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Big data problems are becoming more prevalent for laboratory scientists who look to make clinical impact. A
large part of this is due to increased computing power, in parallel with new technologies for high quality data
generation. Both new and old techniques of artificial intelligence (AI) and machine learning (ML) can now
help increase the success of translational studies in three areas: drug discovery, imaging, and genomic medicine.
However,ML technologies do not comewithout their limitations and shortcomings. Current technical limitations
and other limitations including governance, reproducibility, and interpretation will be discussed in this article.
Overcoming these limitations will enable ML methods to be more powerful for discovery and reduce ambiguity
within translational medicine, allowing data-informed decision-making to deliver the next generation of diag-
nostics and therapeutics to patients quicker, at lowered costs, and at scale.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Artificial intelligence (AI) and machine learning (ML) technologies
have begun to change how we deliver healthcare. These disruptive
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ebiom.2019.08.027&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.ebiom.2019.08.027
mailto:dennis.wang@sheffield.ac.uk
Journal logo
https://doi.org/10.1016/j.ebiom.2019.08.027
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.sciencedirect.com/science/journal/
www.ebiomedicine.com


Fig. 1. Process of AI/ML in translational medicine. A number of high-throughput assays generate data from many patient samples. Datasets are then structured into machine-readable
format and potentially important variables are identified using an ML algorithm. The algorithm will learn relationships between the variables and may perform intelligent tasks such
as grouping patients or predicting their outcomes.
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computational methodologies are able to transform the way clinicians
help patients in the clinic and also enhance the way scientists develop
new treatments and diagnostics in the laboratories [1–3]. Now that bio-
medical scientists in academia and biotechnology industries frequently
use high-throughput technologies such as parallelised sequencing, mi-
croscopy imaging, and compound screening, there has been a rapid ex-
pansion in the volume and quality of laboratory data being generated.
Together with advancing techniques in ML, we are increasingly more
capable of deriving biological insight from this “big data” to understand
themechanisms of disease, identify new therapeutic strategies, and im-
prove diagnostic tools for clinical application.

The term AI is often used these days to denoteML techniques, so it is
worth defining both terms. Here, we adopt the US Food and Drug Ad-
ministration (FDA) definition, which describes AI as “the science and
engineering of making intelligent machines”, while ML is “an artificial
intelligence technique that can be used to design and train software al-
gorithms to learn from and act on data” [4]. It follows that all ML tech-
niques are AI techniques, but not all AI techniques are ML techniques.
In this article, we will mainly be concerned with ML techniques, as
these are most relevant in the context of translational medicine. Both
simple and advanced MLmethods may enhance the capability of trans-
lational scientists who use them to develop new treatments and diag-
nostics for healthcare. Generally speaking, there are two main types of
ML approaches we will focus on; 1) unsupervised learning of data to
find previously unknown patterns or grouping labels for the patient
samples; and 2) supervised learning from data with labels in order to
make predictions on new samples (Fig. 1). We will describe specific
ML methods that have been heavily promoted or hyped and those
that are less well known but can also learn from a variety of large data
sets generated in the laboratory and can be used to perform intelligent
tasks that are difficult for human scientists. Specific technical challenges
with applying eachML method (Table 1) will be discussed and all tech-
nical terms used in this review are defined in the Supplementary
Appendix.

2. Drug discovery

Despite advances in technology and improved understanding of
human biology, the process of drug discovery remains capital-
intensive, tedious, and lengthy. The total cost of bringing a compound
from the bench to bedside has been increasing over time, with the
bulk of costs coming from Phase 3 clinical trials. The clinical success
probability of bringing a drug through Phase 1 to approval was
estimated to be 11.83%, which shows the inherently risky nature of
drug development [5].

After identifying a target, key steps of designing a suitable chemical
compoundmay be broken down into two processes, the retrosynthetic
process and the formulation of a well-motivated hypothesis for new
lead compound generation (de novo design) [6–9]. Retrosynthesis in-
volves planning the synthesis of small organic molecules where target
molecules are transformed recurrently by a search tree ‘working back-
wards’ into simplerprecursorsuntil a setofknownmoleculesaregained.
Each retrosynthetic step involves the selection of the most promising
transformations from many known transformations by chemists, but
there is no guarantee that the reaction will proceed as expected [9]. De
novodesign involvesexploringcompound libraries, estimated tocontain
N1030 molecules. Due to the vast size of compound libraries, automated
screening of selected compoundswith the required properties and pos-
sibility of activity presents an opportunity to applyML to navigate these
libraries [7,8]. Here, we reviewMLmethods that help to design, synthe-
sise, and prioritise new compounds before clinical testing.

