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ABSTRACT: Peptides are crucial in vaccine research, and their
remarkable specificity and efficacy make them a promising
potential drug class. However, designing and screening these
peptides computationally is challenging. Here, we present the
comprehensive advanced refinement and evaluation system
(PepCARES), a program utilizing our novel model called
PeptideMPNN and score evaluation for peptide design and affinity
screening. PeptideMPNN, built on ProteinMPNN with transfer
learning, significantly enhances sequence recovery (by 26.26%)
and reduces perplexity (by 0.536) in a sequence generation task.
We designed peptides targeting two HLA alleles and, using
MHCfovea and PDBePISA, identified candidates with high potential. From 20 designed peptides, 14 and 7 peptides were selected,
respectively. Our research provides a method for designing and screening peptides, making an important step toward the
development of peptide-based vaccines.

■ INTRODUCTION
Peptides play a key role in various processes and have been
utilized as complementary therapeutic agents to antibodies and
small molecules.1−3 They have the potential to traverse cell
membranes to access intracellular targets, thereby targeting
disease-related sites that may be inaccessible to antibodies or
small molecules. Consequently, peptides represent a promising
class of therapeutic agents.
Over the past decade, more than 20 T cell-based vaccines

have been proposed for clinical development.4 Compared to
traditional antibody vaccines, these peptide vaccines display
better experimental synthesis and immune cell response
sensitivity.5,6 To further accelerate the development of such
potential vaccines for various diseases, many computational
approaches have been proposed to design/find peptides for
enhanced peptide−protein interaction (PPI).5,7,8 Among these,
traditional physics-based methods constitute a notable
category. These methods rely on intricate scoring or energy
functions and try to find low-energy conformations through
energy minimization and mutations for designing plausible
peptides. Taking Rosetta as an example, based on the initial
structure’s conformation and energy, this approach identifies
plausible conformations by determining the global minimum of
the energy function (representing the lowest energy state),9−11

thereby producing corresponding peptide sequences. This
program can also be applied to systematically investigate the
design principles for macrocycle peptides with membrane
permeability or oral bioavailability.12 However, such methods
face practical limitations, primarily due to the inherent

inaccuracies in the energy functions and the necessity for
specialized structural biology expertise.
With the rapid advancement of deep learning, research

attention has been focused on deep learning-based methods.
These methods can model protein backbone structures at the
atomic level and then generate residue sequences that tend to
fold to the reference structure. Several methods based on
different neural network architectures rapidly emerged: CNN-
based methods such as SPROF, DenseCPD, and ProDCoNN;
GNN-based methods such as ProteinMPNN and PiFold; and
transformer-based methods such as ABACUS-R and ProDe-
signLE.13−19

ProteinMPNN stands as a pioneering deep learning model
that designs protein sequences to match the input protein
backbones.20 However, its lack of peptide structure may result
in unsatisfactory generality for modeling peptide structures and
sequences. In addition, the limited accessibility of experimental
data also hinders the ability of this model. To address this
issue, we introduced transfer learning as an effective solution.
This strategy utilizes existing knowledge to help models better
understand related tasks, thereby improving their efficiency
and effectiveness.21,22 In this study, we utilized pHLA crystal
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structures from the HLA3DB data set to fine-tune
ProteinMPNN (Figure 1A).23 In theory, transfer learning
can serve as a tailored solution to improve the performance of
this model in the peptide design task.
Combined with the protein design model ProteinMPNN

