of features, balancing methods,
and classifier proposed in this research.

2.7. Predictive Performance of PsePDC-DTIs Compared with State-of-the-Art Methods

According to the information introduced above, we can confirm the reliability of our
proposed model. In the inference process, we use all the known drugs and target proteins
in the gold standard datasets as training data, and predict potential interactions between
52 human proteins and 1556 FDA approved drugs as mentioned in the datasets section.

For the 52 breast cancer target proteins and the PsePDC-DTIs model trained in gold
standard datasets, we predict all the DTIs mentioned in Section 4.1.2 and rank them by
their probability. There are 383 predicted DTIs with a probability greater than 0.5 reported
in Supplementary Table S7, which means 0.47% pairs were predicted as interaction. This is
in line with the fact that the number of non-interacting pairs is far more than the number
of interaction pairs [21]. We extract the top 10 drug–target pairs ranked by their prediction
probability values, as listed in Table 3, and present the potential mechanism of predicted
DTIs in Figure 5. Figure 5A shows that IP3R, the target of caffeine (DB00201), regulates
KCNN4 via Ca2+ in the salivary secretion pathway. Figure 5B demonstrates that GF, the
target of afatinib (DB08916), regulates RTK directly.

Table 3. Drug-target pairs ranked by prediction probability.

Drug Drug_Name Target Target_Name Prob

DB00201 Caffeine hsa3783 KCNN4 0.988
DB00277 Theophylline hsa3783 KCNN4 0.982
DB01412 Theobromine hsa3783 KCNN4 0.93
DB00530 Erlotinib hsa238 ALK 0.886
DB00806 Pentoxifylline hsa3783 KCNN4 0.884
DB00824 Enprofylline hsa3783 KCNN4 0.866
DB00530 Erlotinib hsa2263 FGFR2 0.864
DB00661 Verapamil hsa57719 ANO8 0.846
DB01303 Oxtriphylline hsa3783 KCNN4 0.844
DB08916 Afatinib hsa2263 FGFR2 0.806
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3. Discussion

As shown above, the average values of accuracy in GPCR, IC, and E datasets are
95.28%, 96.19%, 96.74%, and 98.22%, respectively. The average AUC achieves 0.9886,
0.9923, 0.9956, and 0.9983 on the NR, GPCR, IC, and E datasets, respectively, which
outperformed some methods reported elsewhere [20,21,26–29]. In the literature [21], it
has been revealed that AUPR is the most appropriate metric for the comparison of such
imbalanced datasets. Moreover, the average AUPR of PsePDC-DTIs outperformed other
methods [20,21], reaching 0.9875, 0.9923, 0.9958, and 0.9984 under these four datasets,
respectively.

During predicting DTIs between 52 human proteins of breast cancer and 1556 FDA
approved drugs in the DrugBank database, our comprehensive model provides us with
10 potential DTIs, among which three DTIs are found with direct or inferred evidence.
There is direct evidence about the DTIs of erlotinhas(DB00530) and FGFR2 (hsa2263) in
SuperTarget. In addition, we obtain indirect evidence of predicted DTIs when the known
target for a drug regulates the predicted target for this drug by using pathways from the
KEGG database. Figure 5A shows that the target IP3R for caffeine (DB00201), which can be
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found in DrugBank datasets, regulates KCNN4 via Ca2+ in the salivary secretion pathway.
This is important with respect to the fact that several studies demonstrate the relationship
of salivary to breast cancer [31–38]. For example, Sawczuk et al. [36] indicated that salivary
peroxidase may have particular clinical significance in non-invasive diagnostics of breast
cancer. Liu et al.’s study [37] contributed to the screening of patients with early-stage breast
cancer based on precise alterations of salivary glycopatterns.