2.1. Designing chemical compounds

Traditional computer-aided retrosynthesis is slow and does not pro-
vide results of high quality. Advances in ML are shifting the generation
of chemistry rules from hand-coded heuristics, to autonomous systems
that take advantage of a vast volume of available chemistry in assisting
chemical synthesis. Chemists have been able to train deep neural net-
works (DNNs) (Fig. 2) on all available reactions published in organic
chemistry to create a system that is thirty times quicker than traditional
computer-aided methods [9].

New chemicals based on pharmacologically active natural com-
pounds have been generated through a deep recurrent neural network
(RNN) (Fig. 2a). A small set of known bioactive templates was sufficient
to generate isofunctional new chemical entities [6]. Using a deep learn-
ing model based on RNNs to generate synthetic data shows efficacy in
three applications of de novo drug design: generating libraries for
high-throughput screening, hit-to‑lead optimisation, and fragment-
based hit discovery. Unlike traditional approaches for generating candi-
date compounds, this approach does not require similarity searching or
external scoring and new molecular structures are generated immedi-
ately, which is useful for in situ real-time molecular modeling [7].

De novo drug design with desired properties may also be achieved
with deep reinforcement learning. Unlike standard deep learning,
where the neural network is trained once on a set of training data, in



Table 1
Recent ML tools and applications in various aspects of translational medicine with the key results and challenges faced by each application of ML.

Category Application ML technique(s) Key result(s) or Advantages(s) Challenge(s)

Drug discovery Designing chemical
compounds
(retrosynthetic
process)

Deep neural networks (DNNs)
and Monte Carlo tree search [9]

30× quicker than traditional computer-aided methods
[70]

1. Scarcity of training data
2. Stronger, but slower-reasoning,

algorithms should be developed for
this application

Designing chemical
compounds (de novo
drug design)

Deep recurrent neural network
(RNN) [6]

Generate isofunctional, new chemical entities Appropriate predicted bioactivity
which has been validated is required

Generative deep learning
(based on RNNs) [7]

Does not require similarity searching or external scoring
and new molecular structures are generated
immediately

User has to make a decision on when
training should be stopped

Reinforcement Learning for
Structural Evolution (ReLeaSE -
2 DNNs, generative and
predictive) [8]

Simpler to use compared to traditional methods Only available for a single-task regime
- development to extend to optimise
several target properties together is
required

Drug screening Random Forest and ChemVec
[11]

Highest accuracy when compared to 3 other algorithms 1. Improve feature representation
using deep learning

2. Experimental validation required
Imaging Cell microscopy and

histopathology
Bayesian matrix factorisation
method, Macau [25]

Predictive performance comparable with that of DNNs 1. Current results for this method are
based on a single HTI screen

2. Requires an adequate sized library
of compound for training the
model

Gradient Boosting [27] Reduction of disturbances to the cells, making sample
preparation quicker and cheaper

Deep learning techniques should be
tried to improve the model

Defining
relationships
between
morphology and
genomic features

Inception v3 (based on
convolutional neural
networks) [22]

Capable of distinguishing between 3 types of
histopathological images, predicting mutational status of
6 genes

Current data may not fully represent
the heterogeneity of tissues

Genomic medicine Biomarker discovery Elastic net regression [33] Identification of BRAF and NRAS mutations in cell lines,
were among the top predictors of drug sensitivity for a
MEK inhibitor

Technique does not allow for the
comparison between drugs

Unsupervised hierarchical
clustering (part of ACME
analysis) [30]

Identified associations between BRAF mutant cell lines of
the skin lineage being sensitive to the MEK inhibitor

1. Distance metric and linkage
criteria must be specified

2. Does not scale well
Spectral clustering by
Similarity Network Fusion
(SNF) [34]

Identification of new tumour subtypes by utilising mRNA
and methylation signatures