and transfer learning strategy, we proposed a novel model
called PeptideMPNN for peptide design. To demonstrate the
feasibility and efficiency of this model, we adopt it to generate
peptide vaccines targeting human leukocyte antigen (HLA)
molecules (see Supplementary Section S1 for more detailed
information). HLAs play a crucial role in the T cell-mediated
adaptive immune response and are universally involved in
disease immunity across diverse populations.24 Such molecules
are expressed in all nucleated cells, and their central role in a
wide range of clinical situations, from infectious diseases to
cancer immunotherapy, makes them ideal targets for related
drug development (see Supplementary Section S1).4 The
majority of peptides targeting HLA molecules fall within the
8−10 amino acid range, which optimally fits into the binding
groove of HLA molecules, thus facilitating stable and effective
interactions.25 Namely, such short peptides are the focus of
this study. There are two major classes of HLAs: HLA class I
(HLA-I) and HLA class II (HLA-II). Each class is expressed
on different types of immune cells and performs specific
recognition functions (see Supplementary Section S1 for more
detailed information). We selected HLA-I molecules (hereafter
referred to as HLA) as research objects due to their critical
involvement in presenting peptides to CD8+ T cells, which
recognize the peptide-HLA (pHLA) complexes and effectively
eliminate infected cells (Supplementary Figure 1).26,27

Our model was compared to another model in various
aspects of peptide design, including HLA allele types and
peptide lengths. Moreover, the peptides designed by
PeptideMPNN underwent additional AlphaFold2-based anal-
ysis (Figure 1B). Notably, PeptideMPNN not only excelled in

the sequence recovery rate but also demonstrated remarkable
trends for achieving native-like peptide folding. In addition, we
specifically designed peptides targeting two HLA alleles and
further explored their binding affinity. We employed the pHLA
affinity prediction model, MHCfovea, along with native
peptides, to predict the binding probability of the designed
peptides (Figure 1C). Consequently, those peptides with high
binding probabilities were selected for further PDBePISA-
based peptide−protein interaction analysis with their corre-
sponding targets (Figure 1D). In this assessment, we
conducted comprehensive evaluations including Gibbs free
energy (ΔG) calculations, hydrogen bonding analysis, and
surface electrostatic potential analysis to explore the potential
of the designed peptides.
In summary, this study presents the comprehensive

advanced refinement and evaluation system (PepCARES) for
designing peptide sequences and selecting peptides with
powerful potential against targets of interest. This versatile
framework can be readily applied to peptide design tasks,
thereby accelerating the progression of pertinent drug studies.

■ MATERIALS AND METHODS
Data Set. In this study, we used a large protein data set

from the Protein Data Bank (PDB) for pretraining.28 The PDB
database provides enriched structural information about
proteins, nucleic acids, and other biomolecules investigated
by techniques such as X-ray crystallography or cryoelectron
microscopy. Dauparas et al. screened the PDB database and
used the mmseqs2 clustering tool to group them with a 30%
sequence identity cutoff, yielding 25,361 clusters.16 These
clusters were then randomly assigned to the training,
validation, and test sets, comprising 23,358, 1464, and 1539
clusters, respectively.
In the fine-tuning phase, we utilized the HLA3DB database

constructed by Gupta et al. as our data source.23 The database

Figure 1. PepCARES framework for designing and screening peptides. (A) PeptideMPNN-designed peptide sequences based on the 3D
coordinates of the input backbones. (B) Structure scores of pHLA using AlphaFold2. (C) Affinity prediction of pHLA using MHCfovea. (D)
Peptide−protein interactions of pHLA using PDBePISA.
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contained 556 complexes with high structural resolution under
3.0 Å from PDB. All of them are peptide-HLA complexes with
peptide lengths ranging from 8 to 10. We divided each
genotype into training, validation, and test sets with a 8:1:1
ratio. To minimize bias from insufficient data, entries with
genotypes fewer than 10 were used only for training or
validation and were excluded from the test set. Ultimately, the
data set was divided into 438, 67, and 51 entries for training,
validation, and testing, respectively.