Furthermore, we find six pathways to explain the relationship between afahasib
(DB08916) and FGFR2 (hsa2263). Taking PI3K-Akt signaling pathway as an example,
Figure 5B shows that the target GF (contains EGF) for afatinib (DB08916) which can be
found in DrugBank datasets regulates RTK (contains targets of EGFR, ERBB2, ERBB4,
FGFR2) directly. Again, this is significant as several studies suggest that PI3K-Akt signal-
ing pathway is connected with breast cancer [39–61]. Chandarlapaty et al. [44] prospec-
tively collected trastuzumab-refractory human breast cancers, and found that activation
of the PI3K-Akt pathway through loss of PTEN or PIK3CA mutation was frequently ob-
served. Other pathways about afatinib (DB08916) and FGFR2 (hsa2263) can be found in
Supplementary Figure S5.

In the remaining predicted seven DTIs, although we could not find any evidence
from databases, pathways, and literature, they still have the potentiality to be true positive
DTIs [62]. For instance, some researches [63] propose that theophylline (DB00277) and
caffeine (DB00201) are often regarded as a group which is related to breast cancer. Thus, it
is possible that both drugs interact with the same target.

However, if the drug–target interactions dataset as training data is too large, the
PsePDC-DTIs model cannot predict drug–target interactions rapidly because we use RF
as classifier. Therefore, in order to improve the operating speed of the proposed model
and keep the prediction accuracy, in the future, we will attempt to use a deep learning
network as classifier. Moreover, to handle the class imbalance problem, our proposed
model used SMOTE to generate artificial examples for the minority class. However, during
the cross-validation process, the test dataset also contains the artificial examples generated
by SMOTE, which may cause the current reported prediction performance exaggeration.
Therefore, we will explore a more conservative and effective method for dealing with
imbalanced data. In addition, further research into the new methods of the features will
be essential because the algorithm of extracting the feature information of the protein
sequences and drug compounds is very important for the performance of a protein–target
interactions prediction model.

4. Materials and Methods
4.1. Datasets
4.1.1. Benchmark Datasets

The benchmark datasets are used for assessing the performance of PsePDC-DTIs by
five-fold cross-validation. For this study, they are the gold standard datasets studied by Ya-
manishi et al. [64], obtained from http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/
(accessed on 9 December 2021). All data concerning DTIs pairs in the gold standard datasets
are collected from the KEGG BRITE [65], BRENDA [66], SuperTarget [67], and Drug Bank
databases [68]. The drug target links have been considered for four protein targets, namely
enzymes(E), ion channels (IC), G-protein-coupled receptors (GPCR), and nuclear receptor
(NR). As listed in Table 4, the number of known drugs target in these classes is 445, 210,
223, and 54, respectively, and the number of proteins known to be targeted by the drugs in
these classes is 664, 204, 95, and 26 respectively. Among these drug-target pairs, 5127 pairs
are known to interact with each other, and the number of interacting pairs in each class is
2926, 1476, 635, and 90 respectively.

http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/
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Table 4. The benchmark data sets used in this study.

Datasets Drugs Targets Interactions Positive
Samples

Negative
Samples

Sample
Ratio

Enzyme 445 664 2926 2926 292,554 99.98
IC 210 204 1476 1476 41,364 28.02

GPCR 223 95 635 635 20,550 32.36
NR 54 26 90 90 1314 14.60

Total 932 989 5127 5127 355,782 -

For a completely connected bipartite graph, there must be drugs× targets connections.
Taking the enzyme dataset, for instance, there exist 455 × 664 = 302,120 drug-target pairs.
In our study, 5172 pairs which are known to interact with each other are used as the positive
samples while the rest of connections are considered negative samples. The number of
samples for four datasets is listed in Table 4.

4.1.2. DTIs Dataset Constructed by Drugs of FDA-Approved and Targets of Breast Cancer

In order to predict new DTIs of breast cancer treatment for drugs approved by the FDA,
we propose a DTIs dataset whose drugs are from a dataset named DrugBank_approved [69]
which contains 1556 FDA-approved drugs until 2016. As to the targets, we use the 110 pu-
tative target genes of breast cancer identified by Baxter et al. [10] and 179 genes whose
predicted expression was associated with breast cancer risk [11] for drug repurposing. Ac-
cording to these 286 genes (removing 3 duplicates), we obtain 52 human proteins annotated
as members of the four classes of target proteins (NR, GPCR, IC, and E) in KEGG GENES,
which are listed in Supplementary Table S1. The DTIs which are generated by connecting
each target protein with each drug molecule (only target protein and drug can be linked by
aside) can be used for drug repurposing of breast cancer.