Prospective studies required to
determine accuracy

Integrating different
modalities of data

iCluster [44] Identified potentially novel subtypes of breast and lung
cancers on top of subgroups characterised by concordant
DNA copy number alterations and gene expression in an
automated way

Only focuses on array data

Kernel Learning Integrative
Clustering (KLIC) [46]

Compared to Cluster-Of-Cluster Analysis (COCA), KLIC
adds more detailed information about data from each
dataset into the last clustering step and is able to merge
datasets having various levels of noise, giving more
weight to more significant ones

Only tested on simulated datasets

Spectral clustering by SNF [43] Identification of new medulloblastoma subtypes 1. Larger cohort size for validation
2. Current analysis of samples is bulk

analysis
Affinity Network Fusion (ANF)
and semi-supervised learning
[47]

Performs similarly or better when compared to SNF, less
computationally demanding, generalises better

Results on four cancer types only
(known disease types) and not yet
validated on additional experimental
data

Clusternomics [48] Outperforms existing methods and derived clusters with
clinical meaning and significant differences in survival
outcomes when tested on real-world data [44,49–51]

Comparison of performance to other
methods on real-world data
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reinforcement learning, the neural network continues learningwith the
help of a critic, i.e. a function that evaluates theutility of the latest output
of the neural network. ReLeaSE (Reinforcement Learning for Structural
Evolution), integrates two DNNs; one for generating novel chemical li-
braries, and one for evaluating their utility based on quantitative
structure-property relationships (QSPRs). Reinforcement learning al-
lows the first DNN to keep improving the generated libraries based on
feedback from the second. This method uses chemical structures repre-
sented by SMILES (simplified molecular-input line-entry system)
strings only, rather than calculating chemical descriptors. This differen-
tiates ReLeaSE from traditional methods, making it simpler to use [8].

A major bottleneck for using DNNs for computer-aided
retrosynthesis in the synthesis of natural products is the scarcity of
training data for this application. Natural product synthesis could possi-
bly be solved with stronger, but slower-reasoning, algorithms for
inventing reactions [9]. Improvements in algorithm development
should come hand-in-hand with high quality training data to further
improve this method.

For methods in computational de novo drug design, there is still a
need to score and rank the generated designs. Meaningful selection
of compounds from a set of new generated molecules require an ap-
propriate predicted bioactivity which has been validated [6]. While a
deep learning model based on RNNs may circumvent this limitation,
available active ligands for parameter optimisation are still required.
Fine-tuning of this model over a certain number of epochs is re-
quired to avoid the generation of duplicates. However, the user
has to make a decision on when training should be stopped, sug-
gesting that objective rules to fine-tune the model will be required
to further improve this method [7]. Based on the example above,
the ReLeaSE method currently only allows for a single-task regime,



Fig. 2. Summaryof conventional deepneural networks (DNNs) and their architectures. DNNs are powerful algorithms based loosely on the humanbrain. Each node (‘neuron’) in theneural
network can only perform simple calculations, but DNNs work by connecting the nodes to form a number of layers, where each layer performs a calculation based on the output of the
previous layer. In this way, the DNN can perform tasks that are much more complex than what a single node could achieve. The ‘deep’ in DNNs refers to the fact that the number of
layers can be very large. In some cases, DNNs outperform other ML algorithms due to their capability of finding patterns in vast amounts of unstructured data. As the number of nodes
and layers implies a large number of parameters that need to be learned, DNNs often require large amounts of data to achieve top performance. (a) A type of DNN, called a deep
recurrent neural network (RNN), consists of an input layer, numerous hidden layers corresponding to each feature of the input data, and an output layer. The input will consist of a
dataset in machine-readable format, and information is propagated forward through the layers to provide an output. The thickness of the lines indicates the weight of the connections
entering and leaving the nodes. RNNs use feedback loops throughout the process of computation. RNNs are particularly useful for modeling a sequence of data (eg. designing chemical
compounds) because the feedback loops allow the network to effectively retain a `memory` of inputs it has seen previously [7,8]. (b) Inspired by the visual cortex, convolutional neural
networks (CNNs) allow for more effective processing of the complexity of a given input (eg. raw images); this is done by transforming them into simpler forms, without the loss of
important features for a prediction. In the first convolution layer, filters are applied to the input to create low-level convoluted features (eg. edges of images). Convolution can be
thought as matrix multiplication between the filter (kernel) with subsets of the input data where the filter is overlapping. Next, the pooling layer reduces the sizes of convoluted
features and declutters it to select important features for training the model. The number of convolution and pooling layers is dependent on the complexity of the data; more
computation is required as the number of layers increases. The final layers consist of one or more fully connected layers (to perform computations on the extracted features) and the
output layer (usually the result of the prediction or classification).
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prompting future development to optimise several target properties
together. This is required for drug discovery where the compound
would need to be optimised based on characteristics such as po-
tency, selectivity, solubility, and drug similarity [8]. AstraZeneca
were able to use RNNs to expand their portfolio by optimising the
bioactivity, pharmacokinetic properties, and solubility of their new
compounds [10].
2.2. Drug screening