PeptideMPNN. In this study, the popular protein design
model ProteinMPNN was used as the baseline model.
ProteinMPNN is based on the structured transformer model
proposed by Ingraham et al.,29 using the structural features
characterized by N, Cα, C, O, and virtual Cβ atoms of the
protein skeleton. In addition, order-agnostic decoding was
implemented in this model for the fixed-target ligand
generation task. Such decoding skips the fixed regions but
includes them in the sequence context for the remaining

positions, which can effectively infer structures with unknown
regions.
We combined transfer learning with the ProteinMPNN

model and proposed a model called PeptideMPNN. During
training, we fine-tuned the ProteinMPNN model based on the
HLA3DB database, and all training samples were processed in
each epoch. We set the initial learning rate to 5 × 10−4 and
used the Adam optimizer to adjust the learning rate. To ensure
effective model adaptation during training, the learning rate
would automatically decrease by a factor of 10 if the validation
loss does not improve within 10 consecutive epochs. After 400
epochs, the training process stopped.

AlphaFold2. In this study, we used the AlphaFold2 model
to filter pHLA complex structures for subsequent tasks. This
structure prediction model was proposed by Google’s Deep-
Mind team in 2021, making a significant impact on biomedical
research and drug development in recent years.30 In our work,
we implemented a locally installed version of AlphaFold2. This

Figure 2. Comparison between PeptideMPNN (green) and ProteinMPNN (orange) in the peptide design task. (A,B) Sequence recovery rate and
perplexity comparisons between ProteinMPNN and PeptideMPNN. (C,D) Comparison between ProteinMPNN and PeptideMPNN in designing
peptides with different lengths. (E,F) Comparison between ProteinMPNN and PeptideMPNN in designing peptides against different HLA allele
proteins.
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model was optimized to support the parallel execution of
multiple structure prediction tasks on multiple GPUs. Based on
the input sequences, AlphaFold2 can predict corresponding
structures and provide confidence scores such as the predicted
local distance difference test (pLDDT), the predicted template
modeling (pTM), and the interface predicted template
modeling (ipTM).

MHCfovea. To predict the binding affinity of peptides
targeting HLA molecules, we implemented the MHCfovea
model. MHCfovea, an ensemble of convolutional neural
network (CNN) models, can predict the binding probability
of peptides targeting the HLA allele, making it a suitable tool
for assessing the quality of our designed peptides.31 In this
study, we used PeptideMPNN to design 20 peptides against
the HLA-A*02:01 and the HLA-B*27:05 targets, respectively,
and then applied MHCfovea to assess them. By comparing
them to the native peptides, we selected designed peptides
with higher binding potentials.

■ RESULTS AND DISCUSSION
Performance Comparison between PeptideMPNN

and ProteinMPNN. In this study, we developed the peptide
design model PeptideMPNN by fine-tuning the protein design
model ProteinMPNN on the HLA3DB structural data set
(detailed information can be found in the Materials and
Methods). Based on the pHLA complex backbones,
PeptideMPNN can generate peptide sequences that potentially
align with the provided backbones. To conduct a thorough
assessment of PeptideMPNN’s performance, we utilized
ProteinMPNN as our baseline model for comparison.
We evaluated the performance of the models using two key

metrics: the sequence recovery rate and perplexity. The
sequence recovery rate assesses the model’s ability to
reconstruct natural sequences, where a high recovery rate
signifies that the model has learned the structure-induced
sequence constraints. On the other hand, perplexity quantifies
the certainty surrounding the native amino acid residues, with
a lower perplexity score indicating a more concentrated
probability distribution.32

In the general test set, PeptideMPNN demonstrated an
impressive sequence recovery rate of 51.70%, significantly
surpassing the rate achieved by ProteinMPNN, which was
25.44% (Figure 2A). This result underscores PeptideMPNN’s
efficacy in capturing the sequence characteristics of pHLA
complexes. Recognizing that a high sequence recovery rate
alone may not comprehensively demonstrate performance
differences, we delved deeper by comparing the two models
using perplexity. PeptideMPNN exhibited superior perform-
ance with a perplexity score of 0.486, markedly lower than
ProteinMPNN’s score of 1.022 (Figure 2B). This further
highlights the superiority of our PeptideMPNN.
In addition, we evaluated the ability of the model to design

peptides with different lengths. It is noteworthy that the anchor
residues of HLA molecules exhibit positional preferences that
are influenced by the peptide length, thereby affecting the
interaction within peptide-HLA complexes.25 For peptides
with lengths of 8, 9, and 10 amino acids, PeptideMPNN
achieved sequence recovery rates of 50.00, 54.71, and 43.83%,
respectively. In contrast, ProteinMPNN’s recovery rates for
these same peptide lengths were significantly lower, at 18.75,
22.10, and 35.50% (Figure 2C). These findings further
demonstrate PeptideMPNN’s superiority in designing peptides
of different lengths compared to ProteinMPNN.