4.2. Methods for Features Generation
4.2.1. Pseudo-Position Specific Scoring Matrix (PsePSSM)

The PsePSSM algorithm employed in the study is proposed by K.C. Chou [70].
PsePSSM is the extraction of the features of protein sequences, which can be obtained
by translating the position specific scoring matrix (PSSM) of different dimensions for dif-
ferent protein sequences into the same dimension. The uniform vector is convenient for
our subsequent study. PSSM [71] represents the evolutionary information of the protein
sequences, which needs to blast the protein FASTA file against the UniProt database for
constructing through PSI-BLAST [72]. For this study, the parameters of PSI-BLAST are set
with three iterations, E-value is equal to 0.001, while the rest of the parameters are set by
default. The constructed PSSM format for a protein sequence P with L amino acid residues
is shown as formula (1). The rows of PSSM inform the corresponding amino acid positions
in the protein sequence P, and columns of PSSM indicate the 20 native amino acid types
that may be mutated.

PPSSM =



E1,1 E1,2 · · · E1,j · · · E1,20
E2,1 E2,2 · · · E2,j · · · E2,20

...
... · · ·

... · · ·
...

Ei,1 Ei,2 · · · Ei,j · · · Ei,20
...

... · · ·
... · · ·

...
EL,1 EL,2 · · · EL,j · · · EL,20


(1)

where Ei,j represents the value of the residue of the i-th position in the amino acid sequence
being mutated to the j-th native amino acid residue.
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The elements of PSSM are normalized by formula (2), whose PSSM value ranges from
0 to 1, while the value in the original PSSM matrix ranges from −9 to 11.

E′i,j =
1

1 + e
(
−Ei,j

) (2)

Because proteins with different lengths will correspond to matrices with different
numbers of rows, in order to make the PSSM descriptor a uniform representation, a protein
sequence P is represented by formula (3):

PPSSM =
[

E1 E2 · · · Ej · · · E20
]T (3)

where Ej =
1
L ∑L

i=1 E′i,j, Ej manifests the average score of the amino acid residue in protein
P being mutated to j amino acid type during the process of evolution.

Next, we transform PSSM of a single protein into a feature vector PsePSSM, as for-
mula (4) shown.

PPsePSSM =
[

PPSSM
T θ1

1 θ1
2 · · · θ1

20 · · · θλ
1 θλ

2 · · · θλ
20
]T (4)

where θλ
j = 1

L−λ ∑L−λ
i=1 (E′i,j − E′(i+λ ),j)

2(λ < L; j = 1, 2, · · · , 20), θλ
j is the correlation factor

by coupling the λ-th-most contiguous PSSM scores along the protein chain for the amino
acid type j. Therefore, a protein sequence generates a 20 + 20 × λ-dimensional feature
vector using PsePSSM algorithm. PsePSSM matrix can be regarded as PSSM matrix when
λ = 0. For this study, the optimal parameter of λ needs to be selected, so that the highest
accuracy of a protein–target interactions prediction model is obtained.

4.2.2. Detrended Cross-Correlation Analysis Coefficient (DCCA Coefficient)

Using the detrended cross-correlation analysis coefficient method, more protein in-
formation that truly reflects protein samples’ intrinsic correlation could be extracted from
the PSSM matrix. DCCA coefficient was initially proposed by Podobnik and Stanley [73],
which can be used to quantify the level of cross-correlation between two non-stationary
time series [74]. Here, each amino acid is taken as one property and the PSSM including the
evolutionary information expression is considered as the time series of all properties. The
20 columns in the PSSM matrix are considered to be 20 non-stationary time series [22,75].