Drug repositioning involves evaluating a library of approved drugs
or drugs in trials for application in a new disease indication [11]. Phar-
maceutical companies maintain and assess millions of unique com-
pounds as potential treatments for a variety of diseases [12,13]. The
high number of permutations for comparing compounds across disease
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indications pose a significant computational and experimental chal-
lenge, and even more so for combination treatments [14,15]. The
chances of predicting the probability of compounds being repositioned
maybe improved by the integration ofmolecular and chemical informa-
tion from the compound and diseases [16].

Feature engineering can be applied to chemical information to iden-
tify important features needed for prioritising drugs for clinical investi-
gation. From RepurposeDB and DrugBank, chemical descriptors of the
small molecules (i.e. quantitative structure activity relationship param-
eters, electronic, topological, geometrical, constitutional and hybrid)
were integrated by algorithms like ChemVec [17,18]. The combination
of features from different molecular features determines a framework
representing the chemical space of drug molecules used in this study
[11]. To fully extend the utility of this method, the authors have pro-
posed to include datasets from PubChem in the future to improve fea-
ture representation using deep learning [11]. While the proposed
direction for improvement would require large volumes of data, good
quality data is often equally or more critical to ensure optimal
performance.

After the compilation of molecular features with ChemVec, Random
Forest (RF) was utilised to predict the suitability of small molecules as
candidates for drug repositioning. It was suggested that RF had the
highest accuracy rate when compared to other algorithms including
Naïve Bayes, Support Vector Machines (SVM), and the Ensemble
Model (combining the stated 3 models) [11]. Studies that benchmark
different algorithms for single and paired treatments have highlighted
the need to include genomic information [19,20]. Although high accu-
racy is reported in these studies, there has been limited clinical valida-
tion of the ML predicted treatments partly because due to their
translatability from in vitro to in vivo. Nevertheless, the predicted ge-
netic biomarkers for treatment response, such as those for drugs
targeting the AKT protein, have been shown to be useful in the clinical
setting.

3. Imaging

Opportunities are already available to apply ML to assist researchers
in cell image analysis with the increasing availability of high quality vol-
umes of cell imaging data. This is particularly evident in cell microscopy
andhistopathology. Unravelingdisease heterogeneity by improving cel-
lular profiling of certain morphology characteristics is becoming more
feasiblewith the help ofML.Here,we focus on promisingML techniques
that can be applied to aid the classification of samples and even extract
new disease features which evade the human eye.

3.1. Cell microscopy and histopathology

Diagnosis by histopathology is fraught with inconsistency in the in-
terpretation of slides by pathologists [21]. Traditional techniques like
the microscopic examination of a specimen are limited and do not
allow for the detection of specific genomic driver mutations and pat-
terns within the subcellular structure of cells [22,23]. Biomarker detec-
tion in the clinical laboratories also typically requires specific reagents,
specialised equipment, and/or complicated laboratory techniques,
which might disturb the original state of biological specimens [24].
This presents an opportunity to leverage advances in ML for label-free
cell-based diagnostics to highlight disease states that cannot be identi-
fied by humans alone.