In addition, we noted that PeptideMPNN performed best in
designing 9-amino acid peptides. It may be attributed to the
fact that such peptides can optimally fit within the HLA
binding groove due to their small lengths.33 This length allows
the peptides to interact with key anchor residues at both the N-
and C-termini, thereby stabilizing the peptide-HLA complexes.
Furthermore, the perplexities of PeptideMPNN in designing
peptides with different lengths were in the range from 0.463 to
0.512, significantly lower than those of ProteinMPNN (Figure
2D).
Moreover, we explored the performance of models in

designing peptides against different HLA alleles. HLA
polymorphism and allele-specific sequence motifs play a crucial
role in peptide binding. HLA genes exhibit a wide variety of
alleles at different loci, requiring that the amino acids of
polypeptide anchor residues are specifically complementary to
those in the binding grooves of specific HLA alleles
(Supplementary Figure 2).34 Due to limited experimental
data, we only focused on the analysis of representative eight
targets of HLA-A and HLA-B alleles. When targeting three
common HLA-A alleles, PeptideMPNN demonstrated se-
quence recovery rates of 46.58, 72.33, and 43.71%,
respectively, which were significantly higher than Pro-
teinMPNN’s rates of 24.93, 21.00, and 30.85% (Figure 2E).
These results underscore the superior affinity of peptides
designed by PeptideMPNN toward these HLA-A alleles.
PeptideMPNN also performed better than ProteinMPNN
when against HLA-B alleles, although the recovery rates of
PeptideMPNN were lower for the HLA-B*35:01 allele. This
could be attributed to the fewer associated samples available in
the test set. Additionally, we compared the perplexities of both
models for this task (Figure 2F). PeptideMPNN consistently
outperformed ProteinMPNN against all eight representative
HLA groups, further validating the effectiveness of Pepti-
deMPNN in terms of diversity and specificity.
In summary, PeptideMPNN exhibited superior performance

compared to ProteinMPNN in multiple tasks, validating our
fine-tuning strategy’s ability to not only accurately recover
specific residues within particular structures but also effectively
capture the intricate mapping relationship between the tertiary
structure and the primary sequence. This approach signifi-
cantly enhanced sequence recovery rates and minimized
perplexity, thereby demonstrating PeptideMPNN’s extensive
applicability and efficacy in the realm of peptide design.

Structure Assessment for Designed Peptides by
Using AlphaFold2. After confirming that PeptideMPNN
could design peptides with high accuracy, we further explored
whether the designed sequences could accurately fold into the
desired structures and form stable complexes with targets. We
used AlphaFold2 to predict the structures of the designed
sequences. The predicted structures were then evaluated by
three confidence metrics: pLDDT, pTM, and ipTM. These
metrics were universally adopted in related work. Especially in
the works of the Baker group, these metrics proved helpful in
finding binders with high affinity.35,36 However, predicting
biological activity remains a formidable challenge for current
methods. Although AlphaFold2-based validation offers re-
searchers valuable insight for assessing the biological activity of
designed peptides, the correlations between these structural
metrics and biological activity are unclear. However, until now,
these metrics are still general and effective ways to assess the
designed peptides and proteins.
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The peptides designed by PeptideMPNN gained notably
high-confidence AlphaFold structural scores (Figure 3A).
Specifically, the pLDDT scores of these peptides surpassed
those of the peptides designed by ProteinMPNN and the
native peptides. This suggests that PeptideMPNN possesses
the capability to design peptides that fold into the desired 3D

structures with greater accuracy and, in certain instances, even
form more stable structural scaffolds than the native sequences.
Regarding the accuracy of the protein complex structure, the
pTM score serves as a reliable metric.37 Since the HLA targets
have been fixed in both the predicted and native sequences, all
sequence-to-structure mappings generally achieved high pTM