For two arbitrary different columns of a normalized PSSM, {xi} and {yi}
(i = 1, 2, · · · , L), new time series Xk and Yk are calculated by using formula (5).{

Xk = ∑k
i=1 xi k = 1, 2, · · · , L

Yk = ∑k
i=1 yi k = 1, 2, · · · , L

(5)

Then, the integrated time series Xk and Yk are divided into (L − s) overlapping
segments, and each segment which starts at i and ends at I + s contains (s + 1) values. For
each segment of the data, the fitting values X̃i,k and Ỹi,k(i ≤ k ≤ i + s) can be obtained
by the least squares linearly fitting. The covariance and variance of the residuals in each
segment are calculated by formula (6)–(8):

f 2
xy(s, i) =

1
s + 1 ∑i+s

k=i(Xk − X̃i,k)
(

Yk − Ỹi,k

)
(6)

f 2
xx(s, i) =

1
s + 1 ∑i+s

k=i (Xk − X̃i,k)
2

(7)

f 2
yy(s, i) =

1
s + 1 ∑i+s

k=i (Yk − Ỹi,k)
2

(8)
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Next, we average all (L − s) overlapping segments and obtain the fluctuation function
shown in formula (9)–(11):

f 2
xy(s) =

1
L− s ∑L−s

i=1 f 2
xy(s, i) (9)

f 2
xx(s) =

1
L− s ∑L−s

i=1 f 2
xx(s, i) (10)

f 2
yy(s) =

1
L− s ∑L−s

i=1 f 2
yy(s, i) (11)

Finally, the DCCA coefficient of two different time series {xi} and {yi} is defined
as formula (12). Hence, for the 20 columns in the PSSM matrix considered to be 20 non-
stationary time series, a 190-dimensional feature vector will be generated for a certain s via
the DCCA coefficient algorithm. We need to select the optimal parameter of s to obtain the
highest accuracy of a protein–target interactions prediction model.

ρDCCA(s) =
f 2
xy(s)

fxx(s) fyy(s)
(12)

The value of ρDCCA ranges from −1 ≤ ρDCCA ≤ 1. Logically, 1 means perfect
cross-correlation, 0 represents no cross-correlation, and −1 indicates perfect anti-cross-
correlation [76].

4.2.3. FP2 Molecular Fingerprint

Drug compounds are expressed by FP2 format molecular fingerprint descriptor that
can be converted to a decimal digit sequence between 0 and 15 as a drug molecule 256-
dimensional vector using OpenBabel Software (available from http://openbabel.org, ac-
cessed on 9 December 2021) [23].

4.3. Lasso for Dimensionality Reduction of Features

Shi et.al [23] proved that the least absolute shrinkage and selection operator (Lasso)
method can effectively reduce information redundancy and delete some unimportant
features compared with principal components analysis (PCA), ReliefF, and Elastic net.
Therefore, we use Lasso as the dimensionality reduction algorithm for this paper. LASSO
proposed by Tibshirani [77] is a compression estimation method with l1 regularization
implemented to achieve a sparse solution. LASSO is used to perform feature selection by
forcing many parameters corresponding to the irrelevant and redundant features to zero
value, and retaining the features corresponding to the non-zero coefficients for subsequent
classification [78–80]. The aim of this approach is to minimize the cost function:

∑N
n=1 (yn −∑m xnmβm)

2
+ λ ∑M

m=1|βm| (13)

where yn represents the corresponding response vector of a DTI pair, that is, the class label
of the sample, N is the number of samples, xnm is the m-th feature of the n-th sample, λ is
the regularization parameter, and βm is the regression coefficients of m-th feature [78].

Therefore, through formula (13), we eliminate the noise and redundant information
contained in the high-dimensional data obtained after the original drug and target feature
extraction

4.4. SMOTE for High-Dimensional Class-Imbalanced Data

As shown in Table 4, there are severe imbalance problems between the positive and
negative samples of four gold standard datasets. The ratio of negative samples to positive
samples (sample ratio) is used for measuring the degree of imbalance. There is a high
degree of imbalance in the enzyme dataset with the sample ratio reaching 99.98. In contrast,
the nuclear receptor dataset has a low degree of imbalance, with a sample ratio that

http://openbabel.org
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barely reaches 14.60. In order to deal with imbalanced data, some important techniques
are proposed, such as random undersampling, random oversampling, and the synthetic
minority oversampling technique (SMOTE). SMOTE overcomes imbalances by generating
artificial data, while random undersampling and random oversampling replicate and add
the observations from the minority class [80]. Therefore, this study uses SMOTE, which
is a powerful method and creates artificial data based on feature space similarities from
minority samples to handle the problems.