High-throughput imaging (HTI) allows researchers to resolve cell
morphology by microscopy. It is frequently used to screen compounds
based on alterations to cell morphology by a particular drug. An un-
trained eye may not fully leverage the entirety of morphological data
from images, leaving behind a relatively large untapped reservoir of bi-
ological insight [25]. Rich data from a HTI assay could be repurposed for
the prediction of biological activity of drugs in other assays, including
predicting those targeting a different pathway or biological process. A
Bayesianmatrix factorisationmethod was revealed to yield a predictive
performance comparablewith that of DNNs. Bothmethods can success-
fully repurpose the glucocorticoid HTI assay to predict activity of N30
unrelated protein targets [25]. This approach suggests the justification
of repurposing high-throughput imaging assays for the drug discovery
process.

Current results for this method are based on a single HTI screen but
future studies that fuse data across multiple HTI screens could be more
capable for prediction. This method relies on a supervised ML method
which requires an adequate sized library of compounds to train the
model. Convolutional neural networks (CNNs) (Fig. 2b) could poten-
tially predict activity directly from raw images, eliminating the need
to extract features from each cell [26].

Unstained white blood cells (WBCs) were classified using a label-
free approach with imaging flow cytometry and various ML algorithms
(AdaBoost, Gradient Boosting, K-Nearest Neighbors, RF, and SVM) [27].
Imaging flow cytometry combines the sensitivity and high-content
morphology of digital microscopy with the high-throughput and statis-
tical power of flow cytometry. Among those algorithms, the Gradient
Boosting algorithm is best able to classify theWBCs into their subtypes.
This approach demonstrates the reduction of disturbances to the cells,
and makes sample preparation quicker and cheaper, leading to poten-
tial application of label-free identification of cells in the clinic [24].

In the future, applying other ML techniques such as deep learning
may help to improve the model. Deep learning algorithms are poten-
tially better suited for discerning cellular images as they allow learning
of features directly from the vast amounts of raw data. Using unsuper-
vised ML to cluster subpopulations of cells could aid interpretation of
similarity among clustered cells [27]. Researchers from Google AI have
been benchmarking CNNs for routineGleason scoring of prostate cancer
cases and comparing them to actual classifications by qualified patholo-
gists [28]. The algorithm's diagnostic accuracy of 0.70 was far superior
than the mean accuracy of 0.61 among pathologists, so we may see a
significant improvement in the clinical diagnosis of common cancers
in the near future.

3.2. Defining relationships between morphology and genomic features

Physical differences between cancer cell types are often subtle, espe-
cially in poorly differentiated tumours. Advanced learning techniques
for image analysis may help identify existing patterns in cell morphol-
ogy that relate to biological processes [22,24]. A technique based on
CNNs, Inception v3, was capable of distinguishing between three types
of histopathological images (normal tissue, lung adenocarcinoma, and
lung squamous cell carcinoma). CNNs were also capable of predicting
the mutational status of six genes (STK11, EGFR, FAT1, SETBP1, KRAS,
TP53) from lung adenocarcinoma whole-slide images [22].

As whole-slide images may not fully represent the heterogeneity of
tissues, images containing more features would be required to train
the model for improved performance. Continuing work to extend this
method to other histological subtypes and consider features in the
tumour microenvironment will better help researchers through a
semi-automated approach [22]. In particular, Steele et al. were able to
translate knowledge from histopathologists into rule-based algorithms
that can measure immune cell infiltrate to improve the success of im-
munotherapy durvalumab in Phase 1/2 studies [29].

4. Genomic medicine

In order to ensure targeted treatments can be delivered to patients,
biomarkers of disease are essential to select patients whomight best re-
spond to treatment. Recent technological and analytical advances in ge-
nomics have allowed the identification and interpretation of genetic
variants for cancers spanning almost all protein-coding genes of the
human genome [30,31]. These variants could potentially act as bio-
markers of disease, leading to targeting the mechanisms contributing
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to disease which are unique to a patient [32]. However, finding mean-
ingful biological insights into drivers of disease progression from the
sheer number of potential biomarkers arising from variants is challeng-
ing for researchers to achieve manually.

ML techniques have helped to systematically define biomarkers
driving diseases [30,33,34]. Integration between experimental and clin-
ical data is required to help understand new disease subtypes, but re-
mains a challenge due to the heterogeneity in both experimental and
clinical data. Clinical data is oftenmessy, withmissing data points prov-
ing to be a challenge to integrate into anMLmodel [35]. Understanding
new subtypes remains key for the application of delivering precise
treatments to patients, which will hopefully improve clinical outcomes.