Figure 3. Structure confidence evaluation by AlphaFold2 on native and designed pHLA complexes by PeptideMPNN and ProteinMPNN. (A)
pLDDT score comparison between native and designed peptides. (B) pTM score comparison between native and designed pHLA complexes. (C)
ipTM score comparison between native and designed pHLA complexes by PeptideMPNN. (D) ipTM score comparison between designed pHLA
complexes by PeptideMPNN and ProteinMPNN.

Table 1. Scores Provided by AlphaFold2 and MHCfovea for the Peptides Generated against the HLA-A*02:01
pHLA pLDDT pTM ipTM RMSD_Cα (Å) affinity prediction score

HLA-A*02:01-P1 97.38 0.944 0.950 0.474 0.981
HLA-A*02:01-P2 96.76 0.944 0.948 0.138 0.980
HLA-A*02:01-P3 97.59 0.944 0.952 0.271 0.955
HLA-A*02:01-P4 94.81 0.945 0.948 0.293 0.984
HLA-A*02:01-P5 98.06 0.945 0.952 1.191 0.924
HLA-A*02:01-P6 95.99 0.944 0.948 0.472 0.981
HLA-A*02:01-P7 98.05 0.943 0.946 0.693 0.994
HLA-A*02:01-P8 97.02 0.941 0.930 0.450 0.986
HLA-A*02:01-P9 93.89 0.946 0.953 0.306 0.991
HLA-A*02:01-P10 97.70 0.944 0.950 0.307 0.948
HLA-A*02:01-P11 97.10 0.945 0.952 0.447 0.986
HLA-A*02:01-P12 97.26 0.943 0.944 0.420 0.915
HLA-A*02:01-P13 97.81 0.944 0.952 0.482 0.981
HLA-A*02:01-P14 97.38 0.942 0.935 0.077 0.976
HLA-A*02:01-P15 95.00 0.944 0.951 0.323 0.165
HLA-A*02:01-P16 97.26 0.943 0.945 0.176 0.817
HLA-A*02:01-P17 96.36 0.944 0.943 0.435 0.893
HLA-A*02:01-P18 97.49 0.945 0.952 0.304 0.949
HLA-A*02:01-P19 97.26 0.944 0.943 0.353 0.926
HLA-A*02:01-P20 97.47 0.944 0.952 0.283 0.954
7UR1 0.927
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scores. However, peptides designed by PeptideMPNN attained
the highest pTM scores when compared to those designed by
ProteinMPNN and the native peptide sequences (Figure 3B).
These findings further validate PeptideMPNN’s superiority in
designing peptides with stable structural configurations.
In addition, we also compared their ipTM scores (more

detailed information can be found in Supplementary Table 1).
This metric can reflect the quality of the interaction interface
of the predicted protein complexes and the binding potential of
designed peptides against protein targets.37 Notably, O’Reilly
et al. confirmed that higher ipTM scores indicated a higher
likelihood of target−ligand interactions, too.38 Furthermore,
complexes with ipTM scores exceeding 0.85 were demon-
strated to exhibit reliable binding. The majority of the peptides
designed in our study achieved higher ipTM scores, with
PeptideMPNN surpassing ProteinMPNN in performance
(Figure 3C,D), suggesting that the sequences optimized by
PeptideMPNN are more likely to form effective bindings with
HLA targets. Overall, the AlphaFold-based assessment
demonstrates that PeptideMPNN is a suitable tool for
designing peptides targeting HLA molecules.