SMOTE, proposed by Chawla et al. [81], is one of the most popular oversampling
methods. Its main idea is to interpolate a new synthetic minority class sample on the line
that connects a randomly chosen minority class sample and one of its k-nearest neighbors
belonging to the minority class samples. Specifically speaking, for each positive sample
z, one gets its k-nearest neighbors from other positive samples. Then, one chooses one
positive sample z among the neighbors [82]. Finally, this generates the synthetic sample
znew by inserting between z and z as follows:

znew = z + rand(0, 1)× (z− z) (14)

where rand(0, 1) refers to generate a random number between 0 and 1. Thus, a new, more
balanced dataset is formed.

4.5. RF for DTIs Prediction

Random forest (RF) [83] is one of the famous bagging techniques based on decision
tree models which is fast, robust to noise, does not overfit, but provides possibilities for the
explanation and visualization of its output. In this study, RF was applied as a classification
method by constructing a multitude of decision trees at training time and outputting the
number of votes cast of all the trees [84]. Supposing the number of training cases were P
and the total number of features in the classifier were Q. After making p bootstrap sample
sets from the original training sample set, set up an unpruned tree with each sample set. At
each node of the tree, randomly choose q features (q < Q) as a candidate variable on which
to make the decision at that node [85]. With the generation of multiple classification trees,
a random forest is built

5. Conclusions

In this paper, we develop a novel method for predicting and identifying DTIs, called
PsePDC-DTIs. Specifically, the proposed method combines the pseudo-position specific
scoring matrix (PsePSSM) and detrended cross-correlation analysis coefficient (DCCA
coefficient) to extract the features of the protein sequences, for which PsePSSM feature
extraction considers the sequence-order information of the protein sequence, and the DCCA
coefficient uses the columns in the PSSM as the least squares fitting and the trend elimina-
tion as the non-stationary time series to remove the PSSM between the cross-correlation [22].
When using PsePSSM and DCCA coefficient, λ = 3 and s = 36 are selected, respectively.
Drug compounds are expressed by FP2 format molecular fingerprint descriptor. The re-
dundant information in the drug–target datasets is effectively removed by least absolute
shrinkage and selection operator (Lasso). For dealing with the high degree of imbalance in
the samples used in this study, the synthetic minority oversampling technique (SMOTE)
is employed. The classification algorithm to predict DTIs is the random forest (RF) clas-
sifier. The five-fold cross-validation method is used in this work to assess the predictive
performance of PsePDC-DTIs on four benchmark datasets. The PsePDC-DTIs model has
achieved good prediction results, which shows that the proposed method is better than the
state-of-art methods and appropriately designed.

Supplementary Materials: The following are available online, Figure S1: Prediction result of select-
ing different λ on four datasets, Figure S2: Prediction result of selecting different s on four datasets,
Figure S3: the ROC curves of different classifiers in 5-fold cross-validation, Figure S4: the PR curves
of different classifiers in 5-fold cross-validation, Figure S5: the inferred evidence for DTIs of afatinib



Molecules 2021, 26, 7474 15 of 18

(DB08916) and FGFR2 (hsa2263). (a) RTK contains EGFR, FGFR2, GF contains EGF; (b) GF contains
EGF, RTK contains FGFR2, EGFR; (c) GF contains EGF, GFR contains EGFR, ERBB2, FGFR2; (d)
RTK contains EGFR, ERBB2, ERBB4, FGFR2, GF contains EGF; (e) RTK contains FGFR2, EGFR, GF
contains EGF. Table S1: Targets for drug repurposing of breast cancer, Table S2: Prediction result
of selecting different λ on four datasets, Table S3: Prediction result of selecting different s on four
datasets, Table S4: Prediction results on four datasets before and after Lasso for dimensionality re-
duction, Table S5: Prediction results on four datasets before and after SMOTE optimization, Table S6:
Prediction results on four datasets of seven classifiers, Table S7: Drug-target interaction pairs with a
probability score no less than 0.5.
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