4.1. Biomarker discovery

The need for precision medicine is evident within oncology; cancers
are more frequently categorised and treated based on their molecular
profile. For melanoma patients with unresectable or metastatic tu-
mours, ipilimumab is currently a recommended treatment option [36].
As the heterogeneity of tumours is difficult to define solely by the
naked eye, ML presents a data-driven approach to account for various
markers that drive tumour growth, including those present in a
patient's molecular profile. Regression and clustering methods have
been used to identify biomarkers that predict drug sensitivity
[30,33,34]. Elastic net regression has identified features that are
known predictors of drug sensitivity. For example, models including
BRAF and NRASmutationswere among the top predictors of drug sensi-
tivity in cell lines for a MEK inhibitor drug [33]. Unsupervised hierarchi-
cal clustering of AUC drug sensitivitymeasurementswas able to identify
sensitivity of BRAF mutant skin cancer cell lines to the MEK inhibitor
selumetinib. This finding is expected and validates a known vulnerabil-
ity observed in patients [30,37].

A particularly powerful approach to conduct biomarker discovery
when you have information about samples from multiple sources is to
use networks (Figs. 3a–c). An individual similarity network of samples
Fig. 3. Multi-omics analysis of samples and biomarkers using networks. (a) Multi-omic
datasets across a group of samples. (b) Samples are first connected based on their
similarity within each dataset (c) Similarity networks based on different datasets are
fused by updating each network repeatedly with data from other networks. (d) Final
fused network can be analysed to identify biomarkers that describe the similarity
between groups of samples. The colour of the edges show the data type contributing to
the similarity.
is constructed for each data type using the Euclidean distance, where
the network nodes are patients and edges are the pairwise similarities
for patients. Networks for each omics data type are combined by itera-
tively updating edges on the basis of the information from the individ-
ual networks until convergence, with the final fused network being
clustered using spectral clustering (Fig. 3d) [34]. The identification of tu-
mour subtypes in the The CancerGenomeAtlas (TCGA) studywas based
on the Illumina Infinium DNA Methylation 450 BeadChip, mRNA
expression, and integrated mRNA and DNA methylation (iRM)
[31,34,38]. Other advancedmethods have been proposed for biomarker
discovery, but they do not truly identify common deviations between
multiple data types before analysis for enriched biomarkers begins
[30,33,39].

A particular instance of the network clustering approach, Similarity
Network Fusion (SNF), uses spectral clustering. It has shown a high
level of correlation between the mRNA and methylation signatures to
tumour types identified histologically, suggesting the application of
mRNA and methylation profiling in determining tumour subtypes.
This could be especially useful in situations where tumour histology or
morphology is ambiguous. Future studies are required to determine
the accuracy of classifier development as a tool for clinical cancer diag-
nostics [34]. Methods that integrate both clinical and new multi-omic
datasets represents the next step forward to develop more targeted
therapeutics suitable for individual patients [40,41]. While the impact
of thesemulti-omic platforms are at the beginning of the drug discovery
pipeline, a handful of new candidate compounds, like BRD-7880, have
come as a result of their predictions [42].
4.2. Integrating different modalities of data

Unsupervised clustering approaches have been applied to various
applications and data types [34,43,44]. Previously, researchers applied
‘manual integration’ after separate analysis of individual data types,
which typically requires domain expertise and is subject to inconsis-
tencies. A joint latent variable model generates an integrated cluster as-
signment based on simultaneous inference from multi-omics data
(aligning DNA copy number and gene expression data), revealing po-
tential new subgroups in breast and lung cancer [44]. However, this ap-
proach, called iCluster, focuses only on array data.

Another integrative clustering method first clusters each dataset in-
dividually before forming a binary matrix encoding the cluster alloca-
tions of each observation in each dataset [45]. A key limitation of this
method, the Cluster-Of-Clusters Analysis (COCA) method, is that the al-
gorithm output gives equal weight to datasets with poor quality or with
unrelated cluster structures due to clustering structures from each
dataset being unweighted [46]. To address this, a new method was in-
troduced and it was able to add more detailed information about the
data from each dataset into the last clustering step. It was also able to
merge datasets having various levels of noise, giving more weight to
datasets with more signal [46].