Binding Potential of Designed Binders against the
HLA-A*02:01 and the HLA-B*27:05 Targets. As men-
tioned in the article above, the specificity of peptides binding
to HLA molecules is influenced by allosteric constraints. To
explore whether PeptideMPNN could design peptides with
enhanced binding capabilities against different HLA alleles, we
applied our design strategy to two specific targets: the widely
prevalent HLA-A*02:01 allele and the specific genotype-
encoded HLA-B*27:05 allele. The HLA-A*02:01 allele is the
most common allele across multiple ethnicities worldwide and
is associated with multiple immune response mechanisms.39,40

The HLA-B*27:05 allele, a not common subtype of HLA-B27,
is predominantly found in Caucasians and is strongly
associated with ankylosing spondylitis (AS).41 Validation that
involved these two targets provided an effective assessment of
our design strategy.
PeptideMPNN designed 20 peptide sequences for each

target using known pHLA complex structures (7U1R and
1JGE) as templates.42,43 To validate the structural feasibility of
these sequences, the designed pHLA complexes were input
into AlphaFold2 for structure prediction. AlphaFold2 provided

Table 2. Scores Provided by AlphaFold2 and MHCfovea for the Peptides Generated against the HLA-B*27:05
pHLA pLDDT pTM iPTM RMSD_Cα (Å) affinity prediction score

HLA-B*27:05-P1 93.77 0.946 0.931 0.32 0.993
HLA-B*27:05-P2 93.74 0.945 0.928 0.875 0.985
HLA-B*27:05-P3 95.38 0.947 0.939 0.213 0.990
HLA-B*27:05-P4 93.77 0.946 0.931 0.324 0.993
HLA-B*27:05-P5 94.71 0.946 0.933 0.432 0.998
HLA-B*27:05-P6 94.71 0.946 0.933 0.432 0.998
HLA-B*27:05-P7 94.82 0.946 0.936 1.308 0.996
HLA-B*27:05-P8 93.04 0.945 0.923 0.302 0.998
HLA-B*27:05-P9 91.52 0.944 0.919 0.327 0.995
HLA-B*27:05-P10 94.93 0.944 0.935 1.173 0.995
HLA-B*27:05-P11 90.66 0.943 0.913 1.243 0.995
HLA-B*27:05-P12 95.38 0.946 0.937 0.198 0.999
HLA-B*27:05-P13 89.85 0.943 0.905 1.258 0.999
HLA-B*27:05-P14 96.76 0.946 0.947 0.277 0.997
HLA-B*27:05-P15 93.98 0.946 0.932 0.246 0.990
HLA-B*27:05-P16 91.99 0.945 0.920 0.267 0.998
HLA-B*27:05-P17 95.90 0.946 0.940 0.974 0.993
HLA-B*27:05-P18 92.60 0.943 0.926 0.882 0.997
HLA-B*27:05-P19 88.74 0.943 0.905 0.306 0.994
HLA-B*27:05-P20 92.07 0.944 0.922 0.325 0.997
1JGE 0.993

Figure 4. Confidence metric comparisons between the native peptides (yellow) and designed peptides with high-confidence metrics against the
HLA-A*02:01 allele.

Figure 5. Confidence metric comparisons between the native (yellow) and designed peptides with high-confidence metrics against the HLA-
B*27:05 allele.
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high-confidence structural predictions for peptides designed by
PeptideMPNN against the HLA-A*02:01 and the HLA-
B*27:05 alleles. Specifically, all pTM and ipTM scores
exceeded 0.9, and most pLDDT scores also exceeded 90
(Tables 1 and 2), indicating that the designed peptides
exhibited minimal deviation in spatial structure folding and
binding position compared to the native peptides. In addition,
RMSDs of the designed peptides targeting the HLA-A*02:01
allele ranged from 0.077 to 1.191, while those targeting the
HLA-B*27:05 allele ranged from 0.198 to 1.308. Figures 4 and
5 show the structural alignments between several designed
peptides and native peptides. There were great structural
similarities between the designed peptides and the native
peptides. Namely, designed peptides were likely to interact
effectively with the targets.
We employed the deep learning-based framework MHCfo-