Using data integration with SNF and spectral clustering allowed in-
tegration of experimental and clinical data (763 primary frozen medul-
loblastoma samples), further enabling identification of 12 different
subtypes of medulloblastoma. This was achieved after integrating so-
matic copy-number alterations and clinical data specific to each already
known subtype of medulloblastoma. Integrative analysis of experimen-
tal and clinical data with this method further defines group 3 from
group 4medulloblastoma, whichwas not previously visible by analyses
of individual data types [43]. A future study with a larger cohort size
could assess the heterogeneity of the defined subgroups in greater de-
tail. Bulk analysis of the samples are also another limitation to this cur-
rent approach [43]. To further separate groups 3 and 4medulloblastoma
subgroups and potentially reveal subgroups with similar mechanisms
and developmental origins, single-cell genomics can be applied to dis-
tinguish the full subclonal structure of the subgroup.
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Further improvements in data aggregation allowed for the integra-
tion of multi-omic data for clustering cancer patients in combination
with semi-supervised learning [47]. When benchmarked against a
prior method like SNF, it performs similarly or better, is less computa-
tionally demanding, and generalises better. A semi-supervised model
combining this method, called the Affinity Network Fusion (ANF)
method and neural network for few-shot learning can achieve N90% ac-
curacy on the test set with training b1% of the data, in several cases [47].

The methods described prior assume a common cluster structure
across datasets. However, clusters do not always share a similar struc-
ture. Datasets with different cluster structures are considered distrac-
tions and this might result in missing biologically meaningful
differences. A method was introduced as a Bayesian context-
dependent model that identifies groups across datasets that do not
share similarities in their cluster structure [48]. Using a Dirichlet mix-
turemodel, Clusternomics defines clustering at two levels: a local struc-
ture within each dataset and a global structure arising from
combinations of dataset-specific clusters to model heterogeneous
datasets without the same structure. It outperforms existing methods
for clustering on a simulated dataset [44,49–51]. When tested on a
breast cancer dataset from the TCGA (integrating gene expression,
miRNA expression, DNAmethylation, and proteomics), this method de-
rived clusters with clinical meaning and significant differences in
survival outcomes [31]. Evaluation upon lung and kidney cancer
TCGA data showed clinically significant results and the ability of
Clusternomics to scale [48].

While the integration of genomics and electronic health records has
been shown to be effective for precision diagnostics of complex disor-
ders, integrating laboratory and clinical data remains a challenge due
to differences between preclinical models and patients [52]. Recently
developed ML models can be used to transfer molecular predictors
found inmousemodels to humans [53,54]. More structuredmathemat-
ical modeling rather than machine learning of in vitro, in vivo, and clin-
ical data has been useful for identifying optimal doses that could be
tested in patients [55]. Connecting laboratory results to clinical records
can still be difficult with inconsistencies in nomenclature used by clini-
cianswhile ordering tests for a similar diagnosis. Better integrated infor-
mation systems can not only accelerate healthcare AI but also
significantly improve test utilisation practices, increase patient satisfac-
tion, and improve health care processes [56].
5. Data collection, governance, reproducibility, and interpretability

There are general non-technical issues that are required to be ad-
dressed before mainstream application of ML within translational med-
icine takes place. Oftentimes, sensitive data is required to train ML
algorithms. Access to data should be carefully regulated to ensure pri-
vacy without stifling innovation and technological advancement to im-
prove outcomes [57]. A proposed scheme called privacy-preserving
clinical decision with cloud support (PPCD) is an encouraging step in
this direction [58].

Biases within the training datasets of ML algorithms need to be
avoided to reduce the risk of failure of ML methods to generalise. Re-
thinking responsibility and accountability of individuals or organisa-
tions selecting datasets used to train ML algorithms are key to address
this. Ethical frameworks should be developed by scientific committees
and regulatory bodies to recognise and minimise the effect of biased
models while guiding design choices to introduce systems that build
trust, understanding, and maintaining individual privacy [57,59].