vea to predict the binding potential of designed peptides.31

MHCfovea is a collection of multiple CNN models that use
HLA allele sequences and peptide sequences as inputs to
predict binding probabilities (detailed information can be
found in the Materials and Methods). The majority of the
designed peptides exhibited a high probability of binding, with
more than half of the designed peptides having higher
predicted binding probabilities than the native peptides
(Tables 1 and 2). To explore the interactions between the
designed peptides and their target proteins, we selected those
with higher affinity prediction scores than the native peptides.
We then investigated interactions within these selected
complexes by using the PPI analysis tool PDBePISA.44 Against
the HLA-A*02:01 target, all 14 designed peptides exhibited
ΔG compared to the native peptides, and their interaction
surface areas were similar (Table 3). Against the HLA-B*27:05

target, all the designed peptides had larger interaction surface
areas, and seven designed peptides had lower ΔG than the
natives (Table 4). The numbers of hydrogen bonds and salt
bridges also increased, which confirms that PeptideMPNN was
capable of designing peptides with enhanced binding potential
against various HLA alleles. Although we have made
interaction observations based on several tools, experimental
validation is still the most effective and reliable means of

verification. We strongly recommend conducting necessary in-
laboratory experiments for further verification, when resources
permit.
To explore the potential of the designed peptides, we

conducted a visual analysis of the PPI for the 14 candidate
peptides against the HLA-A*02:01 target and seven candidate
peptides against the HLA-B*27:05 target. We presented the
top three designed peptides with the lowest ΔG here, and the
other designed peptides are shown in Supplementary Figures 3
and 4. These candidate peptides were compared to the native
peptides to assess their binding potential by calculating
hydrogen bonds at the active sites. Seven hydrogen bonds
were formed between the native peptide and the HLA-
A*02:01 target. Through sequence optimization by Pepti-
deMPNN, the designed candidate peptides not only retained
these hydrogen bonds but also established additional residue
connections (Figure 6A). This enhancement in binding affinity
likely accounted for the reduced ΔG values observed for the
candidate peptides, in comparison to the native peptide.
Furthermore, the shorter hydrogen bond distances between
the candidate peptides and their target receptor underscored
their stronger intermolecular interactions. For the HLA-
B*27:05 target, the designed peptides also formed more and
shorter hydrogen bonds compared to the native peptide
(Figure 6B). Additionally, we investigated the surface electro-
static potential of the peptides. Differences in the surface
electrostatic potential can lead to variations in electrostatic
interactions, thus affecting ligand−target binding.45 The
analysis indicates a high consistency of the electrostatic
potential between the candidate peptides and the native
peptides (Figure 7). The surface electrostatic potential maps of
the other candidate peptides are shown in Supplementary
Figures 5 and 6. Collectively, these analyses demonstrate that
14 candidate peptides against the HLA-A*02:01 target and
seven candidate peptides against the HLA-B*27:05 target had
strong binding potential, validating the effectiveness of our
design strategy.

■ CONCLUSIONS
In this study, we combined the ProteinMPNN architecture and
transfer learning strategy to build a model called Pepti-

Table 3. Interaction Analysis for Designed Peptides That
Exhibited Affinity Prediction Scores Higher than Those of
the Native Peptides when Targeted against the HLA-
A*02:01 Allele

pHLA interface area (Å2) ΔG (kcal/mol) # HB # SB

HLA-A*02:01-P1 899.8 −10.5 10 4
HLA-A*02:01-P2 884.6 −10.4 12 3
HLA-A*02:01-P3 881.1 −10.4 11 1
HLA-A*02:01-P4 911.1 −9.8 10 2
HLA-A*02:01-P6 902.5 −10.6 14 4
HLA-A*02:01-P7 852.2 −9.2 12 4
HLA-A*02:01-P8 936.5 −11.3 12 5
HLA-A*02:01-P9 894.5 −9.3 11 4
HLA-A*02:01-P10 896.3 −10.6 8 2
HLA-A*02:01-P11 936.5 −11.3 12 5
HLA-A*02:01-P13 900.3 −10.5 11 5
HLA-A*02:01-P14 927.2 −9.6 11 3
HLA-A*02:01-P18 912.1 −12.3 11 5
HLA-A*02:01-P20 894.1 −11.1 10 3
7UR1 916.3 −6.7 18 6

Table 4. Interaction Analysis for Designed Peptides That
Exhibited Affinity Prediction Scores Higher than Those of
the Native Peptides when Targeted against the HLA-
B*27:05 Allele

pHLA interface area (Å2) ΔG (kcal/mol) # HB # SB

HLA-B*27:05-P5 960.2 −3.0 17 11
HLA-B*27:05-P6 961.2 −3.0 16 10
HLA-B*27:05-P7 984.5 −6.1 13 10
HLA-B*27:05-P8 1055.5 −8.0 14 10
HLA-B*27:05-P9 1019.0 −7.1 14 11
HLA-B*27:05-P10 980.8 −5.1 17 11
HLA-B*27:05-P11 1000.6 −4.0 17 11
HLA-B*27:05-P12 953.1 −5.4 15 10
HLA-B*27:05-P13 975.4 −4.2 16 11
HLA-B*27:05-P14 1078.4 −6.2 18 11
HLA-B*27:05-P16 969.1 −7.9 14 12
HLA-B*27:05-P18 937.5 −3.2 17 10
HLA-B*27:05-P19 931.3 −4.4 17 15
HLA-B*27:05-P20 1012.7 −8.4 13 8
1JGE 815.5 −5.2 17 9
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deMPNN for peptide sequence design. This model showed a
significant improvement in the sequence recovery rate of

26.26% and a reduction in the perplexity of 0.536 compared to
the baseline model. It also performed well in peptide design
involving different peptide lengths and HLA alleles. However,
while PeptideMPNN has demonstrated superior performance
in designing short peptides (8−10 residues) compared to
ProteinMPNN, its scalability to longer peptides requires
further exploration. Moreover, we used AlphaFold2 to evaluate
the structure confidence of the designed peptides, which
further demonstrated PeptideMPNN’s superiority in peptide
design.
Furthermore, we used PeptideMPNN to design peptides

against the representative allele HLA-A*02:01 and the specific
allele HLA-B*27:05. Through affinity prediction and inter-
action interface evaluation, 14 peptides against the HLA-
A*02:01 allele and seven peptides against the HLA-B*27:05
allele were selected, respectively. These candidates not only
outperformed the native peptides in binding probability but
also exhibited lower Gibbs free energy.
Additionally, we may adapt PeptideMPNN to accommodate

unnatural amino acids and peptide-like molecules in future
research, considering their importance in related drug
development. Moreover, we plan to implement the powerful
model AlphaFold3 in our study for improved accuracy and
rationalization in the future.
In conclusion, the PepCARES framework enables the rapid

and efficient peptide design and can effectively identify
peptides with higher affinity. This approach can accelerate
the development of peptide vaccines and provide a new
opportunity to improve the targeting of immune responses
through peptide design. Moreover, the generalized design
principles established by our model based on HLA epitopes
may be transferred to other targets within the immune system.

■ ASSOCIATED CONTENT

Data Availability Statement
The data set of general protein structures used for pretraining
in this study is available at https://github.com/dauparas/
ProteinMPNN. The data set of pHLA complex structures used
for fine-tuning in this study is available at https://hla3db.

Figure 6. Interaction visualization analysis of candidate peptides. (A)
Three candidate peptides against the HLA-A*02:01 allele with the
lowest ΔG and the native peptide. (B) Three candidate peptides
against the HLA-B*27:05 allele with the lowest ΔG and the native
peptide.

Figure 7. Surface electrostatic potential maps of candidate peptides. (A) Three candidate peptides with the lowest ΔG and the native peptide
against the HLA-A*02:01 target. (B) Three candidate peptides with the lowest ΔG and the native peptide against the HLA-B*27:05 target.
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research.chop.edu. The codes of PeptideMPNN in this study
are available at https://github.com/xw09/PeptideMPNN.
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