Reproducibility is another aspect that needs to be managed to en-
sure widespread adoption of ML in translational medicine. Caution
should be exercised when drawing conclusions solely from large reser-
voirs of clinical data as it is often fraught with heterogeneity in quality
[60]. Responsibly sharing data and code should be made requirements
for authors alongside their publications to ensure trust in research
findings. Reproducibility of results requires the software environment,
source code, and raw data used during experiments [61].

Lastly, there is also a need to explain and easily interpret predictions
of ML systems to implement them in clinical settings. Black-box algo-
rithmsmay have good prediction accuracy but their predictions are dif-
ficult to interpret and are not actionable, hence limiting their clinical
application [62]. Fortunately, new methods have been devised to
allow researchers to interpret black-box algorithms to ensure their pre-
dictions are sensible [63–65].

6. Outstanding questions

Most of the methods described in this review unfortunately involve
many steps and some of these may be beyond the abilities of the non-
expert. In order for ML systems to be better integrated in a laboratory
and clinical setting, a simpler end-to-end approach for applying ML
needs to be available to biomedical scientists. One recent trend in AI is
the development of automated machine learning (AutoML) techniques.
AutoML seeks to make the process of developing an ML model more ac-
cessible by automating the difficult tasks of defining the structure and
type of the model and selecting the hyperparameters [66]. Examples of
AutoML frameworks include open-source frameworks such as TPOT
and Auto-Keras, and industrial software suites that offer pre-trained
models, such asGoogle's CloudAutoML [67–69].While this development
would appear to be a boon in that it allows clinicians with limited ML
knowledge to apply MLmodels to their datasets, we were not successful
in identifying any current applications in translational medicine. Care
should also be taken when applying these techniques, as automation
may miss some of the subtleties and particular biases of medical data.

Since the goal of translational research is to see methods tested in
the laboratory setting used in the clinic, computational methods will
need to undergo the scrutiny of healthcare regulators. In the US, the
FDA has recently proposed a new regulatory framework for medical de-
vices (including software) that deals with the changes brought about by
software employing AI and ML techniques. In particular, they propose
that rather than having to review the software each time it changes,
the premarket submission to the FDA would include a “predetermined
change control plan” which describes the type of changes that could
be made to the algorithm and how the risk to patients would be man-
aged. We believe that this is a beneficial step that represents a reason-
able trade-off between the burden of legislation and the potential
risks to patients, and hope that other regulatory bodies will follow suit.

7. Conclusions

Throughout this review, we discussed key applications of ML in
translational medicine.We also emphasised key bottlenecks and limita-
tions of each application, as well as prerequisites needed to overcome
them before these technologies may be applied effectively in research
or clinical settings. Although the application ofML to translational med-
icine is met with great enthusiasm, we should collectively exercise cau-
tion to prevent premature rollout and the harm they might cause to
patients secondary to any faults in these technologies.

New laboratory technologies applied to translational medicinemust
undergo sharing of results in peer-reviewed publications, rigorous test-
ing, and real-world validation - ML algorithms applied in this domain
should be held to the same high standards. While the temptation to
apply various types of computation to large volumes of data grows, it
is still of utmost importance to first consider the underlying biological
question and the data required to answer it instead of blindly applying
ML techniques to any dataset. Nevertheless, advancements in ML will
bring truly objectivemethods to address the ambiguity observedwithin
translational medicine, allowing for more robust, data-driven decision
making to bring the next generation of diagnostic tools and therapeutics
to patients.
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Search strategy and selection criteria

Articles for this review were identified via PubMed and Google
Scholar using the search terms “machine learning”, “AI”, “artificial intel-
ligence”, “deep learning”, “deep neural networks”, “de novo drug de-
sign”, “drug development”, “cell microscopy”, “feature extraction”,
“histopathology”, “biomarker development”, “electronic health re-
cords”, “data collection”, “governance”, and “reproducibility” on top of
references from relevant articles. We also identified articles from the
names of prominent investigators in the field. Articles published in En-
glish from2016onwardswere included in the review. Exceptions to this
include data integrationmethods (iCluster, BayesianConsensus Cluster-
ing, Multiple Dataset Integration, SNF), datasets (TCGA, CTRP v2,
DrugBank 4.0, GDSC), research articles to better give context and key
statistics to the described challenges, and clinical trial findings. We in-
cluded reference to four non-peer reviewed research articles, in bioRxiv
and arXiv.
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